
1/10

May 24, 2023

Agrius Deploys Moneybird in Targeted Attacks Against
Israeli Organizations

research.checkpoint.com/2023/agrius-deploys-moneybird-in-targeted-attacks-against-israeli-organizations/

	

Research by: Marc Salinas Fernandez, Jiri Vinopal.

Key Points

Iranian threat actor Agrius continues to operate against Israeli targets, masking
destructive influence operations as ransomware attacks.
In recent attacks the group deployed Moneybird, a previously unseen ransomware
written in C++.
Despite presenting themselves as a new group with the name– Moneybird, this is yet
another Agrius alias.
The data was eventually leaked through one of Agrius previous aliases.
As demonstrated in the Moneybird attacks, Agrius’s techniques, tactics and procedures
(TTP) remain largely unchanged.

Introduction

https://research.checkpoint.com/2023/agrius-deploys-moneybird-in-targeted-attacks-against-israeli-organizations/

2/10

While responding to a ransomware attack against an Israeli organization, the Check Point
Incident Response Team (CPIRT) and CPR identified a new strain of ransomware called
Moneybird. Although the payload itself was unique, the TTPs demonstrated in the attack had
clear overlaps with a threat actor known as Agrius. The data was eventually leaked by an
entity with one of the group’s known aliases.

First introduced in 2021, Agrius is an Iran-aligned threat actor that operates mostly in the
Middle-East. The actor has been tied to several ransomware and wiper attacks, with a major
focus on Israeli institutions. The group’s affiliation within Iran is not clear, although recent
reports have tied it to the Iranian Ministry of Intelligence and Security (MOIS).

The newly discovered ransomware used by the group, Moneybird, was used to target
organizations in Israel. This correlates with Agrius past activities against other organizations
in Israel, most notably Shirbit and Bar Ilan University. The group has used a wide set of
aliases for its extortion entities. BlackShadow, the name used by the group to extort Shirbit,
was the first known alias Agrius has taken and is still commonly associated with it.

Agrius ransomware operations have been mostly tied to a custom ransomware called
Apostle, which was originally a wiper. The use of a new ransomware, written in C++, is
noteworthy, as it demonstrates the group’s expanding capabilities and ongoing effort in
developing new tools.

Activity Analysis

Agrius’s actions leading to the deployment of Moneybird correlates to previous reports of the
group’s activity.

https://www.sentinelone.com/labs/from-wiper-to-ransomware-the-evolution-of-agrius/
https://www.eset.com/hk/about/newsroom/press-releases/news/fantasy-a-new-agrius-wiper-deployed-through-a-supply-chain-attack0/
https://www.microsoft.com/en-us/security/business/security-insider/wp-content/uploads/2023/05/Iran-turning-to-cyber-enabled-influence-operations-for-greater-effect-05022023.pdf
https://www.bleepingcomputer.com/news/security/blackshadow-hackers-extort-israeli-insurance-company-for-1-million/
https://www.sentinelone.com/labs/new-version-of-apostle-ransomware-reemerges-in-targeted-attack-on-higher-education/

3/10

Figure 1 – High-level overview of Agrius activities leading to the deployment of Moneybird
ransomware.
Agrius’ first foothold was established by exploiting vulnerabilities within public-facing web
servers, leading to the deployment of unique variants of ASPXSpy. The exploitation and the
post-exploitation activities were carried out using public VPN services nodes, most
prominently ProtonVPN nodes in Israel.

The ASPXSpy webshells were deployed in a unique fashion, hidden inside “Certificate” text
files. This method is tied to past observed group activities. To use the webshell, the actor
decoded the content of the file into a separate ASPX file.

Figure 2 – Webshell encoded within a fake certificate text file.
Following the deployment of webshells, the threat actor was observed utilizing several
publicly available tools to perform recon, move laterally, harvest credentials, and exfiltrate
data. The tools include:

SoftPerfect Network Scanner – Scan internal networks.
Plink – RDP tunnel traffic from a VPS owned by the actor.
ProcDump – Dump LSASS and harvest credentials. ****

4/10

FileZilla – Exfiltrate compressed files.

Interestingly enough, the actor performed most of the activity while manually connected
through RDP. To download some of the payloads, the actor opened a browser and
connected to the legitimate file sharing services ufile[.]io and easyupload[.]io that
hosted the malicious files.

One of the files the threat actor downloaded was the ransomware executable stored within
an archive – Moneybird.

Moneybird Ransomware – Technical Analysis

Moneybird is written in C++ and contains an indicative PDB
path: C:\Users\user\Desktop\moneybird\x64\Release\moneybird.pdb. The name
embedded within the ransomware sample reveals that the encryptor shares the same name
that appears in the attack ransom note for the attack: Moneybird.

Figure 3 – Moneybird

ransom note.
Many recent ransomware strains typically support command-line parameters that enable
attackers to customize malware functionality on top of the malware’s embedded
configuration. This specific threat lacks any command-line parsing capability. Instead, it
includes a configuration blob embedded within the tool itself, which makes it less suitable for
mass campaigns with different environments.

5/10

Figure 4 – Moneybird configuration.
This configuration contains several key elements that are used when the malware is
executed. The sample ignores the first DWORD. The second one contains an integer value
representing the number of milliseconds the malware waits before executing.

After these initial values, the configuration includes four additional DWORDs.

The first DWORD in this sequence acts as a flag, which determines whether the
ransomware should take into account its embedded list of 194 extensions to target.
The extension list includes the most common document formats, database formats,
certificates, etc. A value of “1” means the list is consulted, while a value of “2” causes
the ransomware to ignore the list and encrypt all files in the targeted paths
indiscriminately, except for those kept in a narrow list of file extensions that are never
encrypted: exe, dll, sys, msi, lnk.
The second DWORD in the sequence contains the maximum number of threads that
are created to encrypt every targeted file.
The third DWORD contains the number of threads assigned to the routine that is
executed before the encryption. This ensures that the targeted files are not marked as
“SYSTEM” elements to be avoided.

It is noteworthy to mention that the drawback of this approach is its lack of
effectiveness in comparison to other ransomware strains that utilize the WIN
API GetSystemInfo or directly access PEB→dwNumberOfProcessors. By using these
methods, they can dynamically determine the number of CPUs per system and assign
the encryption logic an appropriate number of threads based on this number.

6/10

The final DWORD in the sequence specifies the size of an ASCII string that comes
next. This string contains the base64-encoded public key that is used to encrypt the
symmetric encryption keys that are generated per file.

Immediately following the public key, the configuration contains an integer value that
determines the number of null-terminated strings that come next. These strings indicate the
paths on the target machine that the sample encrypts, which is somewhat unusual as these
malware usually try to cipher as much data as possible. In this particular case, there is only
one path F:\User Shares, resulting in all other system paths being omitted. The remaining
space in the configuration (up to 1024 bytes, including the previous elements) is reserved for
possible additional system path entries. If no more entries are added, the remaining space is
filled with the character “A”, as in this sample.

If there is no path entry in the configuration, the malware behaves in a more generic fashion
and uses the WIN API function GetLogicalDrives to obtain a list of currently available disk
drives on the targeted machine and then starts to process it.

The configuration structure in decompiled C form:

struct mb_config

{

 DWORD start_sleep_delay;

 DWORD ignore_extension_flag;

 DWORD num_of_ciphering_threads;

 DWORD num_of_check_threads;

 DWORD sizeof_b64_public_key;

 char b64_public_key[124];

 DWORD num_off_paths;

 char first_path[15];

 char room_for_paths[860];

};

The encryption logic of this ransomware sample depends on several embedded libraries,
including “libgcrypt”, which is easily identifiable in the sample strings.

...

C:\Users\user\Desktop\moneybird\Shiftlibgcrypt\cipher\mac.c

C:\Users\user\Desktop\moneybird\Shiftlibgcrypt\mpi\mpi-pow.c

C:\Users\user\Desktop\moneybird\Shiftlibgcrypt\src\fips.c

C:\Users\user\Desktop\moneybird\Shiftlibgcrypt\cipher\primegen.c

C:\Users\user\Desktop\moneybird\Shiftlibgcrypt\mpi\mpicoder.c

C:\Users\user\Desktop\moneybird\Shiftlibgcrypt\cipher\dsa.c

C:\Users\user\Desktop\moneybird\Shiftlibgcrypt\random\random-drbg.c

C:\Users\user\Desktop\moneybird\Shiftlibgcrypt\cipher\elgamal.c

C:\Users\user\Desktop\moneybird\Shiftlibgcrypt\cipher\blake2.c

C:\Users\user\Desktop\moneybird\Shiftlibgcrypt\cipher\keccak.c

...

7/10

Looking at the folder name inside the strings, it is likely that the library was compiled
from this GitHub repository. Basically, the repository contains an “unofficial” version of
“libgcrypt”, which the authors tried to make easier to include in Visual Studio projects.The
malware also uses “libpgp-error”, a library that libgcrypt requires as a dependency.

Finally, the malware is also linked with a copy of the “cryptopp” library. This library can be
easily identified by strings that directly reference its name, as well as a distinctive test string
that is used as text to encrypt in many versions of this library.

Figure 5 – cryptopp use in Moneybird.
The ransomware uses the functions provided by the libraries to perform encryption
using AES-256 with GCM mode. The definition of both constants can be obtained from the
source code of the library at the following link.

Figure 6 – Ransomware encryption using AES-256.
As you can see in the image above, the IV 012345678901255 for AES-256-GCM is
hardcoded inside the ciphering function while the key is passed as the last parameter to the
function.

The code responsible for the generation of the key:

https://github.com/ShiftMediaProject/libgcrypt
https://github.com/ShiftMediaProject/libgcrypt/blob/b2048356d17efd77d10cab1689cf9bd5b2cc4456/src/gcrypt.h.in

8/10

Figure 7 – Key generation code.
This code is executed for each file, so each one is assigned a unique encryption key. To
generate a key, the sample concatenates a GUID (marked in red) obtained through the WIN
API CoCreateGuid with a random number (marked in green) generated using
the rand() function. The seed for the rand() function is based on the system time. Then, 8
bytes of the file content (marked in blue) to be encrypted is concatenated. Finally, the
full path for the target file (marked in purple) is added, but only 4 bytes of it are used as the
last part of the key as it completes the 32-byte chunk.

Figure 8 – Encryption

key structure.As a result, this is what the key structure looks like:

struct aes_key

{

 char guid[16];

 int rand_val;

 char file_content[8];

 char file_path_start[4];

};

The utilization of a GUID obtained through the WIN API CoCreateGuid makes it very difficult
to obtain the encryption key, as it is generated by making an RPC call to “UuidCreate”, which
gets its randomness by calling ProcessPrng from bcryptPrimitives.dll, as this function is
cryptographically secured to generate random bytes.

After the full path of the target file that overflows the 32-byte aes_key, the malware adds the
length of the path, creating a kind of secondary structure:

https://learn.microsoft.com/en-us/windows/win32/api/combaseapi/nf-combaseapi-cocreateguid

9/10

struct meta_info

{

 char guid[16];

 int rand_val;

 char file_content[8];

 char file_path[file_path_length];

 int file_path_length;

};

This structure is encrypted by the hybrid encryption system “Elliptic Curve Integrated
Encryption Scheme” – CryptoPP ECIES – using the embedded public key shown
previously inside the sample’s configuration. After the file encryption, this
encrypted meta_info structure is appended at the end of the final file, resulting in the struct
below:

struct encrypted_file

{

 char enc_file_content[file_content_length];

 char enc_meta_info[enc_meta_info_length];

 int enc_meta_info_length;

};

Conclusion

Our analysis of incidents involving Moneybird reveals the ongoing effort of Agrius to utilize
ransomware to make an impact. Although Agrius has used different aliases in the past,
public reports up to now have tied most of their destructive activities to variants of Apostle,
which acted as wipers or ransomware. The use of a new ransomware demonstrates the
actor’s additional efforts to enhance capabilities, as well as hardening attribution and
detection efforts.

Despite these new “covers”, the group continues to follow its usual behavior and utilize
similar tools and techniques as before. Moneybird, like many other ransomware, is a grim
reminder of the importance of good network hygiene, as significant parts of the activity could
have been prevented early on.

Moneybird itself, although not particularly complex, has a number of intriguing features that
appear to have been designed for specific targets. Some of these specialty features make
the malware less practical for use in multiple unrelated campaigns. This emphasizes the
malware’s targeted nature, including the use of “targeted paths” which, in the specific sample
we analyzed, makes the ransomware ignore most of the files on the target machine.

Check Point customers remain protected from the threats described in this research.

https://cryptopp.com/wiki/Elliptic_Curve_Integrated_Encryption_Scheme

10/10

Check Point Threat Emulation provides comprehensive coverage of attack tactics, file
types, and operating systems, and has developed and deployed a signature named
“Ransomware.Wins.MoneyBird” to detect and protect our customers against
Moneybird.

YARA

rule ransomware_moneybird {

 meta:

 author = "Marc Salinas @ Check Point Research"

 description = "Detects a ransomware sample named Moneybird based on its pdb
string."

 malware_family = "MoneyBird"

 date = "11/05/2023"

 sample = "aa19839b1b6a846a847c5f4f2a2e8e634caeebeeff7af59865aecca1d7d9f43c"

 strings:

 $ran1 = "WE ARE MONEYBIRD!"

 $ran2 = "All of your data encrypted!"

 $ran3 = "ok.ru/profile"

 $ext1 = "Shiftlibgcrypt"

 $ext2 = "come to the aide of their"

 $ext3 = "stopmarker" wide

 $code1 = {44 89 4C 24 20 4C 89 44 24 18 48 89 54 24 10 89 4C 24 08 56 57 48 83 EC
78 48 8B 05 68 FE 1A 00 48 33 C4 48 89 44 24 60 48 8D 44 24 50 48 8D 0D DC 68 15 00
48 8B F8 48 8B F1 B9 10 00 00 00 F3 A4 45 33 C9 41 B8 09 00 00 00 BA 09 00 00 00 48
8D 4C 24 48 ?? ?? ?? ?? ?? 41 B8 20 00 00 00 48 8B 94 24 A0 00 00 00 48 8B 4C 24 48
?? ?? ?? ?? ?? 48 8D 44 24 50 48 89 44 24 40 48 C7 44 24 30 FF FF FF FF}

 $code2 = {48 FF 44 24 30 48 8B 44 24 40 48 8B 4C 24 30 80 3C 08 00}

 $code3 = {48 8B 44 24 30 4C 8B C0 48 8D 54 24 50 48 8B 4C 24 48 ?? ?? ?? ?? ?? 8B
84 24 90 00 00 00 48 C7 44 24 20 00 00 00 00 45 33 C9 44 8B C0 48 8B 94 24 98 00 00
00 48 8B 4C 24 48 ?? ?? ?? ?? ?? 89 44 24 38 48 8B 4C 24 48 ?? ?? ?? ?? ?? 48 8B 4C
24 60 48 33 CC ?? ?? ?? ?? ?? 48 83 C4 78 5F 5E C3}

 condition:

 uint16(0) == 0x5A4D and (2 of ($ran*) or all of ($code*) or all of ($ext*))

GO UP
BACK TO ALL POSTS

https://www.checkpoint.com/infinity/zero-day-protection/
https://research.checkpoint.com/latest-publications/

