Looking Closer at BPF Bytecode in BPFDoor

@ nikhilh-20.github.io/blog/cbpf_bpfdoor/

Metadata

SHA256: afaBa32ec29a31f152ba20a30eb483520fe50f2dce6¢c9aa9135d88f7¢c9c511d7
Malware Bazaar link

Table of Contents

Family Introduction

BPFDoor is a backdoor targeting Linux-based systems. It leverages Berkeley Packet Filter
(BPF) technology that exists natively in Linux kernels since v2.1.75. By using low-level BPF-
based packet filtering, it is able to bypass local firewalls and stealthily receive network traffic
from its C2.

BPF Introduction

The Need for BPF

An operating system (OS) abstracts away the hardware. For example, user-space programs
running on the OS do not directly interact with networking-related hardware. They do so via
APls exposed by the OS. On Linux, these are called system calls or syscalls, in short. This
kind of a design results in a clear demarcation between the user-space and kernel-space.

Consider a single network packet that reaches the kernel. A user-space packet filtering
program wants to look at it. In this case, the contents of the entire packet needs to be copied
into user-space memory for it to be accessible by the user-space program. This incurs a cost
in performance and can be expected to be significant on high-traffic systems.

With the introduction of BPF in Linux kernel v2.1.75, packet filtering can occur in kernel-
space. A user-space application such as tcpdump could provide a filtering program (aka BPF
program) which would be compiled and run completely in kernel-space in a register-based
VM. This avoids the performance cost of copying the network packet into user-space.

Stability in BPF

To avoid instability in kernel-space, an arbitrary BPF program cannot be provided. A number
of checks are performed by the BPF in-kernel verifier. This includes tests such as verifying
that the BPF program terminates, registers are initialized and the program does not contain

1/18

https://nikhilh-20.github.io/blog/cbpf_bpfdoor/
https://bazaar.abuse.ch/sample/afa8a32ec29a31f152ba20a30eb483520fe50f2dce6c9aa9135d88f7c9c511d7

any loops that could cause the kernel to lock up. A BPF program can successfully be loaded
and executed only after it is verified.

eBPF vs cBPF

The original BPF, also called classic BPF (cBPF), was designed for capturing and filtering
network packets that matched specific rules.

Linux kernel v3.15 then introduced extended BPF (eBPF) which was more versatile and
powerful. It had a larger instruction set, leveraged 64-bit registers and more number of them.
It could also be leveraged for carrying out system performance analysis.

tcpdump, a user-space network packet analyzer, generates cBPF bytecode but it is then
translated to eBPF bytecode in recent kernels. The following is an example of cBPF
instructions generated by tcpdump when capturing TCP traffic on port 8o. I've also added the
C-style bytecode equivalent (-dd option in tcpdump) for each instruction.

$ sudo tcpdump -i wlp4s@® -d "tcp port 80"

(000) 1dh [12] # { 0x28, 0, 0, Ox0000OOOC }
(001) jeq #0x86dd jt 2 jf 8 # { 0x15, 0, 6, 0x000086dd }
(002) 1db [20] # { 0x30, 0, 0, Ox00000014 }
(003) jeq #OX6 jt 4 jf 19 # { 0x15, 0, 15, Ox00000006 }
(004) 1dh [54] # { 0x28, 0, 0, Ox00000036 }
(005) jeq #0X50 jt 18 jf 6 # { 0x15, 12, 0, 0x00000050 }
(006) 1dh [56] # { 0x28, 0, 0, Ox00000038 }
(007) jeq #OX50 jt 18 jf 19 # { 0x15, 10, 11, 0x00000050 }
(008) jeq #0Xx800 jt 9 jf 19 # { 0x15, 0, 10, O0x00000800 }
(009) 1db [23] # { 0x30, 0, 0, Ox00000017 }
(010) jeq #OX6 jt 11 jf 19 # { 0x15, 0, 8, Ox00OOOOO6 }
(011) 1dh [20] # { 0x28, 0, 0, Ox00000014 }
(012) jset HOXIFFF jt 19 jf 13 # { 0x45, 6, 0, Ox00001fff }
(013) ldxb 4% ([14]80xF) # { Oxbl, 0, 0, Ox0000000e }
(014) 1dh [x + 14] # { 0x48, 0, 0, 0x0000000e }
(015) jeq #OX50 jt 18 jf 16 # { 0x15, 2, 0, 0x00000050 }
(016) 1dh [x + 16] # { 0x48, 0, 0, 0x00000010 }
(017) jeq #0X50 jt 18 jf 19 # { 0x15, 0, 1, Ox00000050 }
(018) ret #262144 # { 0x6, 0, 0, 0x00040000 }
(019) ret #0 # { 0x6, 0, 0, Ox00000000 }

Studying the BPF Bytecode in BPFDoor

Building Capstone

Given BPF bytecode, we can use capstone to disassembile it. It supports the disassembly of
both cBPF and eBPF bytecode. Building capstone from source is simple.

2/18

https://github.com/capstone-engine/capstone

$ git clone --recursive https://github.com/capstone-engine/capstone

Cloning into 'capstone'...

remote: Enumerating objects: 32768, done.

remote: Counting objects: 100% (1765/1765), done.

remote: Compressing objects: 100% (544/544), done.

remote: Total 32768 (delta 1267), reused 1649 (delta 1206), pack-reused 31003
Receiving objects: 100% (32768/32768), 50.82 MiB | 18.05 MiB/s, done.
Resolving deltas: 100% (23271/23271), done.

$ cd capstone

$./make.sh

$ cd bindings/python/
$ sudo make install

$ pip freeze | grep capstone
capstone==5.0.0rc2

Disassembling BPF Bytecode

The following snap shows the existence of cBPF bytecode of length 240 bytes in the
BPFDoor sample. The cBPF program is applied on the socket using a call to setsockopt
with SO_ATTACH_FILTER option and a pointer to the cBPF bytecode.

; const char file[] - 1 |int _ fastcall mw_attach bpf filter(int sfd)
file db '/var/run/initd.lock',0 2|
; DATA XREF: main+Cto 3 int result; [/ eax

align 20h 4 struct sock fprog filter; // [rsp+Oh] [rbp-108h] BYREF
bpf_bytecode dw 28h ; DATA XREF: mw_attach bpf filter+] 5 char filter_ [248]; // [rsp+10h] [rbp-F8h] BYREF

db 0 6

db 0 7 filter.lem = 30;

db 0Ch 8 gmemcpy (filter , &bpf_ bytecode, 240ulL);

db 0 9 filter.filter = (struct sock_filter #*)filter_;

db 0 10 result = setsockopt(sfd, SOL_SOCKET, SO_ATTACH FILTER, &filter,

db 0 11| if (result < 0)

db 15h 12 exit (0);

db o 13 return result;

db 0 14 |}

db 9

db 0DDh

db 86h

db o

db o

db 30h ; O

db o

db o

db o

db 14h

db o

db 0

db 0

db 15h

db 0

db 0

db 2

db 6

db 0

db 0

db 0

db 28h ; [

db 0

db 0

db 0

db 38h ; B

db 0

db 0

db 0

db 15h

db 0

db 16h

db 0Dh

db 50h ; P

db 0

db 0

db 0

db 15h

db 0

db 16h

db 0

Ak 20h -

16u);

3/18

$ xxd -c 8 -g 1

00000000 :
00000008:
00000010:
00000018:
00000020
00000028
00000030
00000038:
00000040
00000048
00000050
00000058
00000060
00000068
00000070:
00000078
000000680
000000688
00000090
00000098
000000a0:
000000as8:
000000b0O:
000000b8:
000000CcO:
000000CS8:
000000d0:
000000d8:
000000e0:
000000e8:

A BPF instruction is 8 bytes in length. I've formatted the above hex dump so that each line
represents a cBPF instruction. capstone can be used to disassemble this bytecode.

28
15
30
15
28
15
15
15
15
28
15
15
30
15
28
45
b1
48
15
15
15
15
28
45
b1
48
15
15
06
06

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

bpf.o

00
00
00
00
00
16
16
01
00
00
11
00
00
00
00
od
00
00
09
08
01
00
00
05
00
00
01
00
00
00

00
09
00
02
00
od
00
00
14
00
10
11
00
06
00
00
00
00
00
07
00
07
00
00
00
00
00
01
00
00

Oc
dd
14
06
38
50
2c
84
11
38
bb
00
17
06
14
ff
Oe
10
50
bb
84
11
14
ff
Oe
10
bb
16
00
00

00
86
00
00
00
00
00
00
00
00
01
08
00
00
00
1f
00
00
00
01
00
00
00
1f
00
00
01
00
00
00

O,
(...8...

P..
(...8...
0 i,
(v,
E.......
Heoo

P..
(v
E.......
Heoo

4/18

In [1]: from capstone import *
In [2]: md = Cs(CS_ARCH_BPF, CS_MODE_BPF_CLASSIC)

In [3]: with open("bpf.o", "rb") as ff:
: data = ff.read()
: linenum = 0
: for 1 in md.disasm(data, 0):
print(f"{j}: {i.mnemonic} {i.op_str}")
linenum += 1

1dh [0xc]

jeq 0x86dd, +0x0, +0x9
1db [0x14]

jeq 0x6, +0x0, +0x2

1dh [0x38]

jeq 0x50, +0x16, +0xd
jeq Ox2c, +0x16, +0x0
jeq 0x84, +0x1, +0x0

jeq 0x11, +0x0, +0x14
1dh [0x38]

: jeq 0x1bb, +0x11, +0x10
: jeq Ox800, +0x0, +0x11
: 1db [0x17]

: jeq 0x6, +0x0, +0x6

: 1dh [0x14]

: jset Oxifff, +0xd, +0Ox0

© 0 NO 0T~ WDNEO

O
o~ wNRO

capstone failed to disassemble the 17 instruction. This corresponds to the cBPF bytecode:

bl 00 00 0O Ge 0O 00 0O

Looking at the cBPF bytecode generated by tcpdump earlier (see eBPF vs cBPF section),
the above bytecode corresponds to the following instruction. Perhaps, capstone is not yet
aware of this bytecode-instruction mapping.

1dxb 4% ([14]80xf)

| removed the above 1dxb instruction-specific bytecode from the hex dump, disassembled
the remaining bytecode using capstone and then added the 1dxb instruction at the
appropriate position in the instruction sequence.

5/18

© 0 NO O A~ WDNPREO

NRNRNNNNNONNNNRE R R R R R R R RB R
© 0 N0 TR WNRO®OOWM~NOTOANWNRO

Interpreting BPFDoor’s BPF Bytecode

1dh [Oxc]

jeq 0x86dd, +0x0, +0x9
1db [0x14]

jeq Ox6 , +Ox0, +0x2
1dh [0x38]

jeq 0x50, +0x16, +0xd
jeq 0x2c, +0x16, +0x0
jeq 0x84, +0x1, +0x0
jeq 0x11, +0x0, +0x14
1dh [0x38]

: jeq Ox1bb, +0x11, +0x10
: jeq 0x800, +0x0, +0O0x11
: 1db [0x17]

: jeq Ox6, +0x0, +0x6

: 1dh [0x14]

: jset Ox1fff, +0xd, +0x0
: ldxb 4*([14]&0xT)

: 1dh [x+0x10]

: jeq 0x50, +0x9, +0x0

: jeq 0x1bb, +0x8, +0x7

: jeq 0x84, +0x1, +0x0

: jeq 0x11, +0x0, +0Ox7

: 1dh [0x14]

: jset Ox1fff, +0x5, +0Ox0
: ldxb 4*([14]&0xT)

: 1dh [x+0x10]

: jeq Ox1bb, +0x1, +0x0

: jeq 0x16, +0x0, +0x1

ret 0x40000
ret 0x0

BPFDoor attaches the cBPF program to a AF_PACKET socket. So, packet filtering occurs at
layer 2 of the network stack. Let’s look at each instruction line-by-line.

0:

1dh [6xc]

6/18

Ethernet Type Il Frame
(64 to 1518 bytes) _

The frame contains the
2-bytes "EtherType" field
at offset "Oxc".

The "EtherType" indicates
the protocol encapsulated
in the frame payload.

1: jeq 0x86dd, +Ox0, +0x9

2 bytes (half-word)

offset.

The "ldh" instruction loads

starting from the given

B0 00 20 7A 3F 3E 80 00 20 20 3A AE 08 00 IP, ARP, etc. 00 20 20 3A
Destination MAC Address Source MAC Address EtherType Payload CRC Checksum
MAC Header Data
(14 bytes) (46 - 1500 bytes) (4 bytes)

Ethernet Il [=dit)

0x86DD indicates an |Pv6 datagram. See EtherType § Values for more.

If the previously loaded value
matches "0x88dd", control jumps
to the given “relative” offset.

"0x86dd" in the "EtherType"
field indicates IPv6 packet.

If the value matches, then
control jumps to the instruction
at line 2 (relative offset 0) else
it jumps to line 11 (relative offset 9)

The "jeq" instruction is a
conditional branch instruction.

Ethernet Il framing (also known as DIX Ethernet, named after DEC, Intel and Xerox, the major participants in its design'aj]. defines the two-octet
EtherType field in an Ethemet frame, preceded by destination and source MAC addresses, that identifies an upper layer protocol encapsulated by the
frame data. Most notably, an EtherType value of 0x0800 indicates that the frame contains an IPv4 datagram, 0x0806 indicates an ARP datagram, and

2: 1db [0x14]

7/18

4 Priority/

Version | Traffic Class Flow Label
4-bits 8-bits 20-bits
Payload Length 16-bits Next Header Hop Limit
&-bits &-bits

A

Remember that line 2 is
only executed when
"EtherType" == IPvE

Fixed Header

The "ldb" instruction loads 1 byte
starting from the given offset

The offset "0x14" points to the “"Next Header"
field in the IPvE header. This field specifies
the type of the next header.

Mote that offset calculation begins
from the start of the Ethernet Il frame.
So, 14 bytes of the Ethernet Il frame
MAC header + & byles into the IPvE
header brings us to the "Mext Header" field.

3: jeq Ox6 , +0x0, +0x2

List of IP protocol numbers 2 §languages

Article Talk Read Edit View history Tools v

From Wikipedia, the free encyclopedia

This is a list of the IP protocol numbers found in the field Profocol of the IPv4 header and the Next Header field of the IPvE header. It is an identifier for
the encapsulated protocol and determines the layout of the data that immediately follows the header. Both fields are eight bits wide. Protocol numbers are
maintained and published by the Internet Assigned Numbers Authority (IANA). M

Protocol

Hex Keyword References/RFC
Number If the previously loaded value at line 2
matches "0x6", control jumps lo line 4
0x00 0 HOPOPT (relative ofiset 0) else it jumps to line & RFC 8200¢
0x01 1 IcMP (relative offset 2). RFC 7922
0x02 2 IGMP RFC 1112¢
0x03 3 GGP The value, "0x6" in the "Next RFC 823¢2
0x04 4 IP-inP Header" field indicates TCP protocol. RFC 20032
0x05 5 ST — — RFC 1190¢, RFC 1819¢2
0x06 B TCP Transmission Control Protocol RFC 7932

4: 1ldh [0x38]

8/18

ot o 1 2 3 4 5 & ! & 3 I L T W 1B W™ N R B M W B W B B W RN

Source Port Destination Port

Sequence Number
(The offset "0x38" points to the

This instruction is executed
if the "Mext Header" field

in the IPvE packet
indicated a TCP header.

"Destination Port” field in the
TCP segment header. This field
HLEN Resenved \Th:fiiT?smerecawngpunnumben

Checks

Padding

/“1::5;3 of the Ethernet Il frame
/ MAC header + 40 bytes of IPvE ‘
header + 2 bytes into the TCP segment

header brings us to the
“Destination Port" field.

\

5: jeq 0x50, +0x16, +0xd

If the previously loaded value at line 4 matches 0x50, control jumps to line 28 (relative offset

0x16) else it jumps to line 19 (relative offset oxd). This instruction checks if the destination
port number is 80.

6: jeq Ox2c, +0x16, +0x0O

sy Ly Ve TEVG CICapoUanon (o0 ang o) RFC 237o0
0x2A 42 SDRP Source Demand Routing Protocol RFC 1940
0x28 43 IPvG-Route Routing Header for IPvG RFC 8200¢
0x2C 44 IPvE-Frag Fragment Header for IPv6 i RFC 820012

0x2D 45 IDRP |

r [

This instruction is executed if
it was determined in line 3
that the "Next Header” field
in the |IPv6 packet header did
not match TCP

el A ial=i¥la]

If the value matches "0x2c”, control
jumps to line 29 (relative offset "0x16")
else it jumps to line 7 (relative offset 0)

The value, "0x2¢" in the "Next Header”
field indicates IPv6-Frag, i.e., an IPvE
fragmentation header

7: jeq 0x84, +0x1, +0x0

9/18

UXGL

0x83

0x84
0x85

NwRA

13U =Fa =SECUTE FaCKel NI
131 PIPE Private IP Encapsulation within IP
132 SCTP Siream Control Transmission Protocol
133 FC

RSVP-E2E- If the va.lue matches 084",
134 control jumps to line 9

(relative offset "0x1°) else it
jumps to line & (relative offset Q)

The value, "0x84" in the "Next Header”
field indicates SCTP protocol

8: jeq 0x11, +0x0, +0x14

Expired I-D draft-petri-mobileip-
pipe-00.txt 2

RFC 43607

This instruction is executed if it was
determined that the "Next Header”
field in the IPvG packel header
did not match TCP or IPv6-Frag

If the value matches "0x11°
control jumps to line 9
(relative offset 0) else it
jumps to line 29 (relative
offset 0x14)

The value, "0x11" in the "Next Header"
field indicates UDP protocol

9: 1dh [0x38]

UxUr 15 ANE Lross Net Lebugger IEN 155

0x10 16 CHAOS Chaos

0x11 17 uppP User Datagram Protocol RFC 7681

ox12 18 MUX Multiplexing —_

%13 19 NCN-MEAS This instruction is executed if it was

determined that the "Next Header”
field in the |PvE packet header did
not match TCP, IPvG-Frag or SCTP

10/18

0 15 16 31

Source Port Destination Port '
8 Bytes
UDP Length UDP Checksum t
4 Data Z
|

0 1516 31

This instruction is executed if it
was determined that the "MNext
Header" field in the IPvE packet
header indicated UDP/SCTP

Source Port No. Destination Port No.

The offset "0x38" points to
Verification Tag the "Destination Port" field in

the UDP/SCTP header. This
field specifies the receiving
port number

Check Sum

14 bytes of the Ethernet Il frame MAC
header + 40 bytes of IPvG header + 2
bytes into the UDP/SCTP header brings
us 1o the "Deslination Port” field

10: jeq Ox1bb, +0x11, +0x10

If the previously loaded value at line 9 matches ox1bb, control jumps to line 28 (relative offset
0x11) else it jumps to line 27 (relative offset 0x10). This instruction checks if the destination
port number is 443

11: jeq 0x800, +0x0, +0x11

Ethernet Il |[edit]

Ethernet Il framing (also known as DIX Ethernet, named after DEC, Intel and Xerox, the major participants in its design333}, defines the two-octet
EtherType field in an Ethernet frame, preceded by destination and source MAC addresses, that identifies an upper layer protocol encapsulated by the,
frame data. Most notably, an EtherType value of 0x0800 indicates that the frame contains an IPv4 datagram, 0x0806 indicates an ARP datagram, and
0xB86DD indicates an IPv6 datagram. See EtherType § Values for mare,

If the value matches, then control
jumps to the instruction at line 12
(relative offset 0) else line 29
(relative offset Ox11)

If the previously loaded value, i.e., "EtherType" field value
in Ethernet |l frame header, at line 0 matches "0x800",
control jumps 1o the given relative offset

"0x800" value in the "EtherType"
field indicates IPvd packet

12: 1ldb [0x17]

11/18

Octet 4 7 4 6

// Loads one byte at offset "0x17"

which points to the "Protocol” field
12 in the |Pv4 header. This indicates
the protocol being used

0 Version IHL DSCP ECN Total Length
0 1516 18 19
4 Identification Flags Fragment Offset
7 15 16
8 Time to Live Protocol Header Checksum

9 bytes into the IPv4 header brings us to the

16 D(14 bytes of Ethernet Il frame MAC header +

|
20 : Options

[Image: IP Header]

13: jeq Ox6, +0x0, +0Ox6

If the previously loaded value at line 12
matches "0xB", control jumps to line 14
(relative offset 0) else line 20 (relative offsel 6)

The value "0x6" in the "Protocol” field in an
IPv4 header indicates TCP protocol

Hex e Keyword Protocol References/RFC
Number
0x00 0 HOPOPT IPvE Hop-by-Hop Option RFC 82002
0x01 1 ICMP Internet Control Message Protocol RFC 7922
0x02 2 IGMP Intemet Group Management Protocol RFC 11122
0x03 3 GGP Gateway-to-Gateway Protocol RFC 82312
0x04 4 IP-in-IP IP in IP (encapsulation) RFC 2003
0x05] 5T Internet Stream Protocol RFC 1190¢2, RFC 1819¢
0x06 6 TCP Transmission Control Protocol RFC 793¢
0x07 7 CBT EENEEE R RFC 21891

14: 1dh [0x14]

12/18

Octet 4 Z 1314 1516

0 Version IHL DSCP ECN Total Length
1516 18 19
4 Identification Flags Fragment Offset
78 15 16

12 ST e OB SS

16 @fiagment Offset field

14 bytes of Ethernet Il frame MAC header +
(6 bytes into the IPv4 header brings us to the

[Image: IP Header]

15: jset Ox1fff, +Oxd, +0x0

This instruction performs a bitwise AND operation between the previously loaded value at
line 14 and ox1fff. If the result is non-zero, control jumps to line 29 (relative offset oxd) else
line 16 (relative offset 0). This instruction basically looks at the value of the Fragment 0ffset

field. If it is non-zero, control jumps to line 29 else line 16.

16: ldxb 4*([14]&0xf)

[Image: IP Header)

—— e S S S S S W S S S e

Octet 4 7 13
0 Version IHL DSCP Total Length
0] g 19
4 @:;yle from offset 14. This is the Version:IHL FraBmEl"ll Offset
fields in the IPv4 header. The IHL field value is
extracted by performing a bitwise AND with "0xF"
8 Header Checksum
The IHL field value is multiplied by 4. This
12 is equal to the total size of the IPv4 header
16
I& ___ 31
I
20 : Options !
1

17: 1ldh [x+0x10]

13/18

bit @ i H 3

[H W 1 1 B W i W W 1 1 W M 3 B M W OB ¥ R OB N N

Source Port Destination Paort

S

Loads 2 bytes from the given offset: "x+0x10". Here,

"x" is equal to the total size of the IPv4 header that was
calculated in line 16.

HLEM

Resere

S0, the offset is 14 bytes of Ethernet Il frame MAC
header + IPv4 header + 2 bytes into the TCP segment

header. This brings us to the "Destination Port” field
in the TCP segment header.

Padding

Data

18: jeq 0x50, +0x9, +0x0

If the previously loaded value at line 17 matches 0x50, control jumps to line 28 (relative offset
0x9) else it jumps to line 19 (relative offset 0). This instruction checks if the destination port

number is 80.

19: jeq Ox1bb, +0x8, +0x7

If the previously loaded value at line 17 matches 0x1bb, control jumps to line 28 (relative
offset 0x8) else it jumps to line 27 (relative offset 0x7). This instruction checks if the
destination port number is 443.

20: jeq 0x84, +0x1, +0x0

Oxa82 130 3] Secure Facket Shield
Expired |-D draft-petri-mobileip-

0x83 131 PIPE Private IP Encapsulation within IP ' s P
pipe-00.txt

0x84 132 SCTP Stream Control Transmission Protocol RFC 4960

0x85 133 FC Fibre Channel

RSVP-E2
NvRE 134

If the previously loaded value al line 12
matches "0xB84", control jumps to line 22
(relative offset "0x1) else line 21 (relative offset 0)

The value "0x84" in the "Protocol” field in
an |IPvd header indicates SCTP protocol

21: jeq 0x11, +0x0, +0O0x7

14/18

OUx0F 15 XNET Cross Net Debugger IEN 128

0x10 16 CHAOS Chaos

0x11 17 upP User Datagram Protocol RFC 76812
0x12 18 MUX Multiplexing IEN 90
0x13 19 DCN-M

A arnee

If the previously loaded value at line 12
matches "0x117, conirol jumps to line 22
(relative offset 0) else line 29 (relative offset "0x7")

The value "0x11" in the "Protocol” field in
an IPv4 header indicates UDP protocol

22: 1ldh [0x14]

Octet 4 7 1314 1516 3
0 Version IHL DSCP ECN Total Length
1516 18 19 3
4 Identification Flags Fragment Offset
78 15 16 3
8 Time to Live /U/
Loads 2 bytes at offset "0x14" which points to the
\\ Flags:Fragment Offset fields in the IPv4 header 3
12 ST E OB S
14 bytes of Ethernet |l frame MAC header +
(6 bytes into the IPv4 header brings us to the
16 @fiagment Offset field

1
20 : Options

———— i ——————————— i ————— i ——————— ——— — - —————

[Image: IP Header]

23: jset Ox1fff, +0x5, +0x0

This instruction performs a bitwise AND operation between the previously loaded value at
line 14 and ox1fff. If the result is non-zero, control jumps to line 29 (relative offset 0x5) else

line 24 (relative offset 0). This instruction basically looks at the value of the Fragment 0ffset

field. If it is non-zero, control jumps to line 29 else line 24.

24: ldxb 4*([14]&0xf)

15/18

Qctet 4 7 3
0 Version IHL DSCP Total Length
0 19 3
4 @:;yle from offset 14. This is the Version:IHL Fragmenl Offs'et
fields in the IPv4 header. The IHL field value is
extracted by performing a bitwise AND with "0xF" 3
8 Header Checksum
The [HL field value is multiplied by 4. This 2
12 is equal to the total size of the IPv4 header
3
16
e =
20 : Options !
__ |
[Image: IP Header]
25: 1ldh [x+0x10]
0 15 16 31
Source Port Destination Port 4
8 Bytes
UDP Length UDP Checksum i

Z Data Z
|

0 1516 31

Loads 2 bytes from the given offset: "x+10". Here,
¥ is equal to the total size of the IPv4 header that
was calculated in line 24

Source Port No, Destination Port No.

Verification Tag

So, the offset is 14 bytes of Ethernet 1l frame MAC
header + IPv4 header + 2 bytes into the UDP/SCTP
segment header. This brings us to the "Destination

Port" field in the UDP/SCTP segment header.

Check Sum

SCTP Common Header Format

26: jeq Ox1bb, +0x1, +0x0

If the previously loaded value at line 25 matches 0x1bb, control jumps to line 28 (relative
offset 0x1) else it jumps to line 27 (relative offset 0). This instruction checks if the destination
port number is 443.

27: jeq 0x16, +0x0, +0O0x1

16/18

If the previously loaded value matches 0x16, control jumps to line 28 (relative offset 0) else it

jumps to line 29 (relative offset 0x1). This instruction checks if the destination port number is
22.

28: ret 0x40000

A non-zero return indicates a packet match.

29: ret 0Ox0

A zero return indicates a packet no-match.

Summary

BPFDoor’s cBPF bytecode filters according to the following rules:

e Match only on IPv4 or IPv6 packets.

e Match only on TCP traffic on ports 80, 443 and 22. In case of IPv4, don’t match on
fragmented packets. There is no TCP fragmentation over IPv6.

e Match only on UDP/SCTP traffic on ports 443 and 22. In both IPv4 and IPv6 don't
match on fragmented packets.

| think Deeplnstinct’s blog about BPFDoor missed to point out that UDP traffic on only ports
443 and 22 are captured and not port 80.

BPFdoor guides the kernel to set up its socket to only read UDP, TCP, and SCTP
traffic coming through ports 22 (ssh), 80 (http), and 443 (https).

The flowchart below shows the overall control flow of the BPF program:

17/18

https://www.deepinstinct.com/blog/bpfdoor-malware-evolves-stealthy-sniffing-backdoor-ups-its-game

References

18/18

