Secplicity - Security Simplified

========== secplicity.org/2023/05/23/scratching-the-surface-of-rhysida-ransomware/
Ryan Estes May 23, 2023

A few days ago, | was scrolling through Twitter and came across a post by the
MalwareHunterTeam briefly discussing a new Ransomware group — Rhysida. A lack of
results from a Google search shows this is a newer group prepping to start operations. |
grabbed a sample and downloaded it, and the executable confirmed that this group is indeed
in its early stages based on the breadth of print debugging and the lack of a victim target in
the ransom note. This appeared to be a pre-finished test file. Here’s what | found.

Original File Name: fury_ctm1042.bin

MD5: 0c8e88877383ccd23a755f429006b437

SHA1: 69b3d913a3967153d1e91bala31ebed839b297ed

SHA256: a864282fea5a536510ae86¢77ce467827687783628e4f2ceb5bf2c41b8cd3c6

The sample was written in C++ and was compiled using MinGW (mingw32). It was about 1.2
MB and wasn’t packed.

File type Entry point Basze address MIME
PEG4 0000000000401500 b Disasm | 0000000000400000 Memary map
Hash

]]
" PE . Import TLE Overlay Strings

Sections Time date stamp Size of image
TR B Entropy
0011 = 2023-05-16 01:29: 10 00122000
Hex
Scan Endianness Mode Architecture Type

Detect It Easy(DiE) LE 54-bit AMDE4 Console Signatures

Demangle

Compiler MinGW({GCC: (GNU) 8.3.0 20170415)[-]
Linker GMU linker Id {GNU Binutils)(2.30)[Consolefd, console]

Shortcuts

Options

Signatures |:| Deep scan Directory About
i Scan
= Log 34 msec Exit

1/19

https://www.secplicity.org/2023/05/23/scratching-the-surface-of-rhysida-ransomware/
https://twitter.com/malwrhunterteam/status/1658829565215604738

B& Entropy

CHfset
00000000
00000600
0004200
00054200
00064200
00066600

Total

6.19752

Size
0DD00G00
00042800
0000900
00DOFR00
00002400
00002400

Entropy
2.24739
637170
7.94576
5.77326
5.50824
4.27800

Status

not packed
not packed
packed

not packed
not packed
not packed

Offset

00000000

Mame
PE Header
Section(0)["text']
Section(1)['.data']
Section(2)['.rdata']
Section(3)['.pdata']
Section(4)['xdata']

le+06 1.2e+06

Reload

1.4e+06

Close

A glance at the strings shows that the ransomware deletes the wallpaper in a few different

ways. Although, there is a typo with “Conttol Panel” when it attempts to delete the wallpaper
registry setting via the Control Panel. Encryption and a PowerShell invocation with a hidden
window are also mentioned. All of these are highlighted below.

2/19

crnd.exe fc reg delete "HEKCUN Conttol PanelDesktop” v Wallpaper /f

cmd.exe fc reg delete "HECUA Conttol PaneltDesktop” /v WallpaperStyle /£

crnd.exe fc reg add "HECUN Software\Microsoft'\Windows' CurrentVersion' Policiesh ActiveD...
cmd.exe fc reg add "HELM Software' Microzoftt Wind owsh CurrentVersion'\Policies\ ActiveD...
cmnd.exe fc reg add "HKCUAControl Panel\Desktop” /v Wallpaper /t REG 5Z /d "Ch\UsershP...
crnd.exe fc reg add "HELM Software' Microsoft\ Wind ows\ CurrentVersion' P olicies\ System...
cmd.exe fc reg add "HELM\Softwarel Microsoft\ Windows\ CurrentVersion' P olicies! System...
crnd.exe fc reg add "HECUA Control Panel\Desktop” /v WallpaperStyle /£ REG 57 /d 2 /f
rundll32.exe userd2. dil UpdatePerUzerSystemParameters

cmd.exe /o start powershell.exe -WindowStyle Hidden -Command Sleep -Milliseconds 300:...

Start processing %6s
Start xxx encrypt
Start fseek

Start fwrite

The Rhysida encryptor allows two arguments -d and -sr, which the authors define as
parseOptions. The picture below shows the parseoptions function.

-d: select a directory to encrypt

-sr: File deletes itself after running ("I'm will be selfremoved")

3/19

woid _ ecdecl parseOpticns(int argc, char **argv, Options *options)
1
char _selfremoved[24]; // [rsp+t2@h] [rbp-5@h] BYREF
char self remove modifier[4]; // [rsp+4lh] [rbp-3Fh] BYREF
char directory modifier[3]; // [rsp+45h] [rbp-3Bh] BYREF
int dir_n; // [rsp+48h] [rbp-38h]
int i; // [rsp+ach] [rbp-34h]

opticns-»program = (char *)malloc(@xleeduisd);
opticns-»directory = (char *)malloc(@xlesauisd);
*options-»directory = @;
opticns-»is_self remove = 1;
strepy(directory modifier, “-d™); ‘

= - = 1F1 =~
; I |iingn "

if (!stromp{argv[i], directory modifier))
if { argv[++i])

strepy(options->directory, argv[i]);
for { dir_n = ®; dir_n < strlen(ocpticns->directory); ++dir_n)

1
if ({ opticns-»directory[dir_n] == 92)
cpticns-»directory[dir n] = 47;
¥

}

else if { !strocmp(argv[i], self_remove_modifier))

1

strcpy(_selfremoved, "I'm will be selfremoved”); ‘
puts{_ selfremoved};
opticns-»is_self remove

strcpy(options->program, *argv);

[T I~ I B RO B (W, B S WV R S ~ T Ve T T (R R, BN - Y T S~ I B S (R R [N N W I SR~ T W I s B B VRN (R SO WY R =)

Rhysida uses the following command to delete itself; as you can tell, that is the PowerShell
string from earlier.

1

if (cptions-»is_self remove == 1)

command = (char *)malloc(@x7FFui64);
strepy(
command ,
"emd.exe fc start powershell.exe -WindowStyle Hidden -Command Sleep -Milliseconds 5@8; Remove-Item -Force -Path ")
strecat{command, cwd);
*(_WORD *)Bcommand[strlen(command)] = 92;
strcat{command, cpticns->program);
strcat{command, "\" -Errorfction SilentlyContinue;™);

4/19

Everything is revealed in the main function, and there is no obfuscation. It begins by getting
the number of processors on the system and printing it. It then performs a series of memory
allocations for future encryption operations, defines mutexes, and queries the files on the
system. It then performs another print of the current program and directory. Right before
LABEL_8, at the bottom of the picture, is where the encryption process begins.

38
39
40
41
42
43
a4
45
45
47
43
49
50
51
52
53
54
55
56
57
58
59
50
61
62

_maini);
v3i = time(8i6d);
srand{v3);
GetSystemInfo(&sysinfo);
PROCS = sysinfo.dwNumberOfProcessors;

printf{"Number of procs ¥1d\n", sysinfo.dwNumberOfProcessors);
pPrAgs = (prng_state - H
PRNG_IDXS = (int *)malloc(4i64 * PROCS);
QUERY FILE THREAD IDS = {pthread t *)malloc(8i64 * PROCS);
thread is = (int *)malloc(4is4 * PROCS);
QUERY_FILE_P0SS = (int *)malloc(4i64 * PROCS);
QUERY_FILES = (char ***)malloc(8i64 * PROCS);
QUERY_FILE_LOCKEDS = (int *)malloc(4i64 * PROCS);
MUTEXES = (pthread mutex_t *)malloc(Bisd4 * PROCS);

thread mutex init(&MUTEX PRNG, @i64);

pthread mutex init(&MUTEXES[thread i], @ied);
QUERY FILE_POSS[thread i] = -1;
vid = RQUERY_FILES[thread i];
*yd = (char **)malloc(@x2e8Buisd);
for { files i = @; files i <= 1823; ++files i)
1
vs = &QUERY_FILES[thread_i][files_i];
*v5 = (char *)malloc(@xleaauisd);
¥
QUERY FILE_LOCKEDS[thread i] = @;
thread_is[thread_i] = thread_i;
¥
opticns = (Options *)malloc(@x1Buibd);
parseOptions(argc, (char **)argv, opticns);
strepy(_program_string, “Program: M);
printf({"%s¥s\n", 2rogram_string, opticns-»program);
strepy(_directory string, "Cirectory: ™);
rirkf {("Es¥s\n", directory strin opticns-»directo

gmemcpy(retptr_ltc_mp, reTpir_ltm desc, sxlAbBuibd);
Ef (init_prng(&prng, &PRNG_IDX)) Eegin
LABEL_B8:
puts("“ERROR init_prng");
¥

5/19

The init_prng(&prng, &PRNG_IDX) function is where the Chacha20 algorithm parameters
are defined. Chacha20 is a symmetric stream cipher used to encrypt the file contents.

1 [@nt _ cdecl init_prng(prng_state *prng_val, int *n)
21
3 int v3; //

4| unsigned __intd prng_entr[48]; //
5| unsigned int read _len; //
unsigned _ int8 *buf; //

int buf_len; //

int err; //

int i; //

*n = register_prng(refptr_chacha2@_prng_desc);
2| if (*n == -1)
13 return 1;
4| if { (unsigned int)chacha2@ _prng_start(1)
IS return 2;
L6 = chacha2® prng_ready(|-
7] if ()
3 return 3;
@ for (1 =8; 1 <= 39; ++1)
] [i] = rand() * (*(_BYTE *)n + i + 1);
il = chacha2@ prng_add_entropy(, 4Bicd, H
12 if)
13 return 4;
4 = rand();
= (unsigned __ int8)(((unsigned int){ > 31) »> 24) + w3) - ({unsigned int)(> 31) > 24) + 1;
unsigned _ int8 *)malloc(H
= chacha2@_prng_read(, BiG4, H
free(H
return @;

8 [}

The first part of the encryption algorithm is a series of conditionals to build the ciphers and
import keys. I've numbered them below to make it easier to follow what’s going on. Below the
picture, | also go into detail on some of the steps.

1. init_prng(&prng, &PRNG_IDX) defines Chacha20 characteristics.
2. Imports an RSA-4096 public key

3. Registers the AES encryption cipher

4. defines a CIPHER constant set to aes

5. Registers the Cipher Hash Construction (CHC) hash type, allowing a user to use a
block cipher and turn it into a hash function.

6. Registers AES as the block cipher for the CHC hash.

7. Defines a HASH_1IDX constant set to the resulting CHC hash.

7/19

if { init_prng(&prng, &PRNG_IDX))
1
LABEL &:
puts{“"ERROR init_prng"); 1
¥
else
for (thread_i = @; thread_i < PROCS; +thread_i)
1
if (init_prng(&prngs[thread_i], &PRNG_IDXS[thread_i]))
goto LABEL_8;
1

if { (unsigned int)rsa_import({_ inte4) PUB_DER, _PUB_DER_LEN, (_ intsd)&key))

puts(“"ERROR rsa_import_key public™);

} 2

else

1
err = reglster_cipher{retptr_aes_enc_desc);
if (err) 3
1

vB = (const char *)error_to_string({unsigned int)err);
printf("ERROR Unable to register aes_enc_desc cipher Xs\n™, v&);

¥
ElsE
1
CIPHER = find_cipher("aes");
if (CIPHER == -1)
1
puts({"ERROR Cipher AES not found");
ks
else
1
err = register_hash({retptr_chc_desc);
if (err) 5
1

v? = {const char *)error_to_string({unsigned int)err});
printf("ERROR register CHC hash ¥s\n™, v7);

)

else

1
err = che_register{CIPHER);
if (err) 6
1

vd = (const char *)}error_to_string({unsigned int)err};
printf("ERROR binding AES to CHC ¥s\n", vd);

}

else

1

HASH_IDX = find_hash({"chc_hash™);
if (HASH IDX == -1)
{ 7

puts({"ERROR Hash CHC not found");
¥

else

1
_aes_keysize = 32;
err = rijndael_keysize(& aes keysize);
if { err)

8/19

The authors of the Rhysida ransomware used the LibTomCrypt open-source library to create
the encryption modules in the payload. Once the ransomware encrypts files with ChachaZ20,

the authors used RSA-4096-OAEP to encrypt the Chacha20 keys.

4a
47
48
449
58
51
52
53
54
55
56
57
58
59
68
61
62
63
64
65
66
67
G638

Below is the RSA public key in memory. Interestingly, it's between the ransom note file name

LABE

b

(*

1f (*a4 <

v1a[@]

re

*aij

v1a[e]

result

pkcs_1 caep encode(Src, w1z,

v1lg, a7, a8, a9, a3, (_intE-ﬂ-)'-:L?);‘

if (!({_DWORD)result)

return (*({__
a3,
via[e],
a3,
a4,
BJ
all);
return result;

L_12:
*ad = v17;

return 61i64;

vle = refptr_ltc_mp;
((inte4 (fastcall **

= (i
vl7)
goto LABEL_12;
= *aij

sult

inte4 (_ fastcall **

inte4 (_ fastcall *=

pkes_1_wl_5_encode(Src,

y{__inte4, _QWORD, _ inte4, unsigned int *, _DWORD,

J(_QWORD))refptr_ltc mp + 13))(*(_QWORD *)(all + 24));
J(_OQWORD) yrefptr_ltc_mp + 18)) (*(_OQWORD *)(a11 + 24));

9)5 «

vl2, a7, ad, a3, (__inte4)vl

— CriticalBreachDetected.pdf — and its contents.

4% Dump 1

Y% Dump 2

4% Dump 3 4% Dump 4 Y% Dump 5 5 watch 1

__int64))vic + 48))(

[x=] Locals ‘5

Address

ASCII

000000000044 000
Ooo000000044C040
0000000000442 080
0oo0000000044C0C0
0ooo00000044C 100
000000000044C140
0o0000000044C180
QOO0 000044C 100
0o0000000044C 200
Qoo000000044C2 40
0o0000000044C 280
000000000044C2C0
oooo00000044C 300
000000000044C3 40
0o0000000044C380
QOOOO0000044C 300
000000000044 400
0oo000000044C 440
Ooo000000044C450
0o0000000044C4C0
0ooo00000044C5 00
000000000044 C5 40
0o0000000044C5 80
QOO0 000044C5C0
000000000044 600
0oo000000044C 640
0oo000000044C 680
0o00000000044C6C0
0oo000000044C7 00
000000000044C7 40
0o0000000044C7 80
QOO0 000044C 70
000000000044C 800
0oo000000044C 840
00000 0000044C 580
0oo000000044C8C0
0oo000000044C 200

CriticalBreachDetected. pdf...... o.."0.
.IEe[vove.p.ar. talr ' 7. ExgnA £n+° . #0P. °d(1A Eﬁ p.Mi=20MA. BB . ~. . &.
L0067 . '6.m. . =rmeda=. |1:|[)d!r1n1 S 1. 9u+2hhl L& Yazni. uFrhﬂ

dAL1 5. gmeEu aixh. .CI. sh. . dIwh= g3ﬁ~x_ Buct. Bba1ita. ce.-0. %50

AA.. .70, +:|-95-BGU'-ﬂmIQ BG. E. LA L BT... .9, jHE.OME._ LB, T(C

~zash. 0. 1] WUDE!. +. Xx70xW. P. 1{ Hﬁsu w2e{|>8\. =+=8E. *y u. DBiAsz
O[.bal.8t.IR] <. .5-6, ybv«1m %dxp #...PI8r. 0°..982E..ulx.. £.0.¢

OrxbyeAn. ... ud. T ir.{= nPQ+u[ﬂJuh‘y.gﬁ1h . PAM. nKau .a

xHﬁ&a.a..-.(*.i+.hJ.ph(a.=3h.E*P} jq.}b’B.EIV.H{prU h?s uny A

R - Pcooocccocooococcooocoocooooc Critical Breach Detected a.. Imm

ediate Response Required....Dear company,....This is an automate

d alert from cybersecurity team Rhysida. an unfortunate situatio

n has arisen d.. your digital ecosystem has been compromised,..a

nd a substantial amount of confidential data has been exfiltrate

d from yvour network. The potential ramifications of this could b

e dire,..including the sale, publication, or distribution of wvou

r data to competitors or media outlets. This could inflict signi

Ticant reputational and financial damage..... Howewver, this situa

tion is not without a remedy..... Our team has developed a unique
key, specifically designed to restore your digital security. Th

is key represents the Tirst and most crucial step..in recovering
from this situation. To utilize this key, visit our secure port
al: rhysidafohrhyyzaszirbm3ztnjatsxriesTopocxkkdfxhid4tidsgrcad. oni
on..with vour secret key &6FZPQ1402P0Z1IBEPSDGESHUIPLSYSDUL. JITT

s vital to note that any attempts to decrypt the encrypted Files
independently could Tead to permanent data loss. We strongly ad

vise against such actions..... Time is a critical factor in mitig

ating the impact of this breach. with each passing moment, the p

otential damage escalates. Your immediate action..and full coope

ration are required to navigate this scenario effectively..... Re
st assured, our team is committed to guiding you through this pr
ocess, The journey to resolution begins with the use of the uniqg

ue key...Together, we can restore the security of your digital e

nv1rnnﬂent Best regards.....

%PDF-1.5.%D0A8.5 0 obj.<<. /Length 1574

e.»=.stream. xOuwksle, ¥cwevjsfI. Ipée. 5. 23,

;F11ter ;F1atEDecud
LI, BXUOYA. " a8’

9/19

https://github.com/libtom/libtomcrypt

When keys get encrypted with RSA, the authors use the CHC hash as entropy for the cipher

IVs.

Y

] i =

maw
lea
M
Mo
Mo
maw
call
mow
maw
lea
M
lea
Mo
lea
maw
mow
cdge
imul
lea
Mo
lea
lea
maw
lea
lea
maw
M
Mo
Mo
maw
maw
lea
maw
maw
M
call
Mo
cmp

rdx, [rbp+l@323@8h+f]
rax, [rbp+l@3298h+cipher key ocut length]

ra, rdx 3 Stream

réd, 1 3 ElementCount
edw, 4 3 ElementSize
rcx, rax 3 Buffer
fwrite

[rbp+l@3298h+cipher IV length], 1@h
[rbp+l@3298h+cipher IV out length], 1@8éh
rax, HASH TDX

réd, [rax]

rax, PRNG_IDX

ecx, [rax]

rax, prngs

rdx, [rax]

eax, [rbpt+lez29eh+thread n]

rax, 44F8h

rll, [rdxtrax]

esi, @Bh

r9, [rbp+183298h+cipher IV out_length]
rle, [rbp+le3z2oeh+cipher IV out]

edx, [rbp+lezz2oeh+cipher IV length] ; Size
rax, [rbptlez2zoeh+cipher IV]

rbx, key

[rsp+l@3318h+var 1832C8], rbx ; _ inthd4
[Fsp+l@3318h+var_1832C8], 2 ; int
[rspt+183318h+var_1832D08], r8d ; int
[rsp+183318h+var_1832D8], ecx ; int
[rspt+183318h+var_1832E8], rll ; _ inte4
[rspt+l@331eh+var_ 1B832E8], esi ; int

rcx, PROGRAM_NAME

[Fsp+l@3318h+var 1832F8], rcx ; _ inthd
rg, rlé ; __ inted

rox, rax] s
rsa_encrypt_key ex

[rbp+183298h+err], eax
[rbp+1e3298h+err], @

short loc 4183886

I've posted the CHC entry from the LibTomCrypo developers manual below.

10/19

.3 Clipher Hash Construction 61

6.3 Cipher Hash Construction

An addition to the suite of hash functions is the Cipher Hash Construction or CHC mode. In this
mode applicable block ciphers (such as AES) can be turned into hash functions that other LTC
functions can use. In particular this allows a cryptosystem to be designed using very few moving
parts.

In order to use the CHC system the developer will have to take a few extra steps. First the
che_desc hash descriptor must be registered with register_hash(). At this point the CHC hash
cannot be used to hash data. While it is in the hash system vou still have to tell the CHC code
which cipher to use. This is accomplished via the che_register() function.

int chc_register(int cipher);

A cipher has to be registered with CHC (and also in the cipher descriptor tables with regis-
ter cipher()). The che_register() function will bind a cipher to the CHC system. Only one cipher
can be bound to the CHC hash at a time. There are additional requirements for the system to
work.

1. The cipher must have a block size greater than 64-bits.
2. The cipher must allow an input key the size of the block size.
Example of using CHC with the AES block cipher.

#include <tomcrypt.h>
int main(void)
i

int err;

/* register cipher and hash */

if (register_cipher(&aes_enc_desc} == -1} {
printf("Could not register cipherin");
return EXIT_FAILURE;

if (register_hash(&chc_desc) == -1) {
printf("Could not register hash\n");
raturn EXIT_FAILURE;

/# start chc with AES =/
if ((err = chc_register(find_cipher("aes"})) != CRYPT_OK) {
printf("Error binding AES to CHC: %s\n",
error_to_string(err));

/* now you can use chc_hash in any LTC function
* [aside from pkes...] */

11/19

On to the next part of the main function, the AES key size is set to 32, which results in AES-
256-ECB, according to the developer’s manual. Once all the encryption mechanisms are

established, the sample defines global counters to track the progress of file encryption. The
box on the bottom is where the actual encryption occurs. Although, most of the functionality

is within the processFiles and openbirectoryNR functions. The for loop on the bottom loops

between all system drives (65 = A and 90 = Z, in ASCII).

else

1

_aes_keysizre = 323

err = rijndael_keysize(& aes_keysize);

if (err)

1
v3 = {const char *)error_to_string({unsigne
printf("ERROR AES getting key size ¥s\n",

I

va)s

d int)err);

else

1

for (CURRENT_TYPE_N = 1; CURRENT_TYPE_N <=
1
global statistics.dir_count = 8;
global statistics.all count = @;
global statistics.file count = @;
global statistics.error_count = @

H
global statistics.access_count = 8;
global statistics.readme_count = 8;
QUERY_EMPTY_CIRCLES = @&;
for (thread_i = @; thread_i <« PROCS; ++t

pthread_create(
&QUERY FILE THREAD IDS[thread i],
@isd,
(void *(*}({void *))processFiles,
&thread_is[thread_i]);
for (thread_i = @; thread_i <« PROCS; Ht
pthread_detach({(pthread t)}&QUERY _FILE_T
time(&time_start);
if ({ *options-»directory)
1
openDirectoryNR(ocptions-»directory);
¥
else
1
drive = (char *)malloc(@xl@@euisd);
for (drive_ letter = 65; drive_letter <

sprintf(drive, "%c:/", (unsigned int)
openDirectoryNR({drive);

¥

free(drive);

1; ++CURRENT TYPE_N)

hread_1i)

hread_1i)
HREAD IDS[thread_i]};

= 98; ++drive letter)

drive_letter);

The main function ends with a printout of the encryption process showing how many
directories and files were processed; how many files failed to encrypt; how many files were

accessed; and “readme files.”

12/19

time(&time_end);
run_time = difftime(time end, time start);
strepy(working time string, "Working time: ");
strepy(_seconds_string, “ seconds™);
printf(
"¥d circle ¥s¥.21f%¥s\n",
(unsigned int)CURRENT_TYPE_N,
_working_time_string,
run_time,
_seconds_string);

strepy(_global statistics dir count, "Processed directories:

strepy(_global _statistics_all count, "All files: ™);
strcpy(_global statistics _error_count, “Error files: "});
strcpy(_global statistics file count, “Processed files: ™};
strepy(_global statistics _access_count, "Access files: ™});
strepy(_global statistics _readme_count, "Readme files: ™};
printf(
"¥d circle FsHlu\n",
(unsigned int)CURRENT_TYPE N,
_global_statistics_dir _count,
global_statistics.dir_count);
printf(
"%d circle #s¥luln",
(unsigned int)CURRENT_TYPE_N,
_global statistics all count,
global statistics.all count);
printf{
"%d circle ¥s¥lu\n",
(unsigned int)CURRENT_TYPE_N,
_global_statistics_error_count,
global statistics.error_count);
printf(
"¥d circle #sHElu\n",
(unsigned int)CURRENT TYPE N,
_global statistics file count,
global statistics.file_count);
printf(
"%d circle ¥s¥lu\n",
(unsigned int)CURRENT_TYPE_N,
_global_statistics_access_count,
global statistics.access_count);
printf(
"¥d circle FsElu\n---\n\n",
(unsigned int)CURRENT_TYPE_N,
_global_statistics_readme_count,
global statistics.readme_count);

BE

Stepping through the sample as it executes shows how it prints out the results as it goes.
However, if you run it, it will move fast and be unreadable during execution. So, to get more
granular data, set proper breakpoints.

13/19

Start processing A:/
Start processing B:/
Directory C:/ entries 22
Start processing C:/

Start processing A:/
Start processing B:/

Director

¢ SWINDOWS . ~BT
WS .~BT entries 2

It then spits out the final results (If you don’t set a breakpoint, this will exit immediately):

14/19

1
E
Ex

Upon execution, Rhysida excludes files with the following extensions from encryption:

.bat
.bin
.cab
.cmd
.com
.cur
.diagcab
.diagcfg
.diagpkg
.drv
.dll
.exe
.hlp
.hta
.ico
.1nk
.0CX
.ps1
.psmi
.Scr
.Sys
.ini
Thumbs.db
.url
.iso
.cab

*.cab is listed twice

Rhysida excludes the following directories:

$Recycle.Bin

Boot

Documents and Settings
PerfLogs

15/19

Program Files

Program Files (x86)

ProgramData
Recovery

System Volume Information
Windows
$RECYCLE.BIN

Rhysida adds the following extension to encrypted files:

<file name>.rhysida

Rhysida drops a PDF called CriticalBreachDetected.pdf:

m]

[@ CriticalBreachDetected.pdf

&} (1) File | CUsers/Public/CriticalBreachDetected.pdf

=

7 Draw

<

x |+

Read aloud

Critical Breach Detected — Immediate Response Required
Dear company,

This is an automated alert from cybersecurity team Rhysida. An unfortunate
situation has arisen — your digital ecosystem has been compromised, and a

substantial amount of confidential data has been exfiltrated from your network.

The potential ramifications of this could be dire, including the sale.
or distribution of your data to competitors or media outlets. This could inflict
significant reputational and financial damage

However, this situation is not without a remedy.

Our team has developed a unique key, specifically designed to restore your
digital security. This key represents the first and most crucial step in
recovering from this

.onion with your

It’s vital to note that any attempts to decrypt the encrypted files independently
could lead to permanent data loss. We strongly advise against such actions,

Time is a critical factor in mitigating the impact of this breach. With each
passing moment, the potential damage escalates. Your immediate action and
full cooperation are required to navigate this scenario effectively.

Rest assured, our team is committed to guiding you through this process. The
journey to resolution begins with the use of the unique key. Together, we can
testore the security of your digital environment

Best regards

The TOR extortion page has no victims as of this writing.

uation. To utilize this key, visit our secure portal:

16/19

rhysidaf

NEWS Good afternoon, welcome to the website of the organization Rhysida. If you have come here, you would like to contact us,
We will post news about our company please fill out the form and you will be contacted shortly.
here : A
Please enter a comment if you have something to say
If you see news about us, send them to

us and we will post it here

How you can buy BTC

® CoinBase

coinbase Buy btc in 15 minutes,
easy and safe

Binance

’0’ Buy btc via debit card or

BINANCE bank account fast and safe

1 BTC = 26886 USD

If you have some problems contacts us with our general mail:

The operators use a unique token provided in the ransom note for extortion negotiations.

Token

Putting in a valid token ID provides the victim with a custom contact form.

Good afterncon, welcome to the website of the organization Rhysida. If you have come
here, you would like to contact us, please fill out the form and you will be contacted
shortly. We strongly recommend that you do not hesitate to specify the information we
request. Fill the form with answers wich help us identify you. We have your documents,
we know where you live, we know your childrens scool. You are welcome on the dark
side of the Internet.

Enter the name of your organization and domain

Specify the Domain Administrator accounts, separated by commas

Email to contact

If you have somethink to say or You are recovery company, add information wich, you
think, will help in our dialog

That’s all for now!

Share This:

19/19

