
1/9

May 22, 2023

[Case study] Decrypt strings using Dumpulator
kienmanowar.wordpress.com/2023/05/22/case-study-decrypt-strings-using-dumpulator/

1. References

Dumpulator (by mrexodia Duncan Ogilvie)
Native function and Assembly Code Invocation
OALABS Research
And @herrcore (Thanks for his suggestion in private chat)

2. Code analysis

I received a suspicious Dll that needs to be analyzed. This Dll is packed. After unpacking it
and throwing the Dll into IDA, IDA successfully analyzed it with over 7000 functions
(including API/library function calls). Upon quickly examining at the Strings tab, I came
across numerous strings in the following format:

https://kienmanowar.wordpress.com/2023/05/22/case-study-decrypt-strings-using-dumpulator/
https://github.com/mrexodia/dumpulator/
https://github.com/mrexodia
https://research.checkpoint.com/2022/native-function-and-assembly-code-invocation/
https://research.openanalysis.net/categories/#dumpulator
https://twitter.com/herrcore?
https://kienmanowar.files.wordpress.com/2023/05/2023-05-22_10-02-03.png

2/9

Based on the information provided, I believe these strings have definitely been encrypted.
Going through the code snippet using an arbitrary string, I found the corresponding assembly
code and pseudocode as follows (function and variable names have been changed
accordingly):

With the image above, it is easy to see:

The EAX register will hold the address of the encrypted string.
TheEDX register will hold the address of the string after decryption.
The mw_decrypt_str_wrap function performs the task of decrypting the string.

Here, if any of you have the same idea of analyzing the mw_decrypt_str_wrap function to
rewrite the IDApython code for decryption, congratulations to you 🙂 You share the same
thought as me! The mw_decrypt_str_wrap function will call the mw_decrypt_str function.

https://kienmanowar.files.wordpress.com/2023/05/2023-05-22_10-10-29.png

3/9

After going around various functions and thinking about how to code, I started feeling
increasingly discouraged. Moreover, when examining the cross-references to the
mw_decrypt_str_wrap function, I noticed that it was called over 4000 times to decrypt
strings… WTF 😐

https://kienmanowar.files.wordpress.com/2023/05/2023-05-22_10-29-49.png

4/9

3. Use dumpulator

As shown in the above image, there are too many function calls to the decryption function.
Moreover, rewriting this decryption function would be time-consuming and require code
debugging for verification. I think I need to find a way to emulate this function to perform the
decryption step and retrieve the decrypted string. Several solutions came to mind, and I also
asked my brother, who suggested using x or y solutions. After some trial and error, I decided
to try using dumpulator. To be able to use dumpulator, we first need to create a minidump
file of this DLL (dump when halted at DllEntryPoint). After obtaining the dump file, I tested the
following code snippet:

from dumpulator import Dumpulator

dec_str_fn = 0x02FE08C0

enc_str_offset = 0x02FD9988

dp = Dumpulator("mal_dll.dmp", quiet=True)

tmp_addr = dp.allocate(256)

dp.call(dec_str_fn, [], regs={'eax':enc_str_offset , 'edx': tmp_addr})

dec_str = dp.read_str(dp.read_long(tmp_addr))

print(f"Encrypted string: '{dp.read_str(enc_str_offset)}'")

print(f"Decrypted string: '{dec_str}'")

Result when executing the above code:

https://kienmanowar.files.wordpress.com/2023/05/2023-05-22_10-33-14.png

5/9

H0ly Sh1T… 😂 that’s exactly what I wanted.

Next, I will rewrite the code according to my intention as follows:

Use regex to search for patterns and extract all encoded string addresses.
Filter out addresses that match the pattern but are not decryption functions or
undefined addresses and add them to the BLACK_LIST.

Here’s a lame code snippet that meets my needs:

https://kienmanowar.files.wordpress.com/2023/05/2023-05-22_10-52-30.png

6/9

import re

import struct

import pefile

from dumpulator import Dumpulator

dump_image_base = 0x2F80000

dec_str_fn = 0x02FE08C0

BLACK_LIST = [0x3027520, 0x30380b6, 0x30380d0, 0x3039a08, 0x3039169, 0x303a6b6,
0x303aa0e, 0x303ab5c, 0x303bbf3, 0x3066075, 0x306661b, 0x3083e50,

 0x3084373, 0x30856d1, 0x30858aa, 0x308c7ac, 0x308d02d, 0x30acbfd,
0x30cd12e, 0x30cd187, 0x30cd670, 0x30cd6d4, 0x30cfe2f, 0x30d4cc4,

 0x3106da0]

FILE_PATH = 'dumped_dll.dll'

dp = Dumpulator("mal_dll.dmp", quiet=True)

file_data = open(FILE_PATH, 'rb').read()

pe = pefile.PE(data=file_data)

egg = rb'\x8D\x55.\xB8(....)\xE8....\x8b.'

tmp_addr = dp.allocate(256)

def decrypt_str(xref_addr, enc_str_offset):

 print(f"Processing xref address at: {hex(xref_addr)}")

 print(f"Encryped string offset: {hex(enc_str_offset)}")

 dp.call(dec_str_fn, [], regs={'eax': enc_str_offset, 'edx': tmp_addr})

 dec_str = dp.read_str(dp.read_long(tmp_addr))

 print(f"{hex(xref_addr)}: {dec_str}\n")

 return dec_str

for m in re.finditer(egg, file_data):

 enc_str_offset = struct.unpack('<I', m.group(1))[0]

 inst_offset = m.start()

 enc_str_offset_in_dmp = enc_str_offset - 0x400000 + dump_image_base

 call_fn_addr = inst_offset + 8 - 0x400 + dump_image_base + 0x1000

 if call_fn_addr not in BLACK_LIST:

 str_ret = decrypt_str(call_fn_addr, enc_str_offset_in_dmp)

print(f"H0lY SH1T... IT's D0NE!!!")

Result when executing the above script:

7/9

No errors whatsoever 😈!!! As a final step, I added a code snippet to this script that will
output a Python file. This file will contain the idc.set_cmt commands to set comment for the
decrypted strings above at the address where the decrypt function is called.

The final result is as follows:

https://kienmanowar.files.wordpress.com/2023/05/2023-05-22_11-10-53.png

8/9

https://kienmanowar.files.wordpress.com/2023/05/dumpulator_test.gif
https://kienmanowar.files.wordpress.com/2023/05/2023-05-22_11-16-07.png

9/9

End.

m4n0w4r

https://kienmanowar.files.wordpress.com/2023/05/2023-05-22_11-16-51.png

