
1/11

May 14, 2023

Fun with the new bpfdoor (2023)
unfinished.bike/fun-with-the-new-bpfdoor-2023

unfinished.bike

May 14, 2023
I was recently provided a sample of the recently announced stealthier variant of bpfdoor,
malware targeting Linux that is almost certainly a state-funded Chinese threat actor (Red
Menshen). The sample analyzed was
a8a32ec29a31f152ba20a30eb483520fe50f2dce6c9aa9135d88f7c9c511d7, detectable by 11
of 62 detectors on VirusTotal.

I was particularly curious what the bpfdoor surface area looked like, and if it was easy it was
to detect using existing open-source tools and common Linux command-line utilities.

To experiment, I used my favorite VM manager on macOS or Linux for this analysis: Lima,
with the default Ubuntu 22.10 image.

Running bpfdoor as a regular user

I first ran bpfdoor as an unprivileged user to see what system calls would be executed:

strace -o /tmp/st.user -f ./x.bin

https://unfinished.bike/fun-with-the-new-bpfdoor-2023
https://unfinished.bike/
https://www.deepinstinct.com/blog/bpfdoor-malware-evolves-stealthy-sniffing-backdoor-ups-its-game
https://malpedia.caad.fkie.fraunhofer.de/actor/red_menshen
https://www.virustotal.com/gui/file/afa8a32ec29a31f152ba20a30eb483520fe50f2dce6c9aa9135d88f7c9c511d7
https://github.com/lima-vm/lima

2/11

I've removed the less interesting lines of output, but the program does astonishingly little:

2655 execve("./x.bin", ["./x.bin"], 0x7fff9dad6ff8 /* 23 vars */) = 0

2655 openat(AT_FDCWD, "/lib/x86_64-linux-gnu/libc.so.6", O_RDONLY|O_CLOEXEC) = 3

2655 openat(AT_FDCWD, "/var/run/initd.lock", O_RDWR|O_CREAT, 0666) = -1 EACCES
(Permission denied)

2655 flock(-1, LOCK_EX|LOCK_NB) = -1 EBADF (Bad file descriptor)

2655 clone(child_stack=NULL, flags=CLONE_CHILD_CLEARTID|CLONE_CHILD_SETTID|SIGCHLD,
child_tidptr=0x7ff8d1b39a10) = 2656

2655 +++ exited with 0 +++

2656 close(0) = 0

2656 close(1) = 0

2656 close(2) = 0

2656 setsid() = 2656

2656 getrandom("\xa4\xd5\x9d\x71\xb3\xe0\x98\xe1", 8, GRND_NONBLOCK) = 8

2656 socket(AF_PACKET, SOCK_RAW, htons(ETH_P_ALL)) = -1 EPERM (Operation not
permitted)

2656 exit_group(0) = ?

2656 +++ exited with 0 +++

The only noteworthy things here are:

It tries to create /var/run/initd.lock but fails because it requires root
It tries to set up a raw socket to listen to all protocols but fails because it requires root.
It forks into the background via clone() and setsid().

It's not unusual to see a bug with the flock() call to fd=-1 because openat() returned an error
rather than a file handle.

Running as root

3/11

2669 openat(AT_FDCWD, "/var/run/initd.lock", O_RDWR|O_CREAT, 0666) = 3

2669 flock(3, LOCK_EX|LOCK_NB) = 0

2669 clone(child_stack=NULL, flags=CLONE_CHILD_CLEARTID|CLONE_CHILD_SETTID|SIGCHLD,
child_tidptr=0x7fb6d948ba10) = 3319

2669 exit_group(0 <unfinished ...>

3319 close(0 <unfinished ...>

2669 +++ exited with 0 +++

3319 close(1) = 0

3319 close(2) = 0

3319 setsid() = 3319

3319 getrandom("\x6c\x07\x1c\x75\x6b\xae\xfe\xdf", 8, GRND_NONBLOCK) = 8

3319 socket(AF_PACKET, SOCK_RAW, htons(ETH_P_ALL)) = 0

3319 setsockopt(0, SOL_SOCKET, SO_ATTACH_FILTER, {len=30, filter=0x7ffd2270fa90},
16) = 0

3319 recvfrom(0,
"RUU\341\314\22RU\300\250\5\2\10\0E\0\0Lp\220\0\0@\6~\272\300\250\5\2\300\250"...,
65536, 0, NULL, NULL) = 90

3319 recvfrom(0,
"RUU\341\314\22RU\300\250\5\2\10\0E\0\0(p\221\0\0@\6~\335\300\250\5\2\300\250"...,
65536, 0, NULL, NULL) = 54

3319 recvfrom(0,
"RUU\341\314\22RU\300\250\5\2\10\0E\0\0Lp\222\0\0@\6~\270\300\250\5\2\300\250"...,
65536, 0, NULL, NULL) = 90

3319 recvfrom(0,
"RUU\341\314\22RU\300\250\5\2\10\0E\0\0(p\223\0\0@\6~\333\300\250\5\2\300\250"...,
65536, 0, NULL, NULL) = 54

First, it opens a lock, which works this time:

-rw-r--r-- 1 root root 0 May 13 12:45 /run/initd.lock

As mentioned in the bpfdoor analysis by deep instinct, we can see that it sets a BPF filter via
setsockopt(), and loops waiting for the magic byte sequence:
\x44\x30\xCD\x9F\x5E\x14\x27\x66.

One thing I find fascinating is how simple the initialization is: the previous iteration of bpfdoor
did so much more in the name of “stealth”:

copies itself to /dev/shm
renaming itself in the process table via prctl
deletes itself from disk
timestomping

Red Menshen must have noticed that every method for achieving stealth is also a reliable
detection method. So, the new bpfdoor keeps it simple by not trying to be stealthy. In fact,
this binary does so little that it's suspicious. In 2023, most advanced evasion methods are
not worth it on Linux: it is good enough to hide in plain sight.

Detection

https://www.deepinstinct.com/blog/bpfdoor-malware-evolves-stealthy-sniffing-backdoor-ups-its-game
https://www.elastic.co/security-labs/a-peek-behind-the-bpfdoor

4/11

Using the make detect rule from
osquery-detection-kit, I examined which existing rules
would alert on the presence of the latest bpfdoor. 3 of them did:

unexpected raw socket: unexpected packet sniffers, just like this one! Near-zero false-
positive rate.

recently created executables: programs executed within 45 seconds of when it likely
landed on disk, based on ctime and btime. This catch-all has found every malware it's
encountered, but it requires a comprehensive exception list.

unexpected /var/run file: Inspired by reading the bpfdoor technical analysis, it's good to
see this fired when faced with the real thing.

That said, I think we can do better. Let's see what the malware looks like from /proc.

Exploring bpfdoor using /proc

To get an idea of what I can use for further detecting bpfdoor, I wanted to see how it was
seen via /proc. First, what libraries does it link against? Based on the report, I'm not
expecting anything other than libc:

https://github.com/chainguard/osquery-detection-kit
https://github.com/chainguard-dev/osquery-defense-kit/blob/main/detection/execution/unexpected-raw-socket.sql
https://github.com/chainguard-dev/osquery-defense-kit/blob/main/detection/execution/recently-created-executables-linux.sql
https://github.com/chainguard-dev/osquery-defense-kit/blob/main/detection/evasion/unexpected-var-run-linux.sql

5/11

% sudo cat /proc/3319/maps

00400000-00448000 r-xp 00000000 fc:01 3210 /tmp/x.bin

00648000-00649000 r--p 00048000 fc:01 3210 /tmp/x.bin

00649000-0064a000 rw-p 00049000 fc:01 3210 /tmp/x.bin

0064a000-0066a000 rw-p 00000000 00:00 0

00c36000-00c57000 rw-p 00000000 00:00 0 [heap]

7fb6d9200000-7fb6d9222000 r--p 00000000 fc:01 3648
/usr/lib/x86_64-linux-gnu/libc.so.6

7fb6d9222000-7fb6d939b000 r-xp 00022000 fc:01 3648
/usr/lib/x86_64-linux-gnu/libc.so.6

7fb6d939b000-7fb6d93f2000 r--p 0019b000 fc:01 3648
/usr/lib/x86_64-linux-gnu/libc.so.6

7fb6d93f2000-7fb6d93f6000 r--p 001f1000 fc:01 3648
/usr/lib/x86_64-linux-gnu/libc.so.6

7fb6d93f6000-7fb6d93f8000 rw-p 001f5000 fc:01 3648
/usr/lib/x86_64-linux-gnu/libc.so.6

7fb6d93f8000-7fb6d9405000 rw-p 00000000 00:00 0

7fb6d948b000-7fb6d948e000 rw-p 00000000 00:00 0

7fb6d9495000-7fb6d9497000 rw-p 00000000 00:00 0

7fb6d9497000-7fb6d9498000 r--p 00000000 fc:01 3645
/usr/lib/x86_64-linux-gnu/ld-linux-x86-64.so.2

7fb6d9498000-7fb6d94c1000 r-xp 00001000 fc:01 3645
/usr/lib/x86_64-linux-gnu/ld-linux-x86-64.so.2

7fb6d94c1000-7fb6d94cb000 r--p 0002a000 fc:01 3645
/usr/lib/x86_64-linux-gnu/ld-linux-x86-64.so.2

7fb6d94cb000-7fb6d94cd000 r--p 00034000 fc:01 3645
/usr/lib/x86_64-linux-gnu/ld-linux-x86-64.so.2

7fb6d94cd000-7fb6d94cf000 rw-p 00036000 fc:01 3645
/usr/lib/x86_64-linux-gnu/ld-linux-x86-64.so.2

7ffd226f0000-7ffd22711000 rw-p 00000000 00:00 0 [stack]
7ffd22720000-7ffd22724000 r--p 00000000 00:00 0 [vvar]

7ffd22724000-7ffd22726000 r-xp 00000000 00:00 0 [vdso]

ffffffffff600000-ffffffffff601000 --xp 00000000 00:00 0 [vsyscall]

What about open file handles?

% sudo lsof -p 3319

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME

x.bin 3319 root cwd DIR 0,52 200 9 /tmp/lima/osquery-defense-kit/out

x.bin 3319 root rtd DIR 252,1 4096 2 /

x.bin 3319 root txt REG 252,1 302576 3210 /tmp/x.bin

x.bin 3319 root mem REG 252,1 2072888 3648 /usr/lib/x86_64-linux-
gnu/libc.so.6

x.bin 3319 root mem REG 252,1 228720 3645 /usr/lib/x86_64-linux-gnu/ld-
linux-x86-64.so.2

x.bin 3319 root 0u pack 33049 0t0 ALL type=SOCK_RAW

x.bin 3319 root 3u REG 0,25 0 1322 /run/initd.lock

lsof is handy, but to see the raw socket from /proc, we need to do a little bit more digging:

6/11

cat /proc/net/packet

sk RefCnt Type Proto Iface R Rmem User Inode

ffff92d346ba6800 3 3 88cc 2 1 0 100 19458

ffff92d34631d800 3 3 0003 0 1 241920 0 33089

The Inode field is misleading, but you can use it to find the associated process ID via:

$ sudo find /proc -type l -lname "socket:\[33089\]" 2>/dev/null

/proc/3319/task/3319/fd/0

/proc/3319/fd/0

Alternatively, you can use this to see all filehandles for the process ID:

$ ls -la /proc/3319/fd

total 0

dr-x------ 2 root root 0 May 13 13:03 .

dr-xr-xr-x 9 root root 0 May 13 13:03 ..

lrwx------ 1 root root 64 May 13 13:03 0 -> 'socket:[33089]'

lrwx------ 1 root root 64 May 13 13:03 3 -> /run/initd.lock

Once you have a process ID, you can resolve the path to the program:

sudo ls -lad /proc/3319/exe

lrwxrwxrwx 1 root root 0 May 14 00:48 /proc/3319/exe -> /tmp/x.bin

Exploring bpfdoor using strings

Running strings <path> reveals some interesting messages:

[-] Execute command failed

/var/run/initd.lock

libtom/libtomcrypt has been bundled in, so we see lines such as:

LTC_ARGCHK '%s' failure on line %d of file %s

X.509v%i certificate

 Issued by: [%s]%s (%s)

 Issued to: [%s]%s (%s, %s)

 Subject: %s

 Validity: %s - %s

 OCSP: %s

 Serial number:

...

LibTomCrypt 1.17 (Tom St Denis, tomstdenis@gmail.com)

LibTomCrypt is public domain software.

Built on Oct 4 2022 at 16:09:32

7/11

That last string is important: this iteration of bpfdoor could have been wandering around
Cyberspace since October 2022 (7 months ago) without detection. It also appears that the
bad guys used Red Hat Enterprise Linux 7.0 (nearly 10 years old!) to build the binary:

GCC: (GNU) 4.8.5 20150623 (Red Hat 4.8.5-44)

New detection possibilities

After looking at /proc, a couple of new detection ideas came up:

Programs with /var/run lock files open
Root processes with a socket and no shared libraries
World-readable lock files in /var/run
Minimalist socket users with few open files
Processes where fd 0 is a non-UNIX socket

There are certainly more possibilities depending on how this backdoor is launched: for
example, based on cwd or cgroup. I have not yet seen information published on how this
backdoor is actually executed.

I implemented each of these detection ideas: once for osquery to use in production, and
once in shell just for fun. The osquery queries have been tested across Ubuntu, Fedora,
Arch Linux, and NixOS, and the shell scripts have only been tested on Ubuntu.

Programs with /run lock files left open

It's unusual for a program to have an open file in /var/run, but I suspect this may eventually
find a false positive. Here's an osquery and a shell script to find these:

SELECT p.* FROM processes p JOIN process_open_files pof ON p.pid = pof.pid AND
pof.path LIKE "/run/%.lock";

sudo find /proc -lname "/run/*.lock" 2>/dev/null

Root processes with a socket and no shared libraries

Most programs that use a socket are either fully static, or import a library like OpenSSL.
bpfdoor isn't either. Here is another osquery and shell pair:

8/11

SELECT p.*,

 COUNT(DISTINCT pmm.path) AS pmm_count

FROM processes p

 JOIN process_open_sockets pos ON p.pid = pos.pid

 LEFT JOIN process_memory_map pmm ON p.pid = pmm.pid

 AND pmm.path LIKE "%.so.%"

 -- Yes, this is a weird performance optimization

WHERE p.pid IN (

 SELECT pid

 FROM processes

 WHERE p.euid = 0

 AND p.path NOT IN (

 '/usr/bin/containerd',

 '/usr/bin/fusermount3',

 '/usr/sbin/acpid',

 '/usr/sbin/mcelog',

 '/usr/bin/docker-proxy'

)

)

GROUP BY pos.pid -- libc.so, ld-linux

HAVING pmm_count = 2;

cd /proc || exit

for pid in *; do

 [[! -f ${pid}/exe || ${pid} =~ "self"]] && continue

 euid=$(grep Uid /proc/${pid}/status | awk '{ print $2 }')

 [["${euid}" != 0]] && continue

 sockets=$(sudo find /proc/${pid}/fd -lname "socket:*" | wc -l)

 [["${sockets}" == 0]] && continue

 libs=$(sudo find /proc/${pid}/map_files/ -type l -lname "*.so.*" -exec readlink
{} \; | sort -u | wc -l)

 [["${libs}" != 2]] && continue

 path=$(readlink /proc/$pid/exe)

 name=$(cat /proc/$pid/comm)

 echo "euid=0 process with sockets and no libs: ${name} [${pid}] at ${path}"

done

World readable lock files in /var/run

Typically lock files are readable only by the root user. Malware often uses very relaxed file
permissions.

SELECT * FROM file WHERE path LIKE "/tmp/%.lock" AND mode = "0644";

find /run/*.lock -perm 644

Minimalist socket users with few open files

9/11

This creative query reveals minimalist programs that behave like a backdoor might:

have 0-1 open files
have 1-2 sockets open

It's an uncommon situation, but it is bound to have false positives in software that is designed
in a way that each process has a specific role:

SELECT p.pid,

 p.path,

 p.name,

 p.start_time,

 GROUP_CONCAT(DISTINCT pos.protocol) AS protocols,

 pof.path AS pof_path,

 COUNT(DISTINCT pos.fd) AS scount,

 COUNT(DISTINCT pof.path) AS fcount,

 GROUP_CONCAT(DISTINCT pof.path) AS open_files,

 p.cgroup_path

FROM processes p

 JOIN process_open_sockets pos ON p.pid = pos.pid

 AND pos.protocol > 0

 LEFT JOIN process_open_files pof ON p.pid = pof.pid

WHERE p.start_time < (strftime('%s', 'now') -60)

AND p.path NOT IN (

 '/bin/registry',

 '/usr/bin/docker-proxy',

 '/usr/sbin/chronyd',

 '/usr/sbin/cups-browsed',

 '/usr/sbin/cupsd',

 '/usr/sbin/sshd'

)

AND p.path NOT LIKE '/nix/store/%-openssh-%/bin/sshd'

GROUP BY p.pid

HAVING scount <= 2

 AND fcount <= 1;

10/11

cd /proc || exit

for pid in *; do

 [[! -f ${pid}/exe || ${pid} =~ "self"]] && continue

 fds=$(find /proc/${pid}/fd -lname "/*" | wc -l)

 [["${fds}" == 0]] && continue

 [["${fds}" -gt 1]] && continue

 # WARNING: ss -xp will print two fds on the same line if connected. Use grep -o
instead of -c

 #ss -xp | grep -v "^u_" | grep -o pid=${pid},"

 all_sockets=$(find /proc/${pid}/fd -lname "socket:*" | wc -l)

 [["${all_sockets}" -gt 2]] && continue

 # this isn't exactly what we want - ss doesn't show TYPE=sock of protocol=UNIX :(

 unix_sockets=$(ss -ap | grep "^u_" | grep -o "pid=${pid}," | wc -l)

 sockets=$(($all_sockets - $unix_sockets))

 [["${sockets}" == 0]] && continue

 [["${sockets}" -gt 2]] && continue

 path=$(readlink /proc/$pid/exe)

 [["${path}" == "/usr/sbin/sshd"]] && continue

 name=$(cat /proc/$pid/comm)

 echo "minimalist socket user (${sockets} sockets and ${fds} files): ${name}
[${pid}] at ${path}"

done

fd0 is a socket

I've saved my favorite for last. File descriptor 0 is usually stdin, but in bpfdoors case, it is
actually the socket it uses to listen to traffic on. I've never seen this behavior before outside
of bpfdoor:

SELECT * FROM process_open_sockets WHERE fd=0 AND family != 1;

11/11

cd /proc || exit

for pid in *; do

 [[! -f ${pid}/exe || ${pid} =~ "self"]] && continue

 ino=$(readlink /proc/$pid/fd/0 | grep -o 'socket:.*' | cut -d"[" -f2 | cut -d"]"
-f1)

 grep -q " ${ino}" /proc/$pid/net/unix && continue

 path=$(readlink /proc/$pid/exe)

 name=$(cat /proc/$pid/comm)

 echo "fd0 is a socket: ${name} [${pid}] at ${path}"

done

Final Thoughts

Ultimately, I was happy to see that this variant was detectable using osquery-defense-kit,
and even happier that I could add additional rules to find future similar malware. Two
philosophical viewpoints are critical to success in detection:

Knowing what is considered normal in your environment
Evasion is a means of detection

If you are interested in open-source queries that can find bpfdoor and other unusual
programs, check out:

https://github.com/chainguard-dev/osquery-defense-kit/
https://github.com/tstromberg/sunlight

Thanks to Kevin Beaumont for providing the bpfdoor sample for analysis.

https://github.com/chainguard-dev/osquery-defense-kit/
https://github.com/tstromberg/sunlight
https://cyberplace.social/@GossiTheDog

