GobRAT malware written in Go language targeting Linux
routers

ﬂ blogs.jpcert.or.jp/en/2023/05/gobrat.html

=4 4 BE (Yuma Masubuchi)

May 29, 2023

JPCERT/CC has confirmed attacks that infected routers in Japan with malware around
February 2023. This blog article explains the details of the attack confirmed by JPCERT/CC
and GobRAT malware, which was used in the attack.

Attack flow up to malware execution

Initially, the attacker targets a router whose WEBUI is open to the public, executes scripts
possibly by using vulnerabilities, and finally infects the GobRAT. Figure 1 shows the flow of
the attack until GobRAT infects the router.

1/11

https://blogs.jpcert.or.jp/en/2023/05/gobrat.html
https://blogs.jpcert.or.jp/en/masubuchi/
https://blogs.jpcert.or.jp/en/masubuchi/
https://blogs.jpcert.or.jp/en/tags/tool/
mailto:?subject=GobRAT%20malware%20written%20in%20Go%20language%20targeting%20Linux%20routers&body=https%3A%2F%2Fblogs.jpcert.or.jp%2Fen%2F2023%2F05%2Fgobrat.html

O N
1. Execute Command via SSH
‘ - \ 4 >

Attacker
Linux Router

2. Download Loader Script A 4, Create k
> 7. Execute
5. Download GobRAT = script _P

Loader Script Daemon Script

C2 Server
10. Connect 6. Create 3. Create 8. Execute
\ 4

t 9. Execute

GobRAT Start Script

Figure 1: Attack Flow

Loader Script works as a loader, containing functions such as generating various scripts
and downloading GobRAT. The SSH public key, which is assumed to be used for the
backdoor, is hard-coded in the script. In addition, since Loader Script uses crontab to
register the file path of Start Script for persistence, GobRAT does not have such function.
The functions of Loader Script are as follows:

Disable Firewall function

Download GobRAT for the target machine's architecture
Create Start Script and make it persistent

Create and run Daemon Script.

Register a SSH public key in /root/.ssh/authorized_keys

Figure 2 is the code of Start Script that executes GobRAT. The script is unique in that it
writes the startup time to a file named restart.log. In addition, this script executes GobRAT
under the file name apached to make it look like a legitimate process.

2/11

/tmp/env/.gnapd

file_name=
(ps -ef ps) grep grep -v grep

nohup
nohup /tmp/env/.gnapd/apached -d >/dev/null

/tmp/env/.gnapd/apached -d >/dev/null

Figure 2: Start Script

Figure 3 is the code of Daemon Script. This script checks whether Start Script is running or
not every 20 seconds, and if not, it starts the script. This code has been possibly prepared in
case Start Script is terminated unexpectedly.

pidof apached
/tmp/env/.gnapd/sshd.sh

sleep 20

Figure 3: Daemon Script

GobRAT Overview

GobRAT is a RAT written in Go language and communicates with C2 server via TLS and
executes various commands. It is packed with UPX version 4 series, and samples for various
architectures such as ARM, MIPS, x86, and x86-64 have been confirmed. GobRAT performs
the following checks at startup and keeps the information within the sample itself.

e |P address and MAC address of itself
¢ Uptime by uptime command
o Network communication status by /proc/net/dev

3/11

The following sections describes the GobRAT’s communication method, encryption method,
and commands to be executed.

Communication method

GobRAT uses TLS to send and receive data with its C2 server. Figure 4 shows an example
of communication with the C2 server. The first 4 bytes indicate the size of the data, and the
rest is gob[1] data. gob is a data serialization protocol available only in Go language.

GobRAT uses gob for receiving commands and sending the results of command execution.

Data Size gob Data

00 00 00
47 45 01

Figure 4: Example of communication content

GobRAT defines gob data as a PACKAGE structure in the sample as follows.

type PACKAGE struct {

Type uint8 // CommandID

BotCount uint16é // Parameter

BotList []string // Command Parameter

ParamLength uint16 // Length of Param

Param map[string]string // Command Parameter

Content [Juint8 // Command Parameter, Command Execution Result, etc

}

The fields used are different depending on the type of command, and string arrays, maps,
and binary data are supported so that various types of parameters can be passed. In
addition, while binary data can be stored in Content of the PACKAGE structure, map data
with string is converted to binary data by encoding it with the json.Marshal function. The
PACKAGE structure is used in various ways depending on the command, such as storing the
data in Content, or converting the defined structure to binary data in the same way and
storing it in Content.

4/11

Encryption Method

Strings such as C2 and Linux commands are encrypted and stored in the sample. Figure 5
shows the GobRAT's decryption function. AES128 CTR mode is used to decrypt strings, and
the key and IV are hard-coded in the sample. The same key
(050CFE3706380723433807193E03FE2F) and IV ("12345678abcdefgh") are used in all
the confirmed samples. In addition, as shown in Figure 6, the codes that have probably been
developed by the attacker, such as this decryption function, has a unique folder structure like
aaa.com/bbb/me~

__inte4 v5;
int64 KE)

__inte4 v7;

/ [rsp+@h] [rbp-306h]

// [rsp+18h] [rbp-18h]
[rsp+20h] [rbp-106h]
[rsp+30h] [rbp+©h] BYREF

if (&retaddr <= *(+ 16))
(0x608158LL);

KEY = (crypto_aes_NewCipher) (AESKEY, KEYSIZE);
if (V7)

return OLL;
KEY_1 = KEY;
IV = runtime_newobject(&RTYPE__16_uint8);
gmemcpy (IV, "12345 bcdefgh"”, sizeof(16 uint8));
AES CTR = crypto cipher NewCTR(KEY 1, KEYSIZE, IV, ©x1@ulLL);
Decrypted = (runtime _makeslice)(&RTYPE_uint8, ENCDATA SIZE, ENCDATA SIZE);
(AES_CTR[3])(KEYSIZE, Decrypted, ENCDATA_SIZE, ENCDATA_SIZE, ENCDATA);
return Decrypted;

Figure 5: String decryption function

5/11

String

aaa.com/bbb/mecrypt.AesEncrypt
aaa.com/bbb/mecrypt.Unvisual
aaa.com/bbb/mecrypt/mecrypt.go
aaa.com/bbb/menet
aaa.com/bbb/menet.(*CONN).Close
aaa.com/bbb/menet.(*CONN).Read
aaa.com/bbb/menet.(*CONN).RemoteAddr
aaa.com/bbb/menet.(*CONN) Write
aaa.com/bbb/menet.GetlLocalAddress
aaa.com/bbb/menet.GetMacAddress
aaa.com/bbb/menet.pString2Uint32
aaa.com/bbb/menet.Receive
aaa.com/bbb/menet.Send
aaa.com/bbb/menet/menet.go
aaa.com/bbb/meutil
aaa.com/bbb/meutil.Daemon
aaa.com/bbb/meutil.Daemon2
aaa.com/bbb/meutil.Debug

aaa.com/bbb/meutil.DebugError

aaa.com/bbb/meutil.NewDaemon
asa.com/bbb/meutil.RegisterLogFile
aaa.com/bbb/meutil.SimpleCommand
aaa.com/bbb/meutil.SimpleCommand.funct
aaa.com/bbb/meutil.UniqueAppendString
aaa.com/bbb/meutil._debug
aaa.com/bbb/meutil.init
aaa.com/bbb/meutil/meutil.qgo

Figure 6: Characteristic folder structure

Commands executed

GobRAT has 22 commands that are executed by the commands from the C2 server, and we
have identified the following commands. Since the malware targets routers, you can see that
most functions are related to communication, such as frpc, socks5, and reconfiguration of
C2. See Appendix A for command details.

¢ Obtain machine Information

o Execute reverse shell

o Read/write files

e Configure new C2 and protocol

o Start socks5

o Execute file in /zone/frpc

o Attempt to login to sshd, Telnet, Redis, MySQL, PostgreSQL services running on
another machine

6/11

GobRAT Analysis Tools

Since GobRAT uses gob for communication, if you want to emulate its communication with
C2 to check commands, you need to create a program using Go language. Our C2
emulation tool that supports GobRAT analysis is available on GitHub. Please download it
from the following webpage for your analysis.

JPCERTCC/aa-tools/GobRAT-Analysis - GitHub
https://github.com/JPCERTCC/aa-tools/tree/master/ GobRAT-Analysis

In Closing

In recent years, different types of malware using Go language have been confirmed, and the
GobRAT malware confirmed this time uses gob, which can only be handled by Go language,
for communication. Please continuously beware of malware that infects routers, not limited to
GobRAT, since they are difficult to detect. Please refer to Appendix B for C2 of the malware,
Appendix C for the hash value of the script, and Appendix D for the hash value of the
malware.

Yuma Masubuchi
Translated by Takumi Nakano

Appendix A: Commands

TableA: GobRAT commands

Value Contents

0x0 Update json data held in malware and acquire update results
0x1 Retrieve json data held in malware

0x3 Start reverse shell

Ox4 End of reverse shell connection

0x6 Confirmation of reverse shell connection

0x7 Execute shell command for daemon

0x8 Execute shell command

0xD Read/write specified file

0x10,0x11 Read/write specified file

0Ox16 Obtain various machine information such as df command

7/11

https://github.com/JPCERTCC/aa-tools/tree/master/GobRAT-Analysis

Value Contents

0x17 Set new communication channel for TCP

0x18 Execute SOCKS5 proxy with specified port and password
0x19 Execute SOCKS5 proxy on specified port

Ox1a New communication channel setting for UDP

Ox1b Execute frpc after executing SOCKS5 proxy on port 5555
Ox1f Check for the existence of the specified file

0x25 Login attempts for SSH, telenet, redis, mysql, postgres
0x27 Configuration of specified goroutine

0x2a Scan to HTTP/HTTPS service of specified IP

0x2D Dictionary attack to HTTP/HTTPS service of specified IP
0x30 C2 configuration related

0x31 DDoS attacks on SYN, TCP, UDP, HTTP, ICMP

Appendix B: C2

o httpsl[:]//su.vealcat[.]Jcom

e http[:]//su.vealcat[.]Jcom:58888

o https[:]/ktlvz.dnsfailover|.]net

o http[:]//ktlvz.dnsfailover[.Jnet:58888
e su.vealcat[.Jcom

o ktlvz.dnsfailover|.]net

o wpksi.mefound[.Jcom

Appendix C: Hash values of the scripts

» 060acb2a5df6560acab9989d6f019fb311d88d5511f3edaleffcbd9fc6bd12bb

» feaef47defd8b4988e09c8b11967e20211b54e16e6df488780e2490d7c7fa02a

» 3e44c807a25a56f4068b5b8186eee5002eed6f26d665a8b791¢c472ad154585d1
e 60bcd645450e4c846238cf0e7226dc40c84c96ebad9fob2cffcd0ab4a391c8b3

Appendix D: Hash values of the malware

» a8b914df166fd0c94106f004e8calca80a36c6f2623f87a4e9afe7d86b5b2e3a

» aeed77896de38802b85a19bfcb8f2a1d567538ddc1b045bcdb29¢cb9e05919b60
» 6748c22d76b8803e2deb3dad1e1fa7a8d8ff1e968eb340311fd82ea5d7277019
» €133e05d6941ef1c2e3281f1abb837c3e152fdeaffefde84ffe25338fe02c56d

8/11

e 43dc911a2e396791dc5a0f8996ae77ac527add02118adf66ac5c56291269527¢e
o af0292e4de92032ede613dc69373de7f5a182d9cbba1ed49f589ef484ad1ee3e
e 2¢c1566a2e03c63b67fbdd80b4a67535e9ed969ea3e3013f0ba503cfa58e287e3
e 98c05ae70e69e3585fc026e67b356421f0b3d6ab45b45e8cc5eb35f16fef130c

e 300a92a67940cfafeed1cf1c0af25f4869598ae58e615ecc559434111ab717cd

e a363dealefda1991d6¢10cc637e3ab7d8e4af4bd2d3938036f03633a2cb20e88
e 0c280f0b7¢c16c0d299e306d2c97b0bff3015352d2b3299¢f485de189782a4e25
o f962b594a847f47473488a2b860094da45190738f2825d82afc308b2a250b5fb
e 4ceb27da700807beb6aa3221022ef59ce6e9f1cda52838ae716746¢c1bbdee7c3d
e 3e1a03f1dd10c3e050b5f455f37€946¢c214762ed9516996418d34a246daed521
e 3bee59d74c24ef33351dc31ba697b99d41c8898685d143cd48bccdff707547¢c0
e c71ff7514c8b7c448a8c1982308aaffed94f435a65c9fdc8f0249a13095f665e

References

[1] Gobs of data
https://go.dev/blog/gob

w il

P
18835 4 B (Yuma Masubuchi)

Yuma has been engaged in malware analysis and coordination of cyber security incidents in
JPCERT/CC Incident Response Group since November 2020.

Was this page helpful?
0 people found this content helpful.
If you wish to make comments or ask questions, please use this form.

This form is for comments and inquiries. For any questions regarding specific commercial
products, please contact the vendor.

please change the setting of your browser to set JavaScript valid. Thank you!

Related articles

9/11

https://go.dev/blog/gob
mailto:?subject=GobRAT%20malware%20written%20in%20Go%20language%20targeting%20Linux%20routers&body=https%3A%2F%2Fblogs.jpcert.or.jp%2Fen%2F2023%2F05%2Fgobrat.html
https://blogs.jpcert.or.jp/en/masubuchi/

Linke< M) X A= WA A

[]
an:tlﬂ.rml-
me

Wa are Biring!tl

Attack Trends Related to DangerousPassword

1. Sanding Spam ‘E Duwnkad ’

Googhn Diten
Thrmedbe] T
3m1
h o, Gk WIS Mg
[] tm = 5. Downiload
—
B, suecute
Dorwmdssdnd Pia

1 e 1
Gy g
Activity Targeting Crypto Asset Exchangers for Parallax RAT Infection

L
OWM

B v g
ey

Evew [
° R:'-. LN] - G
E | F o = H ¥ .
1}-.} =0 [AT
Vi Tt :
= [Gathiul Adctions Pervaite
Cond HTML ctrded Rpent
I I .
[Goeghe Sale Broving
=== 3

Automating Malware Analysis Operations (MAQOps)

YamaRot

YamaBot Malware Used by Lazarus

10/11

https://blogs.jpcert.or.jp/en/2023/05/dangerouspassword.html
https://blogs.jpcert.or.jp/en/2023/04/parallax-rat.html
https://blogs.jpcert.or.jp/en/2023/01/cloud_malware_analysis.html
https://blogs.jpcert.or.jp/en/2022/07/yamabot.html

11/11

https://blogs.jpcert.or.jp/en/2022/07/vsingle.html
https://blogs.jpcert.or.jp/en/2023/05/dangerouspassword.html
https://blogs.jpcert.or.jp/en/

