
1/19

August 6, 2023

DarkGate - Threat Breakdown Journey
0xtoxin.github.io/threat breakdown/DarkGate-Camapign-Analysis/

Shining a Light on the Hidden Tactics and Techniques Employed by DarkGate

11 minute read

0xToxin

Threat Analyst & IR team leader - Malware Analysis - Blue Team

https://0xtoxin.github.io/threat%20breakdown/DarkGate-Camapign-Analysis/

2/19

Intro

Over the past month, a widespread phishing campaign has targeted individuals globally.

The campaigns execution chain ends with the deployment of a malware known as:
DarkGate. A loader type malware.

DarkGate is exclusively sold on underground online forums and the developer keeps a very
tight amount of seats for customers.

The Lure

The adversary behind the campaign distributed a high volume campaign of phishing emails,
those mails were stolen conversation threads that the adversary had access to.

The challenge here lies in the fact that users often trust what they remember, and because of
that, I think users who aren’t aware of such tactics could easily become infected and fall prey
to the “social engineering” trap.

Below, you’ll find an example of the content the adversary added to the hijacked
conversation thread:

I’ve created a diagram that demonstrates the execution flow of the campaign:

3/19

Geofence Check

Honestly, I’m still trying to figure out what checks need to be passed to get through the
geofence set by the adversary. After examining some of the URLs on URLscan.io, I
discovered that those which were successful in obtaining a payload featured the refresh
header in their response (makes sense). This header included the URL needed to download
the payload, for instance:

If the user successfully passes the check, an MSI file is downloaded from the URL, following
the structure: Project_[0-9]{7}\.msi

MSI Loader

The downloaded MSI carries two embedded files:

CustomAction.dll

4/19

WrappedSetupProgram.cab

The DLL is called upon by the MSI to unpack the content housed in
WrappedSetupProgram.cab and execute it.

The cab archive includes two files:

Autoit3.exe
UGtZgHHT.au3 (AutoIT 3 script)

AutoIT Script

Extracting The Script

Upon initial examination, the script appears to be altered. Typically, most AutoIT scripts I’ve
come across begin with the magic bytes A3 48 4B BE and 41 55 33 21 45 41 (AU3!EA)
like explained in this blog:

You can find the au3 script magic bytes AU!EA06(06 here is the subtype of the script),
inside of its hex dump as shown in the picture below.

https://ghoulsec.medium.com/mal-series-6-autoit-analysis-guide-30072dda044a

5/19

However, the script I analyzed contained a substantial amount of what seemed to be junk
data at the start of the file. (We’ll get back to this later in the blog)

I managed to locate the magic bytes indicating the AU3 script’s starting point at the offset
0xA0A5C:

To extract the actual script, I changed the file’s extension from au3 to a3x (representing an
AutoIT3 compiled script) and used the tool myAut2Exe for extraction.

Shellcode CallWindowProc Injection

The AU3 script consists of two main components:

1. A segmented hex-encoded shellcode that is concatenated into a single variable.
2. Injection and execution of the shellcode.

The first part is quite self-explanatory. In my analysis, the variable was named
$SSUGZNUOOE, and it appeared over 2,000 times in the script:

https://github.com/fossabot/myAut2Exe

6/19

The second segment of the script initiates by verifying the existence of the ProgramFiles
folder and confirming that the username executing the script is not SYSTEM. I suspect these
checks are evasion tactics to ensure the script runs within a standard Windows environment
rather than a sandbox or custom setup.

The script proceeds to convert the hex-encoded shellcode to a binary string using the
BinaryToString function and assigns it to the $MZRSVIMCSW variable. The variable
$MFCKUCOYGW is initialized as a DLL structure sized to the shellcode using the
DllStructCreate function.

The script checks if the path C:\Program Files (x86)\Sophos exists. If it doesn’t, a hex-
encoded command is executed which, upon decoding, reveals the use of the API
VirtualProtect to modify the memory region protection of $MZRSVIMCSW to ERX. (My
theory is that the DarkGate developer noticed Sophos could detect changes in protection
type)

The script then copies the content of the shellcode into the DLL structure and injects it by
calling the API CallWindowProc. (I found a youtube video that presents a POC for the
injection)

https://www.youtube.com/watch?v=tBDolrwd79M

7/19

ShellCode Analysis

Upon loading the ShellCode in IDA, it becomes immediately apparent that the shellcode
consists of a single large function that loads stack-strings.

In addition, I used FLOSS to check on the strings and FLOSS successfully extracted 71
strings:

https://github.com/mandiant/flare-floss

8/19

Next, I will use BlobRunner to invoke the shellcode, set a breakpoint after all the stack-
strings have been pushed onto the stack, and dump the memory containing the executable
that was pushed:

Loader Analysis

https://github.com/OALabs/BlobRunner

9/19

The loader we’ve dumped will be in charge of decoding and executing part of the junk data
stored inside of the AutoIT script (After decoding we will face with the final binary which is the
DarkGate loader)

The loader requires a a command line argument which will be the path to the AutoIT script.
The loader will check for the argument and if it’s not ends with .au3 or the executable can’t
get a handle for the file a message box with the text “bin 404” will appear and the loader will
terminate itself.

When the loader successfully accesses the AutoIT script, it reads its content and segments it
based on the character: | (0x7C).

Next, the loader retrieves 8 bytes from the second offset of the data located in the second
element of the array. (Represented as: stringsArray[2][1:9] == xorKeyData).

The character a is then prefixed to these extracted bytes. (Resulting in: a + xorKeyData ==
modifiedXorKey).

To generate the decryption key, the loader first determines the length of the concatenated
byte array, then employs an XOR loop over each byte in the array (len(modifiedXorKey) ^
modifiedXorKey[0] ^ modifiedXorKey[1] ...).

The loader fetches the data from the third element of the array and decodes it from base64.
Each byte of this data is XOR-ed with the decryption key and also applied with a NOT
operation.

The outcome of this process is an executable, which is the final payload (DarkGate
malware)

10/19

To streamline this process, I’ve created a Python script capable of extracting and decrypting
the DarkGate payload from the AutoIT script:

from base64 import b64decode

AUTO_IT_PATH = '' #Change to the AutoIT script path.

FINAL_PAYLOAD_PATH = '' #Change to output path.

fileData = open(AUTO_IT_PATH, 'rb').read().decode(errors='ignore')

stringsArray = fileData.split('|')

modifiedXorKey = 'a' + stringsArray[1][1:9]

decodedData = b64decode(stringsArray[2])

key = len(modifiedXorKey)

for byte in modifiedXorKey:

 key ^= ord(byte)

finalPayload = b''

for byte in decodedData:

 finalPayload += bytes([~(byte ^ key)& 0xFF])

open(FINAL_PAYLOAD_PATH, 'wb').write(finalPayload)

print('[+] Final Payload Was Created!')

DarkGate Analysis

Essentially, you can read through the developer’s sale thread on xss.is and understand the
various capabilities of the loader, which include:

HVNC
Crypto miner setup
Browser history and cookie theft
RDP

https://xss.is/threads/90634/

11/19

HAnyDesk

During my analysis, my primary objective was to decrypt the contained strings, locate the C2
strings (since they’re not available in plain text), and decrypt the network traffic.

Strings Decryption

During my investigation, I found two embedded strings (each 64 characters long) which are
invoked by two different but similar functions:

12/19

When checking the cross-references for the first string (used in the function on the left), we
can see a total of 864 calls to the function.

The first argument passed to the function is the container for the return value, and the
second argument is the “encrypted” string.

These hard-coded strings are part of a custom Base64 decoding routine. I’d like to extend
my personal thanks to @rivitna2 for correcting me when initially published the strings
decoding script.

It isn't encryption, it's Base64 encoding with a non-standard table :-)

— rivitna (@rivitna2) August 1, 2023

The first batch of decoded strings represents all the strings utilized by DarkGate during its
execution. Some of these strings looks like notification messages sent to the C2, such as:

- New Bot: DarkGate is inside hAnyDesk user with admin rights

- DarkGate not found to get executed on the new hAnyDesk Desktop, Did you enabled
Startup option on builder?

- Credentials detected, removing them!

You can find a list of all decoded strings here

The second hard-coded string is employed in the same routine, but it’s called much less
frequently. The developer tried to mess up a bit with researchers from discovering
DarkGate’s configurations by adding this second hard-coded string. It is used for decoding
DarkGate’s configurations and it also plays a role in decoding the network traffic data.

By decoding the data associated with the second hard-coded string, I managed to uncover
DarkGate’s configuration:

https://twitter.com/rivitna2
https://twitter.com/rivitna2/status/1686309211163021312?ref_src=twsrc%5Etfw
https://gist.github.com/0xToxin/b9b1db86f8b395a6ef6c6e99698d1f64

13/19

http://80.66.88.145|

0=7891

1=Yes

2=Yes

3=No

5=Yes

4=50

6=No

8=Yes

7=4096

9=No

10=bbbGcB

11=No

12=No

13=Yes

14=4

15=bIWRRCGvGiXOga

16=4

17=No

18=Yes

19=Yes

Below is an IDAPython script that requires both the wrapper function calls and the hard-
coded strings:

14/19

import idc

import idautils

import idaapi

import re

DECRYPTION_FUNCTION_1 = # Replace with "Wrapper" function call

LIST_1 = # Add 64 length list
STRINGS_FILE_1 = # Output file path

DECRYPTION_FUNCTION_2 = # Replace with "Wrapper" function call

LIST_2 = # Add 64 length list
STRINGS_FILE_2 = # Output file path

def decShiftFunc(arg1, arg2, arg3, arg4):

 final = ''

 tmp = (arg1 & 0x3F) * 4

 final += chr(((arg2 & 0x30) >> 4) + tmp)

 tmp = (arg2 & 0xF) * 16

 final += chr(((arg3 & 0x3C) >> 2) + tmp)

 final += chr((arg4 & 0x3F) + ((arg3 & 0x03) << 6))

 return final.replace('\0','')

def decWrapperFunc(encData, listNum):

 hexList = []

 for x in encData:

 hexList.append(listNum.index(x))

 subLists = [hexList[i:i+4] for i in range(0, len(hexList), 4)]

 if len(subLists[-1]) < 4:

 subLists[-1].extend([0x00] * (4 - len(subLists[-1])))

 finalString = ''

 for subList in subLists:

 finalString += decShiftFunc(subList[0],subList[1],subList[2],subList[3])

 return finalString

def getArg(ref_addr):

 ref_addr = idc.prev_head(ref_addr)

 if idc.print_insn_mnem(ref_addr) == 'mov':

 if idc.get_operand_type(ref_addr, 1) == idc.o_imm:

 return(idc.get_operand_value(ref_addr, 1))

 else:

 return None

def listDecrypt(functionEA, listID, fileID):

 stringsList = []

 for xref in idautils.XrefsTo(functionEA):

 argPtr = getArg(xref.frm)

 if not argPtr:

 continue

 data = idc.get_bytes(argPtr, 300)

 encData = re.sub(b'[^\x20-\x7F]+', '', data.split(b'\x00')[0]).decode() #

15/19

Cleaning...

 decData = decWrapperFunc(encData,listID)

 stringsList.append(decData)

 idc.set_cmt(idc.prev_head(xref.frm), decData, 1)

 print(f'[+] {len(stringsList)} Strings were extracted')

 out = open(fileID, 'w')

 for string in stringsList:

 out.write(f'{string}\n')

 out.close()

print('[*] Staring decryption of list 1')

listDecrypt(DECRYPTION_FUNCTION_1,LIST_1,STRINGS_FILE_1)

print('[+] Staring decryption of list 2')

listDecrypt(DECRYPTION_FUNCTION_2,LIST_2,STRINGS_FILE_2)

Network Traffic Decryption

As I hinted in the previous section, DarkGate’s network activity indeed incorporates both data
obfuscation techniques we’ve encountered during the analysis:

Loop XOR
Custom Base64 Decoding

Now, let’s examine one of the network streams that is transmitted to the C2:

In the POST request, we can observe several fields:

id
data
act

The id is our XOR key initializer, which generates the actual XOR key using the same
technique we used to initialize the XOR key for decrypting the final DarkGate payload.
(len(id) ^ id[0] ^ id[1] ..)

The data field is encoded using the second hard-coded string. After decoding, this string will
undergo an XOR operation with the key generated from id, as well as a NOT operation.

16/19

To simplify this process, I’ve created a Python script that decrypts the data:

LIST = '' # Replace list used for config decoding

DATA = '' # Replace with the encrypted data from the network traffic

ID = '' # Replace with the ID from the network traffic

def decShiftFunc(arg1, arg2, arg3, arg4):

 final = ''

 tmp = (arg1 & 0x3F) * 4

 final += chr(((arg2 & 0x30) >> 4) + tmp)

 tmp = (arg2 & 0xF) * 16

 final += chr(((arg3 & 0x3C) >> 2) + tmp)

 final += chr((arg4 & 0x3F) + ((arg3 & 0x03) << 6))

 return final.replace('\0','')

hexList = []

for x in DATA:

 hexList.append(LIST.index(x))

subLists = [hexList[i:i+4] for i in range(0, len(hexList), 4)]

if len(subLists[-1]) < 4:

 subLists[-1].extend([0x00] * (4 - len(subLists[-1])))

finalString = ''

for subList in subLists:

 finalString += decShiftFunc(subList[0],subList[1],subList[2],subList[3])

key = len(ID)

for x in ID:

 key ^= ord(x)

plainData = ''

for x in finalString:

 plainData += chr(~(ord(x) ^ key)& 0xFF)

print(f'[+] Output: {plainData}')

Below is the output of the script for these parameters:

17/19

- LIST = zLAxuU0kQKf3sWE7ePRO2imyg9GSpVoYC6rhlX48ZHnvjJDBNFtMd1I5acwbqT+=

- DATA =
FpOkFahzFpOuNjxuFsfNFsOAMpOuNvkuFQrcHwtMDfmlHahzFpOuNqOuFs7uFsOAJqOuNj5uFs3kFsOAFpOuN
qxuFs3WFsOAjjOuNvkuFsSuFsOLNjOuNjkuFs70FsOAMpOuNj3uFs3WFsOANpOuNqSuFsSuFsOxMsOuFq3uFs
YzFsO0FsOuNskuFs7sFsOxNsOuNjkuFs70FsOAjpOuNjyuFsf5FsO0FsOuNpOuFs3UFsOAFqOuNvSuFs3UFsO
ANqOuNjkuFsSuFsO0jsOuFjOuFskLFsOzjpOuNpSuFsxLFsOzNqOuNs5uFskkFsOLNsOuNskuFsk0FsOzNpOu
NsxuFsSuFsO0jsOuFjOuFskxFsOxFjOuNjyuFs7uFsOxFsOuNjkuFs3zFsO0FsOuNqkuFs7kFsOAMpOuNvkuF
s3xFsO0FsOuN3xuFskkFsOzMpOuFjOuFskxFsOxFjOuNjyuFs7uFsOxFsOuNjkuFs70FsO0FsOuNj3uFs70Fs
OAjjOuNvxuFsSuFsOxNqOuNq7uFs7xFsO0jpOuNjkuFs7sFsOANpOuNvxuFs7kFsOAMpOuFvkuFs3kFsOAjjO
uNvxuFQh0NsOAMsmQB9nzl9h2JcD0lVRl6HDylgok4aS253G04cmeCc0g4W52JWOs13oS6H0krsANFsOAMpOu
NjYuFs70FsOAjjOuNqYuFsftFsOANjOuNqxuFsSuFsOzFjOuNjyuFs7kFsOAMpOuNjYuFsSuFsOzNsOuNj5uF
s7kFsOxFsOuNvYuFs3UFsOxMpOuFjOuFsxUFsOANsOuNjyuFs7uFsOxNsOuNjkuFs70FsRQMsyWFJRcJZrh89
ne4aEk1syu1fR04TO2hs3z13GL89re1syWFsxUrfIP6arQFp3WFsxzNpYLFar64HBG4aEGrsxGNZhursRQNqM
WFe

- ID = GEabbfEcbKBadGaccCDCaGKccGGfKHKG

1033|410064006D0069006E00|MSXGLQPS|4100700070006C00690063006100740069006F006E00200056
00650072006900660069006500720020007800360034002000450078007400650072006E0061006C00200
05000610063006B0061006700650020002D00200055004E00520045004700490053005400450052004500
440020002D002000570072006100700070006500640020007500730069006E00670020004D00530049002
00057007200610070007000650072002000660072006F006D0020007700770077002E006500780065006D
00730069002E0063006F006D00|240681|Intel Core Processor (Broadwell) @ 8
Cores|4D006900630072006F0073006F00660074002000420061007300690063002000440069007300700
06C006100790020004100640061007000740065007200|8192 MB|Windows 10 Pro x64 Build
19041|Yes||1690445353|Uno.own|4.6|0|0|7891

Summary

On this campaign we’ve uncovered a global campaign using hijacked email threads for
phishing, which leads to the download of a sophisticated malware known as DarkGate.
Users downloading the malware received an MSI file with two embedded files which carried
encoded shellcode for execution. DarkGate also used unique decoding for two embedded
strings, revealing commands sent to the C2 and the malware’s configuration. Obfuscation
techniques like Loop XOR and custom Base64 decoding were observed in DarkGate’s
network activity. Python scripts were created to decrypt the payload and data in this
comprehensive analysis.

Yara Rule

I created a YARA rule based on the procedure used to decode the strings:

18/19

rule Win_DarkGate

{

meta:

	 author = "0xToxin"

	 description = "DarkGate Strings Decoding Routine"

	 date = "2023-08-01"

strings:

	 $chunk_1 = {

	 	 8B 55 ??

	 	 8A 4D ??

	 	 80 E1 3F

	 	 C1 E1 02

	 	 8A 5D ??

	 	 80 E3 30

	 	 81 E3 FF 00 00 00

	 	 C1 EB 04

	 	 02 CB

	 	 88 4C 10 ??

	 	 FF 45 ??

	 	 80 7D ?? 40

	 	 74 ??

	 	 8B 45 ??

	 	 E8 ?? ?? ?? ??

	 	 8B 55 ??

	 	 8A 4D ??

	 	 80 E1 0F

	 	 C1 E1 04

	 	 8A 5D ??

	 	 80 E3 3C

	 	 81 E3 FF 00 00 00

	 	 C1 EB 02

	 	 02 CB

	 	 88 4C 10 ??

	 	 FF 45 ??

	 	 80 7D ?? 40

	 	 74 ??

	 	 8B 45 ??

	 	 E8 ?? ?? ?? ??

	 	 8B 55 ??

	 	 8A 4D ??

	 	 80 E1 03

	 	 C1 E1 06

	 	 8A 5D ??

	 	 80 E3 3F

	 	 02 CB

	 	 88 4C 10 ??

	 	 FF 45 ??

	 }

condition:

	 any of them

}

19/19

References

