
1/12

May 10, 2023

BPFDoor Malware Evolves – Stealthy Sniffing Backdoor
Ups Its Game

deepinstinct.com/blog/bpfdoor-malware-evolves-stealthy-sniffing-backdoor-ups-its-game

Deep Instinct Included in the 2022 Gartner® Magic Quadrant™ for
Endpoint Protection Platforms (EPP)

Learn more

What is BPFdoor?

BPFdoor is a Linux-specific, low-profile, passive backdoor intended to maintain a persistent,
long-term foothold in already-breached networks and environments and functions primarily to
ensure an attacker can re-enter an infected system over an extended period of time, post-
compromise.

The malware gets its name from its usage of a Berkley Packet Filter – a fairly unique way of
receiving its instructions and evading detection, which bypasses firewall restrictions on
incoming traffic.

The malware is associated with a Chinese threat actor, Red Menshen (AKA Red Dev 18),
which has been observed targeting telecommunications providers across the Middle East
and Asia, as well as entities in the government, education, and logistics sectors since 2021.

When it was first discovered, approximately one year ago, BPFdoor was noted for its
effective and elegant design and its high emphasis on stealth – an essential element in
maintaining undetected long-term persistence.

Recently, Deep Instinct’s threat lab observed and analyzed a previously undocumented and
fully undetected new variant of BPFdoor.

New, Stealthier Variant

Several key differences that make this new variant even stealthier compared to the previous
version include the following:

  “New stealthy” 2023 variant
“Old” 2022

variant

Encryption Static library encryption RC4
Encryption

https://www.deepinstinct.com/blog/bpfdoor-malware-evolves-stealthy-sniffing-backdoor-ups-its-game
https://www.deepinstinct.com/blog/who-is-the-only-new-vendor-in-the-2022-gartner-magic-quadrant-for-endpoint-protection-platforms
https://en.wikipedia.org/wiki/Berkeley_Packet_Filter


2/12

  “New stealthy” 2023 variant
“Old” 2022

variant

Communication Reverse-Shell Bind shell and
iptables

Commands No hardcoded commands – all commands are sent
through the reverse-shell

Hardcoded
commands

Filenames Not hardcoded Hardcoded

One of the most significant differences compared to the previous variant lies in the removal
of many of its hardcoded indicators, making the newer version more difficult to detect. Since
first seen on VirusTotal in February 2023, the new variant remained undetected and is still
undetected as of this writing.

BPFdoor Technical Analysis

When executed, the BPFdoor sample will attempt to create and get a lock on a runtime file at
“/var/run/initd.lock” and will exit if it fails using that file as a makeshift mutex.

Figure 1 - BPFdoor "mutex" check

If successful, BPFdoor will fork itself and continue to run as a child process and in this
context will close its stdin, stdout, and stderr streams, and set itself to ignore the following
operating system signals:

Signal
Number

Signal
Name Signal Description



3/12

Signal
Number

Signal
Name Signal Description

1 SIGHUP SIGHUP ("signal hang-up") is a signal sent to a process when its
controlling terminal session is closed.

2 SIGINT SIGINT (“signal interrupt”) is a signal sent when a user interrupts
a program (Ctrl + C)

3 SIGQUIT SIGQUIT is a signal sent to terminate a process.

13 SIGPIPE SIGPIPE is a signal sent when a pipe breaks.

17 SIGCHLD SIGCHLD is a signal sent when a child process exits.

21 SIGTTIN SIGTTIN is a signal sent to a process attempting to read from the
same terminal session and is blocked.

23 SIGTTOU SIGTTOU is a signal sent to a process attempting to write to the
same terminal session and is blocked.

Ignoring these signals hardens BPFdoor against tampering with its processes.

Having set up the above, BPFdoor then allocates a memory buffer and creates a socket as
follows:

Figure 2 - Socket arguments
 Figure 3 - Socket creation

It will proceed to specify the following socket options using setsockopt:



4/12

Figure 4 - Setsockopt options


Figure 5 - Call to setsockopt
And will read from it in a loop (further described below) using recvfrom:

Figure 6 - Recvfrom arguments
 Figure 7 - Recvfrom call

An interesting point in the above-described flow is that the “addr” parameter is zeroed out in
the call to recvfrom; it should point to a specific address from which to read data. The socket
is not connected and no bind or listen calls have been made. So, what exactly is going on
here?

Interpreting the exact arguments that are used to create the socket reveals that the call is
structured as follows:

Figure 8 -

Socket call
This creates the socket as a special packet sniffing socket which is able to read every packet
that is sent to the machine from the ethernet layer and above without being bound to any
specific protocol.

BPFdoor employs this type of packet sniffing socket to read data with recvfrom, even without
an “addr” parameter, by using the loop below to search for a specific “magic” byte sequence:



5/12

Figure 9 - Looped search for "magic" byte sequence (highlighted)
“Magic” byte sequence: \x44\x30\xCD\x9F\x5E\x14\x27\x66

Once found, the loop will break and BPFdoor will continue to Its next phase of operation.

But, that creates quite a lot of traffic that BPFdoor will need to go through.

Let’s examine the usage of setsockopt a bit further. When parsing its arguments, we arrive at
the following code:

Figure 10 - Setsockopt attaches BPF
This is where BPFdoor gets its name from. The above code that attaches a Berkley Packet
Filter to the socket; this is the very same mechanism that underpins infosec staples such as
libpcap and allows BPFdoor to filter out “uninteresting” types of data coming through its
socket.

A Berkley Packet Filter can be defined as in the example below, which allows TCP over IPv4:

https://en.wikipedia.org/wiki/Berkeley_Packet_Filter


6/12

Figure 11 - BPF

example
By setting the socket option SO_ATTACH_FILTER and pointing filter to the following
sock_filter_code:



7/12

Figure 12 - BPF sock_filter_code
BPFdoor guides the kernel to set up its socket to only read UDP, TCP, and SCTP traffic
coming through ports 22 (ssh), 80 (http), and 443 (https).

Because of its positioning at such a low level, BPFdoor does not abide by any firewall rules,
and can bypass any firewall restrictions on incoming traffic and listen for packets that
otherwise wouldn't have surfaced to the machine's user mode.

When BPFdoor finds a packet containing its “magic” bytes in the filtered traffic it will treat it
as a message from its operator and will parse out two fields and will again fork itself.



8/12

The parent process will continue and monitor the filtered traffic coming through the socket
while the child will treat the previously parsed fields as a Command & Control IP-Port
combination and will attempt to contact it.

Figure 13 -

Connect to Command & Control
An interesting point to note, this variant of BPFdoor contains a pre-compiled version of
libtomcrypt, an open-source encryption library, as can be seen in the sample’s contained
strings, which also offer a few additional insights:

Figure 14 -

Contained strings
We can see that the library was compiled at the beginning of October 2022 using GCC on a
system running Red Hat Linux. This may suggest that this variant has been operational
significantly earlier than its first appearance on VirusTotal.

By compiling our own version of the library in similar fashion and using bindiff to compare
against BPFdoor we can see its statically linked exports:

https://github.com/libtom/libtomcrypt


9/12

Figure 15 -

Libtomcrypt bindiff snippet
Having made the comparison, we determined that BPFdoor is using libtomcrypt functionality
to set up a secure and encrypted “reverse-shell” session with its Command & Control. This
replaced its previous mechanism.

After this session is established, BPFdoor will begin a loop that can be described by the
following:



10/12



11/12

Conclusion

BPFdoor retains its reputation as an extremely stealthy and difficult-to-detect malware with
this latest iteration.

Regardless of whether one considers the encryption library compilation time (October 2022)
or its initial submission to VirusTotal (February 2023) as indicative of when this sample was
first put into use, it is truly amazing how long it has remained fully undetected.

Figure 16 & 17 - 0 VirusTotal detections, 7 different scans.
IOCs



12/12

afa8a32ec29a31f152ba20a30eb483520fe50f2dce6c9aa9135d88f7c9c511d7 – BPFDoor
ELF SHA256


/var/run/initd.lock – BPFDoor "mutex”

MITRE ATT&CK:

Tactic Technique Description Observable

Command
and Control


Defense
Evasion


Persistence

T1205 - Traffic
Signaling

Attacker employs “magic” values
to trigger response.

“Magic” byte
sequence

Command
and Control


Defense
Evasion


Persistence

T1205.002 - Traffic
Signaling: Socket

Filters

Attacker attaches filter to a
network socket.

Usage of
Berkley Packet

Filter

Command
and Control

T1573 - Encrypted
Channel

Attacker employs encrypted
Command & Control

communication.

Usage of
libtomcrypt

Execution T1106 – Native API Attacker calls upon native OS
APIs in order to execute

behaviors.

Usage of
popen

Earlier variant analysis:

https://www.elastic.co/security-labs/a-peek-behind-the-bpfdoor

Deep Instinct takes a prevention-first approach to stopping ransomware and other malware
using the world’s first and only purpose-built, deep learning cybersecurity framework. We
prevent ransomware, zero-day threats, and previously unknown malware in <20
milliseconds, 750x faster than the fastest ransomware can encrypt. Deep Instinct has >99%
zero-day accuracy and promises a <0.1% false positive rate. The Deep Instinct Prevention
Platform is an essential addition to every security stack – providing complete, multi-layered
protection against threats across hybrid environments.

Back To Blog

https://www.elastic.co/security-labs/a-peek-behind-the-bpfdoor
https://www.deepinstinct.com/blog

