
1/38

Electron, Jane, kinoshi June 22, 2023

Gh0stBins, Chinese RAT: Malware Analysis, Protocol Description, RDP Stream Recovery
any.run/cybersecurity-blog/gh0stbins-chinese-rat-malware-analysis/

HomeMalware Analysis
Gh0stBins, Chinese RAT: Malware Analysis, Protocol Description, RDP Stream Recovery

[10:48] Ivan
Skladchikov
Electron is a
malware analyst at
ANY.RUN

ANY.RUN writer
and network traffic
analyst

Jane

Leading network traffic analysis expert
at ANY.RUN
| Website
| + posts
I'm ANY.RUN ambassador and a real network traffic numismatist. I also love penguins and tortoises. My motto is to do good and throw it into
the sea.

ANY.RUN writer

kinoshi

I'm a dedicated programmer and malware analyst. I derive immense joy from the art of coding and have a deep passion for both low-level and
system-level programming. I thoroughly enjoy delving into the intricacies of software and exploring how it operates at a fundamental level. My
expertise extends to solving crackme challenges and participating in online CTF competitions, where I tackle complex tasks to enhance my
skills.

It’s not every day that you come across a DLL so new that even VirusTotal draws a blank. But it’s even rarer when this sample turns out to be a
sophisticated RAT from China.

But this is exactly what happened in our recent case. We discovered what may be a previously unseen version of the Gh0stBins RAT —
an obscure malware family originating from the Middle Kingdom and sparsely studied in the field. Naturally, we had to analyze it.

The Chinese malware scene has recently undergone something of an industrial revolution, making modern Chinese malware a serious threat.
In this article, we’ll dive deep into this new Gh0stBins variant — and show you how to detect it with Suricata and YARA rules as well
as recover leaked data using a Python script.

Let’s get started.

How we Discovered this Gh0stBins Sample

At ANY.RUN, our team is always monitoring network activity of public samples, constantly on the lookout for signs of suspicious actions. We
classify them into three main categories: backdoors, stealers, and loaders.

Today’s case started when we detected loader-type activity. This detection was achieved through a two-fold approach. First, using a unique
rule specifically designed for xored files of PE EXE or DLL format. Second, by analyzing certain statistical features of the encrypted file —
notably the autocorrelation function, a concept that will be discussed more comprehensively in the section on network rules.

Analyze the network stream easily. Try ANY.RUN sandbox.

Request free trial

https://any.run/cybersecurity-blog/gh0stbins-chinese-rat-malware-analysis/
https://any.run/cybersecurity-blog/
https://any.run/cybersecurity-blog/category/malware-analysis/
https://any.run/
https://any.run/
https://any.run/
https://any.run/
https://any.run/
https://any.run/?utm_source=anyrunblog&utm_medium=article&utm_campaign=ghost&utm_content=landing
https://any.run/demo/?utm_source=anyrunblog&utm_medium=article&utm_campaign=ghost&utm_content=trial

2/38

As we continued our analysis, we discovered a significant similarity in the structure of packets from the system-installed backdoor to the
structure of Gh0stRat packets. You’ll find these similar packets highlighted with the same color in the attached screenshots, and we’ll be
discussing these similarities in greater detail in the following sections.

Gh0stRAT: https://app.any.run/tasks/f50156b5-c387-40a1-8eca-8f913babca06/

Gh0stBins: https://app.any.run/tasks/3b14ef62-5d21-48bb-a5e4-5b3fed402fb7/

https://app.any.run/tasks/f50156b5-c387-40a1-8eca-8f913babca06/
https://app.any.run/tasks/3b14ef62-5d21-48bb-a5e4-5b3fed402fb7/

3/38

Our sample’s packets are suspiciously similar to Gh0stRat’s

Stage 1: Loader Analysis

The initial loader consists of two files:

the legitimate application ‘net-service.exe’ (part of VMware Workstation), which has a valid digital signature from “VMware, Inc”
the malicious DLL ‘shfolder.dll’

https://app.any.run/tasks/abcd9d2b-cdf1-4d9c-bb65-0fa5294e4109/?utm_source=anyrunblog&utm_medium=article&utm_campaign=ghost&utm_content=service

4/38

Process tree of the loader

Process tree of the

loader
At the time of writing this article, the malicious DLL has only received 3 detections on VirusTotal.

https://www.virustotal.com/gui/file/2a2f9fcbafc9c7552ff03b36bae05b2d74a8f6fd1531e8ff3bf55adce8ec056a

5/38

3 detections on VirusTotal

3 detections on VirusTotal
Firstly, the main process with PID 3508 restarts itself from the same location. Secondly, it creates its own copy in the same directory with the
name “vmnet.exe” and starts itself again.

Additionally, we discovered that two processes made HTTP requests to http://49[.]235.129.40/update/. This indicates that the loader may be
attempting to download or update a payload:

6/38

Suspicious HTTP requests

Suspicious HTTP requests
The malicious library is loaded into all three processes using Search Order Hijacking technique (T1574.001) which was documented in the old
CVE-2019-5526.

It is interesting that “shfolder.dll” has an artifact – a PDB path with Chinese characters translated as “over start”:

E:\MyProjects\过启动\FakeDll\Release\shfolder.pdb

So far, a malicious code starts its execution at the initialization routine where static objects or libraries need to be initialized before the program
execution:

https://attack.mitre.org/techniques/T1574/001/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-5526

7/38

Static objects and libraries are initialized before the program executes

Static objects and libraries are initialized before the program executes
The initialization routine of the loader unpacks two payloads that are encrypted with a XOR key ‘12345678AABBCCDD’:

shellcode is used to load an executable PE file;
the malicious executable (not found on a VirusTotal).

The following image shows the decrypted PE file with the help of CyberChef:

8/38

Decrypted PE file in CyberChef

Decrypted PE file in CyberChef
The shellcode will be written to the main module’s Entry Point using ‘WriteProcessMemory’ function, ensuring that when we reach that point, it
will be executed, and the decrypted PE file will be mapped to memory:

9/38

Decrypted PE file

Decrypted PE file
The decrypted PE file creates a mutex, which is likely associated with the date of a sample compiled ‘2023.01.18.18.45’:

10/38

A mutex created by the decrypted PE file

A mutex created by the decrypted PE file
It is worth noting that the date is written in the Chinese date format, using the pattern “yyyy年mm月dd日.” This observation could potentially
indicate that the attacker has Chinese origins or is associated with China in some way.

The primary objective of the decrypted PE file, which is relatively small in size (around 7KB), is to download and execute a payload from a
remote server. To achieve this task, it utilizes WinAPI functions such as ‘connect’, ‘WriteFile’, and ‘ReadFile’ to create a GET request. The
structure of the GET request can be observed in the accompanying picture:

11/38

Raw GET request structure

Raw GET request structure
At the time of writing the article, the remote server was still active. However, instead of returning the expected payload, it displayed a directory
listing. Consequently, when the loader attempted to download the payload, it encountered an unexpected response, leading to a crash. The
loader was originally designed to download a PE executable, and the directory listing caused an error in its execution.

12/38

The remote server displayed a directory at the time of writing, which led to loader crashing

The remote server displayed a directory at the time of writing, which led to loader crashing
In case when the payload was successfully downloaded, it needed to be decrypted using the XOR key ‘12345678AABBCCDD’.

To proceed with our analysis, we manually downloaded the payload and decrypted it.

You can examine the operational payload at this link.

Now, let us move on to the next stage.

Stage 2: RAT Analysis

The downloaded payload is a DLL with one exported function ‘shellcode_entry’:

https://app.any.run/tasks/3b14ef62-5d21-48bb-a5e4-5b3fed402fb7/?utm_source=anyrunblog&utm_medium=article&utm_campaign=ghost&utm_content=service

13/38

The downloaded payload is a DLL

The downloaded payload is a DLL
The DLL is a modular Remote Access Trojan (RAT) written in C++, and it is not currently present on VirusTotal (VT). The downloaded DLL is
also a kernel module that serves as a connector for all the other components of the RAT.

The main execution flow of the RAT can be described roughly as follows:

14/38

main execution flow of the RAT

The RAT is an IOCP and asynchronous client, which has a complex multithreaded structure, primarily based on the events. However, the
detailed description of this structure is beyond the scope of this article. Instead, we will focus on discussing the exchange protocol in detail and
highlight a few aspects of the RAT below.

It is interesting that the RAT contains forgotten debug logs, which can prove helpful for debugging purposes:

15/38

Forgotten debug logs we found in the RAT

Forgotten debug logs we found in the RAT
Furthermore, the RAT includes RTTI (Run-Time Type Information) information and class descriptions. This tells us that the main class of the
current module is likely named ‘CKernel’:

16/38

RTTI information and class descriptions suggest that the main class of the current module is named “CKernel”

RTTI information and class descriptions suggest that the main class of the current module is named “CKernel”
Let us now turn to discuss the exchange protocol.

Stage 3. Traffic Analysis

We’re going to analyze traffic based on this task. To perform a thorough analysis of the traffic, we recommend either downloading the PCAP
(Packet Capture) file or following the network stream in the static discovery window available on ANY.RUN.

Follow along with this analysis on ANY.RUN

Request a 14-day trial

Initial Request: Module Registration

After establishing the connection, it is observed that the first outgoing packet always consists of 4 bytes, which describes the module
connecting to the Command and Control (C2) server. In this particular case, the kernel module is identified by its short alias “KNEL”:

https://app.any.run/tasks/3b14ef62-5d21-48bb-a5e4-5b3fed402fb7/
https://any.run/demo/?utm_source=anyrunblog&utm_medium=article&utm_campaign=ghost&utm_content=trial2

17/38

The kernel module identified as “KNEL”

The kernel module identified as “KNEL”
Our hunting team has also discovered an RDP module, identified by the alias ‘RDTP’. Furthermore, through the process of reverse
engineering the code, we can deduce the existence of additional modules. We can speculate about their intended purposes based on their
names:

Name Alias Module description

kernel KNEL The heart of the RAT, a connector for all other modules

chat unknown Enables communication and interaction with the RAT operator or other users.

filemgr unknown Manages files and directories on the compromised system

rd RDTP Remote Desktop: Allows remote access and control of the target system's desktop.

camera unknown Controls and accesses the target system's camera for capturing images or videos.

microphone unknown Controls and accesses the target system's microphone for recording audio.

filedownloader unknown Downloads files from the internet onto the compromised system

18/38

Name Alias Module description

kblog unknown Logs and records keystrokes on the target system

socksproxy unknown Sets up a SOCKS proxy server on the compromised system, allowing network traffic to be routed through it

cmd unknown Executes commands on the target system, providing remote control and administration capabilities

Initial Response: Registration Confirmed

The server responds to the received ‘module registration’ packet with the following ‘registration confirmed’ packet:

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 header

magic bytes packet size decompressed size packet type

1 p_type payload

The packet has the following fields:

magic bytes: always contains the value “BINS” for all subsequent communications.
packet size: the size of the packet excluding the header.
decompressed size: is used only when the payload is compressed, and it represents the size of the decompressed data.
packet type: type of the packet, which can have 2 values: 0x0 denotes a data packet and 0xABCDEF indicates that the packet is a
“heartbeat”.
p_type: can have 2 types of values: 0x9C78: payload is compressed with ‘zlib’ using fixed Huffman coding and any represents a
command to process.
payload: compressed or raw data.

Below, you can see an example of the “registration confirmed” packet:

19/38

The registration confirmed packet example

The registration confirmed packet example
The decompressed command from the payload in the above picture can be viewed in CyberChef:

20/38

Decompressed command from the picture above
So that the server asks the client to send information about the host.

Client Identity

In response to the command received from the server, the client starts collecting information about the victim.

They do it in the following order:

1. Get IP address using WinAPI “getsockname”

1. Get computer name

1. Get user name

1. Get the Windows version using the WinAPI function “GetNativeSystemInfo” to obtain bitness and information from the registry key:

HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Product

21/38

1. Create a registry key “HKEY_CURRENT_USER\SOFTWARE\HHClient”
 if it didn’t exist before. It also updates the date of the RAT installation by setting a string value ‘InstallDate’ to the current date:

The RAT sets a string value ‘InstallDate’ to the current date to update the time of its installation

The RAT sets a string value ‘InstallDate’ to the current date to update the time of its installation
1. Get information about the processor from ‘HKLM\HARDWARE\DESCRIPTION\System\CentralProcessor\0’ and using GetSystemInfo

API

1. Get information about drives via GetLogicalDrives and GetDiskFreeSpaceExW

1. Get memory size using GlobalMemoryStatusEx API

1. Check if the C2 is available by sending a echo-request (PING) packet to the attacker server

1. Check if a victim has a camera by enumerating available devices

1. Check if an attacker’s comment of the victim exists in the key “HHClient”

22/38

After collecting all the information, the RAT prepends it with a 2-byte prefix ‘0xEE01’, indicating that it is a client identity response, compresses
it with “zlib” and sends it to the C2:

Exfiltrating data to C2

Exfiltrating data to C2

HeartBeat

Every 60 seconds the RAT sends the heartbeat packet (packet type is equal to 0xABCDEF) to the server to ensure the connection is still
active. The server has to respond with the same packet type and zero payload len immediately:

23/38

The heart beat packet is sent every 60 seconds

The heart beat packet is sent every 60 seconds

Modules Downloading and Executing

When the attacker decides to execute a command on the victim host, they send a packet similar to the ‘registration confirmed’ packet, but with
a different command ID. The command ID is always 2 bytes in length. Depending on the packet type, the command ID can either be
compressed or located in the position of the ‘zlib’ header.

Below is a list of all the available command IDs:

Cmd ID
req

Cmd ID
resp Description

1 0x4552 0xEE01 Send victim info

2 0xDD01 0xEA05 Prepare for loading ‘cmd’ module

3 0xDD02 0xEA05 Prepare for loading “chat’ module

4 0xDD03 0xEA05 Prepare for loading “file manager” module

24/38

Cmd ID
req

Cmd ID
resp Description

5 0xDD04 0xEA05 Prepare for loading “RDP” module

6 0xDD05 0xEA05 Prepare for loading “camera” module

7 0xDD06 0xEA05 Prepare for loading “microphone” module

8 0xDD07 0xEA05 Prepare for loading “file uploader” module

9 0xDD08 - Exit

10 0xDD09 0xEA05 Prepare for loading ‘keyboard log’ module

11 0xDD0A 0xEA08 Create a LNK file in the startup menu with name of “VMware NAT Service”

12 0xDD0B 0xEA08 Add itself to autorun via “HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Run” with name “VMware
NAT Service”

13 0xDD0C 0xEA05 Prepare for loading ‘socks proxy’ module

14 0xDD0D - Is not developed, has a comment “OnUtilsOpenWebPage”

15 0xEA04 - Restart itself

16 0xEA07 0xFA00 Prepare memory for the payload

17 0xEE02 - Reboot system

18 0xEE03 - Force system shutdown

19 0xEE04 0xEE05 Save comment about the victim host to the registry

20 0xFA01 A part of the payload is received

In the analyzed task, the attacker sends a command 0xDD04 to upload the “RDP” module. In response, the client sends a confirmation of
readiness to accept the payload with the bytes ‘rd’ at the end — the type of module to be loaded:

The command that uploads the “RDP” module

The command that uploads the “RDP” module

The server, in turn, sends basic information about the expected payload:

https://app.any.run/tasks/3b14ef62-5d21-48bb-a5e4-5b3fed402fb7/https://app.any.run/tasks/abcd9d2b-cdf1-4d9c-bb65-0fa5294e4109/?utm_source=anyrunblog&utm_medium=article&utm_campaign=ghost&utm_content=service

25/38

command 0xEA07
total size
resulting hash value obtained by simply summing up all the bytes included in the payload after the final assembly
‘rd’ confirmation

Basin information is then sent by the server in return

Basin information is then sent by the server in return
The client allocates memory for the payload and confirms its acceptance by sending the following packet:

26/38

The client responds with this packet to confirm acceptance

The client responds with this packet to confirm acceptance
This packet includes:

confirmation command 0xFA00
expecting payload size
expecting payload hash
the number of the received part
the maximum size of the expecting part
“rd” confirmation

It is also worth noting that the above packet will be sent to the server as confirmation of receiving every part with the only difference in the
number of the received part.

Starting from this moment, the server will send the result payload part by part with a size that was agreed upon with the client. Each
subsequent packet will have a structure similar to the following:

27/38

A part of the payload is sent

A part of the payload is sent
This data packet includes:

command 0xFA01
expecting payload size
the size of the current part
payload
4 bytes hash at the end of each packet calculated only for the current payload’s part; the hashing algorithm used will be the same as
described earlier

When the transaction is complete, the server may send a 0xDD08 command to exit from the kernel module, as was the case in our task.

At this moment, the downloaded RDP module is mapped to the memory and executed, which can be observed through the newly created
connection:

28/38

A new connection indicates that the downloaded RDP is executed

A new connection indicates that the downloaded RDP is executed
To simplify the task of constructing the resulting payload, we have written a Python script that is alreadyavailable in our GitHub repository.
You can download the PCAP file and save the raw TCP stream 0 to a separate file. Then, you can apply our script, which will rebuild the
payload from the captured traffic dump. As a result, you will obtain a new DLL containing the malicious RDP module.

Or, you could download a constructed payload with the simple DLL loader for your own analysis.

Stage 4. RDP module: basic description and protocol

The RDP module, the same as the ‘kernel’ module, is a DLL compiled against static CRT and OpenCL libraries. It includes an exported
function called “ModuleEntry”. This function takes the host and port as input arguments:

https://github.com/anyrun/blog-scripts/blob/main/Scripts/Gh0stBins/restore_rd.py
https://app.any.run/tasks/93c28ffc-08b6-44cc-b0ef-639561cd221f/?utm_source=anyrunblog&utm_medium=article&utm_campaign=ghost&utm_content=service

29/38

Exported function named “ModuleEntry”

The exported function named “ModuleEntry”
The structure of the RDP module is similar to the “kernel” module, as it is also based on asynchronous events. It has its own commands and
includes forgotten logging functions, which can be observed if we execute the module from the console:

30/38

A logging function was likely forgotten

A logging function was likely forgotten
It is worth mentioning that the RDP module also possesses a debug filename artifact, displaying the same developer’s directory as the “kernel”
module:

31/38

Debug filename artifact of the RDP module

Debug filename artifact of the RDP module
The traffic structure of the RDP module is like the kernel’s, except for the initial registration packet, which contains the keyword “RDTP”:

32/38

The traffic structure of the RDP module

The traffic structure of the RDP module
One interesting aspect to note is that the RDP module will not function properly if it is started by an external loader, as it lacks the call to the
“WSAStartup” routine. This absence of initialization will result in a failure, leading to the module’s exit. This could be a clever trick to protect the
module from dynamic analysis, as well as a programmer mistake.

We won’t spend our time analyzing the internal workings of the RDP. Instead, let’s move on to a more interesting task: recovering a video
stream.

Stage 5. RDP Module – Recovering a Video Stream and Leaked Data

During our analysis, we wonder if it is possible to restore the video stream received by the attacker to gain insights into the leaked data. The
answer is yes — we can do it.

To begin with, we discovered that the RDP protocol contains a NALU header with information about the upcoming video stream. In particular,
we observed that the stream is encoded using the H.264 codec:

33/38

The video stream is encoded with the H.264 codec

The video stream is encoded with the H.264 codec
Secondly, we have developed a Python script, available in our GitHub repository, which is capable of extracting the encapsulated video
stream from the RAT traffic. The script concatenates the extracted data and saves it as a separate file.

Finally, we used a MPEG decoder to create an mp4 file:

https://github.com/anyrun/blog-scripts/blob/main/Scripts/Gh0stBins/build_stream.py

34/38

An MPEG decoder creates an mp4 file

MPEG decoder creates an mp4 file
As a result, we have the full video stream captured by the attacker, but upside down! Just compare the screen to the analyzed task:

https://app.any.run/tasks/3b14ef62-5d21-48bb-a5e4-5b3fed402fb7/?utm_source=anyrunblog&utm_medium=article&utm_campaign=ghost&utm_content=service

35/38

The recovered video stream is unfortunately saved upside down

We did it! But the recovered video stream is

unfortunately saved upside down
Thus we may conclude that the stream is not encrypted at all which, for example, might help you to write a Suricata signature.

Stage 6. Fake RAT Server

In order to simplify the process of the protocol analysis and only for educational purposes we wrote a simple fake server for the RAT, which can
only accept the client, send a registration packet, and a heartbeat. This script is available on our GitHub page.

https://github.com/anyrun/blog-scripts/blob/main/Scripts/Gh0stBins/fake-server.py

36/38

We’ve spun up a fake RAT server strickly for educational purposes

We’ve spun up a fake RAT server strictly for educational purposes

Stage 7. Suricata Signature

We’ve developed 4 Suricata rules for detecting Gh0stBINS in network traffic. You can find them in our GitHub repository.

As an example, let’s look at the key points of the Gh0stBins rule (sid: 8000054).

Suricata keyword Description

flow: established, to_client; Defines the direction of data packet transmission — from the remote PC to the
client

dsize: 24; The size of the payload of the transmitted packet is 24 bytes

content: "BINS";depth: 4; Magic constant — beginning of the data packet

content: "|789c 0300 0000 0001|"; distance: 12; within:
8;

Payload of the Gh0stBins protocol, which is an empty zlib archive

https://github.com/anyrun/blog-scripts/blob/main/Suricata/Gh0stBins/Gh0stBins.rules

37/38

Stage 8. YARA Rules

We’ve developed multiple YARA rules for detecting Gh0stBINS in memory and files. You can familiarize yourself with them in detail in our
GitHub repository.

These YARA rules are designed to detect:

1. Malicious DLL, used for CVE-2019-5526

1. Core and RDP modules

1. Decryptor and loader shellcode

Conclusion

We hope that you’ve learned something new from today’s analysis. Gh0stBins is indeed an unusual sample. Despite its challenges, analyzing
it was highly rewarding and may provide insights into the strategies used by adversaries from China.

Don’t forget, that we’ve written a Python script that can construct the payload from captured traffic dump for further analysis. We encourage
you to download and try it. The script is available on our GitHub.

Interested in more malware deep dives? Read how we deobfuscated GuLoader, or how we examined the encryption and decryption of
PrivateLoader.

Appendix 1: IOCs

Analyzed files:

Name payload_decrypted.bin net-service.exe 7f426b327c878f799c74bb4b8a532cb3.exe shfolder.dll

MD5 4FEB48DDEB3F2BD55B2AF31BD77EAB2E D9B422F37FCAF61BD80E12CC03E84816 7F426B327C878F799C74BB4B8A532CB3

SHA1 20B5B6C2F24C2FDB9778BDFF5BC5976997C7E2AD 1D9D212620F342AE0D5440A067F4DE3AE12877F9 0315CC83C6D781DB1

SHA256 16F3191FF882670F1288E1836CF4683C7A74863AD0BFFE153FE4A668995A714B 4395003E0D81C685BE47C80DFF9DACCC2F0

Connections (IP)

“118[.]107.7.166”
“193[.]134.208.217”
“49[.]235.129.40”

HTTP Request

http://118[.]107[.]7[.]166/foxx/64.bin
http://49[.]235.129.40/update/

Appendix 2: MITRE MATRIX

Tactics Techniques Description

TA0007: Software
discovery

T1082: System Information Discovery Collects system data

TA0011: Command
and Control

T1071.001: Application Layer Protocol Sending collected data to the control server

 T1105 Ingress Tool Transfer Requests binary from the Internet

 T1572 – Protocol Tunneling GhostBins protocol uses RDP

TA0005: Defense
Evasion

T1027 – Obfuscated Files or Information Attempt to make an executable or file difficult to discover or
analyze by encrypting XOR

 T1140 – Deobfuscate/Decode Files or
Information

Decrypts unpack file with XOR key

TA0005: Defense
Evasion

T1574.001 – Hijack Execution Flow: DLL
Search Order Hijacking

CVE-2019-5526

electron

https://github.com/anyrun/blog-scripts/blob/main/YARA/Gh0stBins/Gh0stBins.yara
https://github.com/anyrun/blog-scripts/blob/main/Scripts/Gh0stBins/restore_rd.py
https://any.run/cybersecurity-blog/deobfuscating-guloader/
https://any.run/cybersecurity-blog/privateloader-analyzing-the-encryption-and-decryption-of-a-modern-loader/

38/38

Electron
Leading malware analyst
I'm a malware analyst. I love CTF, reversing, and pwn. Off-screen, I enjoy the simplicity of biking, walking, and hiking.

jane
Jane
Leading network traffic analysis expert
I'm ANY.RUN ambassador and a real network traffic numismatist. I also love penguins and tortoises. My motto is to do good and throw it into
the sea.

kinoshi
kinoshi
Malware analyst
I'm a dedicated programmer and malware analyst. I derive immense joy from the art of coding and have a deep passion for both low-level and
system-level programming. I thoroughly enjoy delving into the intricacies of software and exploring how it operates at a fundamental level. My
expertise extends to solving crackme challenges and participating in online CTF competitions, where I tackle complex tasks to enhance my
skills.
What do you think about this post?

10 answers

Awful
Average
Great

No votes so far! Be the first to rate this post.

0 comments

