
1/18

Gootloader: Why your Legal Document Search May End
in Misery

trustwave.com/en-us/resources/blogs/spiderlabs-blog/gootloader-why-your-legal-document-search-may-end-in-misery/

Rodel Mendrez Aug 11, 2023

Introduction

Recently, we’ve seen a noticeable surge in malware cases linked to a malicious
payload delivery system known as Gootloader. The group behind this malware is
believed to operate a malware-as-a-service operation, exclusively providing a
malware delivery service for other threat actors.

This malware has gained notoriety due to its exploitation of compromised WordPress
sites for malware distribution and its utilization of SEO (Search Engine Optimization)
poisoning techniques to achieve high rankings in web search results.

Particularly concerning is the fact that a significant portion of these cases involves 
law firms.

https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/gootloader-why-your-legal-document-search-may-end-in-misery/


2/18

Figure 1. Gootloader malware investigations by industry

In this blog, we discuss why Gootloader has become very effective, and we will deep
dive into its inner workings and shed light on the tactics employed by the operators
behind it.

SEO poisoning

The initial vector of this attack utilizes a technique called Search Engine Optimization
(SEO) poisoning to lure victims into downloading the malicious payload.

Typically, it all starts with a seemingly harmless search for supply agreement
documents that lead to the compromised WordPress webpages controlled by
Gootloader actors:

https://21158977.fs1.hubspotusercontent-na1.net/hubfs/21158977/Web/Blogs/SpiderLab/20381-image001.webp


3/18

Figure 2. Example of a search query that leads to a SEO poisoned webpage

We collected a bunch of search queries that lead to the compromised websites and
identified the keywords utilized by this malware group, revealing a predominant SEO
keyword focus on legal documents such as “agreements”, “contracts”, and  “forms”.
This watering hole strategy theme appears to be successful - most cases we receive
related to this malware are from our clients in law offices and legal firms.

These are some of the SEO search terms utilized in this campaign. While the majority
of the keywords are in English, the campaign also targets the French, Spanish,
Portuguese, German, and South Korean languages.

https://21158977.fs1.hubspotusercontent-na1.net/hubfs/21158977/Web/Blogs/SpiderLab/20382-image003.webp


4/18

Figure 3. Samples of search keywords that leads to Gootloader infected websites

https://21158977.fs1.hubspotusercontent-na1.net/hubfs/21158977/Web/Blogs/SpiderLab/20383-image005.webp


5/18

Figure 4. The word cloud displays the most frequently used terms in this campaign
mostly related to legal agreements and other law/legal inquiries.

When visiting a poisoned link from the search engine result, the user will be directed
to a page that mimics a forum. This fake forum page employs social engineering
tactics to entice the user to click on a direct download link for the desired document
file.

https://21158977.fs1.hubspotusercontent-na1.net/hubfs/21158977/Web/Blogs/SpiderLab/20384-image007.webp


6/18

Figure 5. An overlay page is rendered that mimics a forum with the exact topic the
user searched for. The deceptive tactic aims to lure the user into clicking the link
without realizing its true malicious nature.

As the compromised WordPress website is under the control of malicious actors, a
cloaking mechanism is employed to prevent loading for non-target users like security
researchers, and other prying eyes. The server-side PHP script checks a set of
conditions, including that:

The user's IP address has not previously visited the website.
The visitor has not logged into the website's WordPress login page.
The IP address geolocation indicates that the visitor is from specific countries,
such as the USA, Australia, Canada, and other English-speaking countries. It
also targets users from countries like South Korea and Germany.
The user's browser is running on a Windows operating system.
The visitor is not identified as a bot crawler.
The visitor should be referred by the search engine.

When a non-target user visits the page, a fake blog entry will be loaded to give the
appearance of benign content.

https://21158977.fs1.hubspotusercontent-na1.net/hubfs/21158977/Web/Blogs/SpiderLab/20385-image009.webp


7/18

Figure 6. Benign blog content is shown when a non-target user visits the page.

Upon inspecting the page's source, it becomes evident that an external JavaScript is
being loaded. This obfuscated JavaScript is responsible for overlaying the fake forum
page once the visitor's conditions are fulfilled.




https://21158977.fs1.hubspotusercontent-na1.net/hubfs/21158977/Web/Blogs/SpiderLab/20386-image011.webp
https://21158977.fs1.hubspotusercontent-na1.net/hubfs/21158977/Web/Blogs/SpiderLab/20387-image013.webp


8/18

Figure 7. An external Javascript is loaded, which is dynamically generated by a PHP
code on the server side. This particular Javascript is responsible for overlaying a fake
forum.

As shown in Figure 7, the URL parameter for the external JavaScript generally
adheres to a recognizable query string pattern. It begins with a key that starts with "?
a" followed by six hexadecimal characters, an equal sign, and a value comprising of
six to seven digits.

Figure 8. Few examples of the injected JavaScript URL we extracted from other
compromised WordPress webpages

Figure 9. The JavaScript is designed to generate an HTML page that simulates a
forum and overlay it when specific visitor conditions are fulfilled. This JavaScript is
obfuscated to avoid detection.

https://21158977.fs1.hubspotusercontent-na1.net/hubfs/21158977/Web/Blogs/SpiderLab/20388-image015.webp
https://21158977.fs1.hubspotusercontent-na1.net/hubfs/21158977/Web/Blogs/SpiderLab/20389-image017.webp


9/18

When the user clicks on the download link within the fake forum, they are redirected to
another WordPress webpage, typically identified by the PHP path ‘download.php,’
which is also controlled by the attacker. The visitor’s information is similarly checked,
and when the conditions are satisfied, a ZIP file will be provided for download. The
filename of the ZIP file is derived from the user’s search keyword.

Figure 10. Downloaded ZIP file

The ZIP file however does not contain the intended file that the user was expecting.
Instead, it conceals a malicious .JS file, cleverly hidden within a legitimate JavaScript
library. For instance, the screenshot below shows an instance where malicious code
has been injected into the trustworthy JavaScript framework known as Material
Design Lite.

Figure 11. Comparison of the legitimate and trojanized JavaScript library

Gootloader’s Execution Flow Overview

Before we explore the intricate mechanisms of Gootloader, the following diagram
presents an overview of its attack flow.

https://21158977.fs1.hubspotusercontent-na1.net/hubfs/21158977/Web/Blogs/SpiderLab/20390-image019.webp
https://21158977.fs1.hubspotusercontent-na1.net/hubfs/21158977/Web/Blogs/SpiderLab/20391-image021.webp


10/18

Figure 12. Overview of the Gootloader’s attack flow

Hiding the Malicious Code

The JavaScript file found within the downloaded ZIP file acts as an installer and
launcher for subsequent payload scripts. It leverages a legitimate open-source
JavaScript library to mask the presence of malicious code, which is chunked and
dispersed throughout the legitimate library in numerous fragments of obfuscated
strings. In the end, a specific function is responsible for gathering all these string
chunks, combining them, deobfuscating the concealed code and executing it.

Figure 13. Obfuscated strings dispersed throughout the code.

https://21158977.fs1.hubspotusercontent-na1.net/hubfs/21158977/Web/Blogs/SpiderLab/20392-image023.webp
https://21158977.fs1.hubspotusercontent-na1.net/hubfs/21158977/Web/Blogs/SpiderLab/20393-image025.webp


11/18

Figure 14. The strings are concatenated into one block of code then undergoes a
decoding routine before it executes it.

Figure 15. By concatenating the individual string chunks, a single encoded string blob
is formed.

To decode the encoded blob of string, we can follow this procedure:

Firstly, we extract all the characters at even positions and concatenate them to
form a string. This resulting string is then reversed, representing the first half of
the decoded Jscript code.
Next, we gather all the characters at odd positions, join them to create another
string, and append it to the previously obtained first half of the code.

The following Python code below provides an approach to decode the string:

Figure 16. Python code snippet to decode the string

We have also written a CyberChef operation called “Gootloader Decode” that can
decode this encoded string blob, and then we can decode it with the CyberChef recipe
as shown in the screenshot below. You can download our CyberChef fork from
here: https://github.com/drole/CyberChef

https://21158977.fs1.hubspotusercontent-na1.net/hubfs/21158977/Web/Blogs/SpiderLab/20394-image027.webp
https://21158977.fs1.hubspotusercontent-na1.net/hubfs/21158977/Web/Blogs/SpiderLab/20395-image029.webp
https://21158977.fs1.hubspotusercontent-na1.net/hubfs/21158977/Web/Blogs/SpiderLab/20396-image031.webp
https://github.com/drole/CyberChef


12/18

Figure 17. Our Gootloader decode Cyberchef operation and recipe to decode the
strings

Installation and Persistence

Upon decoding the first stage of JavaScript, the hidden code reveals the installation of
malware, its persistence mechanisms, and the execution of subsequent scripts.

https://21158977.fs1.hubspotusercontent-na1.net/hubfs/21158977/Web/Blogs/SpiderLab/20397-image033.webp


13/18

Figure 18. Deobfuscated and beautified initial stage of JavaScript code.

Breaking down the script, the key steps are:

1. First it checks if the drop file does not already exist in a determined subfolder
within %appdata%.

2. If the drop file doesn't exist, it creates a text file handle and opens the file in write
mode.

3. The payload script is then written to the drop file.
4. Random character padding is generated and written to the end of the file - this

will bloat the file size to approximately 40 MB.
5. The drop file's name is set to the JS file name (in this example Oracle

Coherence.js).
6. A new scheduled task is created using a predefined task name “Anger

Management”.
7. Task settings start availability is set to true and visibility is configured to hide.

https://21158977.fs1.hubspotusercontent-na1.net/hubfs/21158977/Web/Blogs/SpiderLab/20398-image035.webp


14/18

8. A trigger is set upon user login.
9. An action is created for the task, specifying the dropped script to run.

10. The new task is registered with the scheduled task root folder.
11. The scheduled task is retrieved by name.
12. The scheduled task is executed.

The malware employs a semi-randomized strategy to select a subfolder within the
Application Data (%APPDATA%) directory for dropping the malicious file. It begins by
enumerating the subfolders present in the %APPDATA% folder. Then, it utilizes a
formula that relies on the total number of subfolders to determine the appropriate
target subfolder. In this particular malware sample, the calculation involved is as
follows:

The resulting value of the index is used to identify the target subfolder within which the
malware file will be placed.

For this instance, if there are 10 subfolders within the infected machine’s %Appdata%
directory, the following calculation is performed:

The folder index result is 1, indicating that the payload will be dropped in the second
subfolder within the %Appdata% directory, as counting starts from zero as the base
number.

PowerShell Reconnaissance and Stager

After the JavaScript file is dropped, the attack proceeds to execute a PowerShell
command. This command is included within the dropped JS file itself. The code
contains a hardcoded PowerShell snippet that is executed based on whether the
script is running with ‘cscript’ or ‘wscript’.

The conditions are as follows:

If the script is running with cscript, the PowerShell command is executed using
the WScript.shell object.
If the script is running with wscript, the command runs the cscript.exe
executable. It includes arguments for the script's full name and path. The script
is opened with the "open" parameter, while the window is hidden.

https://21158977.fs1.hubspotusercontent-na1.net/hubfs/21158977/Web/Blogs/SpiderLab/20399-image037.webp
https://21158977.fs1.hubspotusercontent-na1.net/hubfs/21158977/Web/Blogs/SpiderLab/20400-image039.webp


15/18

The PowerShell script enters a loop where it sleeps for 20 seconds between
iterations. Within this loop, it randomly selects a URL from a predefined list of URLs to
connect to.

Figure 19. List of URLs hardcoded in the script

Before establishing the connection, the script collects system information, including:

Environment paths
Windows OS version
Running process names
Titles of all open windows
List of Windows desktop items and files
Disk information and disk space usage

To gather this information, the script utilizes the WMI (Windows Management
Instrumentation) and “gps” (Get-Process) PowerShell commands.

Each piece of collected information is compressed using GZIP and then encoded with
Base64. The stolen information is then sent to the URL via the HTTP Cookie header.

A user-agent is also added in the HTTP header:

https://21158977.fs1.hubspotusercontent-na1.net/hubfs/21158977/Web/Blogs/SpiderLab/20401-image041.webp
https://21158977.fs1.hubspotusercontent-na1.net/hubfs/21158977/Web/Blogs/SpiderLab/20402-image043.webp


16/18

The PowerShell script anticipates a response from the remote hosts containing
additional PowerShell code that is then executed on the local system.

Second Stage PowerShells

Once a successful connection is established with the attacker-controlled host,
subsequent PowerShell commands are executed. The specific PowerShell commands
invoked in this context will depend on the configuration set by the Gootloader service
clients. As Gootloader operates as malware-as-a-service, the exact nature of the
PowerShell commands may vary depending on the preferences chosen by
Gootloader’s clients.

Here are the post infection PowerShell codes that we encountered:

1. Job Receiver: A PowerShell script that waits and receives other PowerShell
script jobs from the attacker. Results from these jobs are exfiltrated back to the
attacker.

2. Network Scanner: A PowerShell script that conducts network scans and
fingerprinting of the local network, specifically examining if SMB (Server
Message Block) and Windows Remote Management are open.

3. Remote Command Execution: This PowerShell script establishes a TCP
connection with a predetermined host. It sets up a network stream for reading
and writing, allowing the infected host to receive commands from the remote
host. The script executes the received commands locally on the infected host
and sends the results back to the attacker.

Wrapping up

Gootloader's SEO poisoning watering hole technique targeting legal-related search
terms represents a significant threat to organizations or even individuals, seeking
legal information online. By manipulating search engine results and luring
unsuspecting users to compromised websites, Gootloader takes advantage of users'
trust in search results to deliver malicious payloads.

We have also delved into various aspects of Gootloader’s mechanism and examined
the techniques employed by the actors behind it. A noteworthy aspect employed by
this attack is the clever implementation of the cloaking mechanism. As it only loads
and presents the fake forum to target users, this technique is a challenge for security
researchers to detect and identify it. In addition to these, Gootloader also uses
obfuscation in every stage of the attack adding layers of complexity. 

https://21158977.fs1.hubspotusercontent-na1.net/hubfs/21158977/Web/Blogs/SpiderLab/20403-image045.webp


17/18

IoCs

File Name            Hash Type           Hashes

technical services and spares supply agreement 35528.js SHA256

               
0afe27f33637dbb8c7aea69e1cb91b4eace2a0840bb819e30ab089221fb35d36

                SHA1     d812feccb9172dd0ecc6190f025f0a3f17208379

                MD5      96cf6b2e9e27db0c03b06fbc06b81854

File Name            Hash Type           Hashes

technical services and spares supply agreement 35528.zip             SHA256

               
5bdc36838cfae33bbcc027be7e70228fb76d35828d1a21b8b53f2413598634e0

                SHA1     ae4c425e8139dba850bcf978f6e889d10df45a7a

                MD5      799f0f4b22c273bbe07790e7fa8c0c68

URLs:

https://projectspace.org.hk/technical-services-and-spares-supply-agreement/

https://projectspace.org.hk/?a96fc4b=1976965

https://drachtstercompagnie.frl/download.php

https://druczki.pl/download.php

https://camtel.cosavostra.com/xmlrpc.php

https://civpro.io/xmlrpc.php

https://construtoraconarte.com.br/xmlrpc.php

https://bqrc.es/xmlrpc.php

https://healthforcesuperfoods.com/xmlrpc.php

https://tangibleinvestmentsinc.com/xmlrpc.php

https://mixzote.com/xmlrpc.php



18/18

https://savealot.com/xmlrpc.php

https://cartoongoodies.com/xmlrpc.php

https://organizingengagement.org/xmlrpc.php

https://cargillfeed.com.vn/xmlrpc.php

https://fidgettoyskopen.nl/xmlrpc.php

https://blackwoolholiday.com/?a720f8d=1373769

https://themasterpiececollection.com/?a2229be=4703335

https://projectspace.org.hk/?a96fc4b=1573747

https://stelizabethcarlisle.com/?a252a96=2053315

https://zlatazimovets.com/?ab0be3b=105129

https://zhangyiou.cn/?ad62686=1893329

https://zetorzsolti.hu/?a8f7196=1932151

http://www.usraslots.com/wordpress/?a820faa=1772155

http://www.venuesfor21stbirthdayparty.com/?aaba9b9=672485

http://fliesenschneider-test.net/?a8fc282=1236940

http://10dim-giann.pel.sch.gr/?a1ceef3=260967

User-Agent:

Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/107.0.0.0 Safari/537.36


