
1/11

May 19, 2023

Rust-Based Info Stealers Abuse GitHub Codespaces
trendmicro.com/en_us/research/23/e/rust-based-info-stealers-abuse-github-codespaces.html

Cloud

This is the first part of our security analysis of an information stealer targeting GitHub
Codespaces (CS) that discusses how attackers can abuse these cloud services for a variety
of malicious activities.

By: Nitesh Surana, Jaromir Horejsi
May 19, 2023
Read time: (words)

Cloud-based developer environments allow developers to virtually code from anywhere and
start right from their smartphones, tablets, or any device with a browser and an internet
connection. GitHub Codespace (CS) is one such feature-rich, cloud-based service from
Microsoft that enables developers to build software from anywhere.

After its availability was made public in November 2022, any GitHub user could create at
least two active CS instances and use them for free with limits on storage, processing power,
and duration. CS instances are isolated virtual machines (VMs) hosted on Azure that can be
accessed using the web browser, GitHub CLI, or other integrated developer environments
(IDEs) such as VSCode and JetBrains, among others. Since any GitHub user could create
CS environments, it did not take long for attackers to find ways to abuse this service.

In January 2023, we shared a proof of concept showing how an attacker could abuse a
feature allowing the exposure of ports on GitHub CS to deliver malware with open
directories. It should be noted that open directories aren’t new and threat actors have been
documented using these for serving malicious content such as ransomware, exploit kits,
malware samples, and the like.

In relation to this, we recently came across Rustlang-based info stealers targeting Windows.
Much like the technical details shared in our previous Twitter thread, these info stealers
disguised themselves as applications or platforms. Our investigation showed how these info
stealers operate by leveraging exposed ports on a CS instance to exfiltrate credentials from
an infected machine. In this blog, we detail one of these info stealers masquerading as a
popular computer game. This will serve as the first part of the series, to be followed by
another entry analyzing how this info stealer is able to persist on the victim machine after it
infects an existing installation of Discord.

Overview of functions

https://www.trendmicro.com/en_us/research/23/e/rust-based-info-stealers-abuse-github-codespaces.html
https://github.com/features/codespaces
https://github.blog/2022-11-10-whats-new-with-codespaces-from-github-universe-2022/
https://cli.github.com/
https://www.trendmicro.com/en_us/research/23/a/abusing-github-codespaces-for-malware-delivery.html
https://www.rust-lang.org/
https://www.trendmicro.com/vinfo/us/security/definition/Info-stealer
https://twitter.com/TrendMicroRSRCH/status/1651831667621855233
https://docs.github.com/en/codespaces/developing-in-codespaces/forwarding-ports-in-your-codespace
https://www.trendmicro.com/en_us/research/23/e/info-stealer-abusing-codespaces-puts-discord-users--data-at-risk.html

2/11

Figure 1. A brief overview of the first section of this info stealer
Analyzing the info stealer sample with a decompiler, we noticed a number of interesting
function names, including anti-debugging features and stealing data from web browsers,
Discord, Steam, and cryptocurrency wallets, among others.

3/11

Figure 2. Suspicious

functions (top) and when we decompiled the main function of the sample (bottom)
Functions for anti-debugging and anti-analysis

Initially, the function called malware::anti_debug::detect::hfc268b042e05af6a() checks if the
sample is running in a controlled environment. The function fetches the username and, later,
the current host name to compare it with a list of blocklisted usernames and host names that

https://www.trendmicro.com/content/dam/trendmicro/global/en/research/23/e/rust-based-info-stealers-abuse-github-codespaces/Usernames-Hostnames-Blocklist-Rust-Based-Info-Stealers-Abuse-GitHub-Codespaces.txt

4/11

might have been used in sandboxes and debugging environments. If any match is found, the
stealer process is terminated. For comparison of a similar method, we found a repository of a
Python-based anti-debugger with anti-debugging and anti-analysis procedures implemented.

Figure 3. Anti-debug checks implemented by the stealer
Stolen information breakdown

In this section, we enumerate the stolen data and processes we found from the infection
routine of the info stealer malware.

Stealing browser data

Once anti-debug checks are done and no sandbox or anti-debug environment is detected,
the stealer collects the credentials stored in the victim machine, such as passwords, cookies,
and credit card information in the following popular web browsers:

360Browser
Amigo
Brave
Chromodo
Chromunium (sic)
CocCoc
Comodo

https://github.com/xtekky/Python-Anti-Debug/blob/29ac56ce752a2060cdb91610c22bd6dba5fbf516/anti-debug.py#L408

5/11

Epic Privacy Browser
Google Chrome
K-Melon
Kometa
Mail.Ru
Maxthon3
Nichrome
Orbitum
Slimjet
Sputnik
Torch
Uran
Vivaldi
Yandex

We observed that “Chromunium” is a typo of “Chromium,” and it does not work. Neither did
we find any public mentions of “Chromunium” being a browser. Notably, majority of modern
browser codebases are based on Chromium, a free and open-source project, including
Microsoft Edge even if it is not found in the stealer’s list for checking.

While analyzing the function malware::browsers::steal_data::h8cac638d5caa2249(),
however, we also noticed mentions of a function called get_chromunium_targets. In an
attempt to look for a related stealer code on GitHub, we came across a repository containing
a source code in Rust language, which we examined to be an info stealer sending stolen
information to the attacker’s webhook. Based on the similarities of the function code,
sequence of browsers, and applications being targeted, the info stealer analyzed in this blog
post was likely based on or inspired by the stealer we discovered in the GitHub repository.

https://www.chromium.org/chromium-projects/

6/11

Figure 4. Calling a function named “get_chromunium_targets” in one of the methods from the
info stealer

7/11

Figure 5. Possible source code related to the info stealer based on function name and
capabilities
Meanwhile, the collected credentials for each targeted browser are saved under the following
files:

%localappdata%\Microsoft\Security\Browsers\<browser_name>\Default\Passwords.tx
%localappdata%\Microsoft\Security\Browsers\<browser_name>\Default\Netscape
Cookies.txt
%localappdata%\Microsoft\Security\Browsers\<browser_name>\Default\Credit
Cards.txt

Stealing cryptocurrency wallet data

8/11

After collecting the browser credentials, the stealer proceeds to steal information from
various cryptocurrency wallets. It then targets known wallets from the paths under the
<%localappdata%> and <%appdata%> folders, as identified here:

\Armory
\atomic\Local Storage\leveldb
\bytecoin
\Coinomi\Coinomi\wallets
\com.liberty.jaxx\IndexedDB\file__0.indexeddb.leveldb
\Electrum\wallets
\Ethereum\keystore
\Exodus\exodus.wallet
\Guarda\Local Storage\leveldb
\Zcash

Stealing Discord data

The stealer also targets the messaging application Discord and looks for Discord tokens.
These tokens allow malicious actors to impersonate the victims on the platform once
acquired. Once the token is found, it is written to the file Discord Tokens.txt located in
<%localappdata%\Microsoft\Security>. The tokens are scanned from the following paths:

%appdata%\discord\
%appdata%\discord\Local Storage\leveldb\
%appdata%\discordcanary
%appdata%\discordptb
%appdata%\discorddevelopement
%localappdata%\Discord

Stealing Steam data

The Steam configuration files from <%programfiles(x86)%\Steam\config\> are copied to the
folder <%localappdata%\Microsoft\Security\Steam\> for later exfiltration. Stolen credentials
and configuration files are stored in the following paths and files:

%localappdata%\Microsoft\Security\Browsers\
%localappdata%\Microsoft\Security\Wallets\
%localappdata%\Microsoft\Security\Steam\
%localappdata%\Microsoft\Security\Discord Tokens.txt

Exfiltration

9/11

The previously collected files are compressed into a file named diagnostics.zip and stored in
the path <%localappdata%\Microsoft\diagnostics.zip>. The stealer uses gofile.io, a file-
sharing platform that allows users to upload and share files anonymously. Initially, the stealer
fetches the best available gofile.io server by querying api.gofile.io. Depending on the
response, the best server to send files to or receive files from is used in the subsequent
request in the format storeX.gofile.io, where “X” is a number (such as “store2” in Figure 6).

The stealer then uploads the compressed file via a POST request to the endpoint
/uploadFile. The body of the POST request contains the collected credentials from the victim.

Figure 6. Requesting

the best server for upload

Figure 7. Uploading stolen credentials to the gofile server
In the response, we get the gofile.io URL where the uploaded file is stored. This URL can be
accessed by anyone without any authentication. We also get a token in the guestToken
parameter, which can be used by the uploader to delete the parentFolder and fileId
parameters subsequently. After the gofile.io upload is complete, the query ifconfig.me
fetches the public IP address of the victim machine.

https://gofile.io/

10/11

Figure 8. HTTP GET request to get

the public IP address of the infected machine
The last step is submitting the stolen information to the Github webhook controlled by the
attacker. This is the summary of stolen information exfiltrated by the stealer:

1. List of browsers found
2. Computer name
3. Number of cookies extracted
4. Total number of credit cards extracted
5. Discord status (if Discord is installed or not)
6. Number of passwords extracted
7. Uploaded gofile.io URL of diagnostics.zip
8. Steam status (if any Steam data was stolen or not)
9. Username of the user running the info stealer

10. List of cryptocurrency wallets extracted
11. Windows operating system version

The stealer then embeds all the pieces of information about the victim into a JSON file and
sends this via a POST request to a GitHub CS URL. We saw a POST request attempting to
exfiltrate the stolen information to the Github CS endpoint that listens at port 8080. Had the
CS been active, port 8080 would have been publicly exposed and, requiring no
authentication, the exfiltrated information would have been successfully sent to and received
by the attacker.

According to our sample and testing, the exfiltration of the data to the webhook had failed
with the status error “302 Moved Temporarily.” If we try to access the gofile.io URL, we will
see that the file diagnostics.zip has been uploaded to the server and can be downloaded by
anyone with the URL link because no authorization is required.

https://docs.github.com/en/webhooks-and-events/webhooks/about-webhooks

11/11

Figure 9. Failed exfiltration of stolen data to the Github Codespaces webhook

Figure 10. Uploaded file

to gofile.io
In the second part of this analysis, we detail our investigation of how this information-stealing
malware achieves persistence in the infected machine by modifying the victim’s installation of
Discord. We also enumerate our security recommendations and insights on how users and
security teams can defend their networks and endpoints against this growing threat.

Indicators of Compromise (IOCs)

Download the full list of indicators here.

https://www.trendmicro.com/en_us/research/23/e/info-stealer-abusing-codespaces-puts-discord-users--data-at-risk.html
https://www.trendmicro.com/content/dam/trendmicro/global/en/research/23/e/rust-based-info-stealers-abuse-github-codespaces/IOC-list-rust-based-info-stealers-abuse-github-codespaces.txt

