
1/4

Jason Reaves May 9, 2023

MetaStealer: String Decryption and DGA overview
medium.com/walmartglobaltech/metastealer-string-decryption-and-dga-overview-5f38f76830cd

--

By: Jonathan McCay, Joshua Platt and Jason Reaves

Unit42[1] recently tweeted about a campaign starting with a malicious email link that
downloads a OneNote file used to drop and execute MetaStealer. While investigating the
MetaStealer sample[2], we noticed it attempts to connect to multiple domains that seemed to
be randomly named. After landing on the C2 routine, instead of decrypting a static list of
servers, the sample used a domain generation algorithm[3], (DGA) to derive the list.
Predominantly used as a fall back mechanism, a domain from the DGA can be registered to
communicate when the primary C2s are not available. The use of a DGA as a primary
method of contacting the threat actor’s infrastructure is interesting.

Sample:

String Decryption:

On top of the MetaStealer binary being highly obfuscated, the author inserted garbage code
while also encoding the important onboard strings. The encoding used has been previously
mentioned by NCC[4], but a lack of listing of the decoded strings in existing research was
noticed. The strings are organized as DWORD values and pushed onto the stack along with
the XOR key:

The PXOR instruction allows for using 64 bit(MMX) or 128 bit(XMM) length operands. In this
case, you can see that most of the DWORD values are the same. This is because the
encoded strings are NULL padded to make the length fit. Ultimately, in the screen above, the
data is just XOR encoded:

>>> a = struct.pack('<IIII', 0x7D414F85, 0x677C8C64, 0x0AB4023C0, 0x0FF480D71)>>> b =
struct.pack('<IIII', 0x73837AB, 0x677C8C64, 0x0AB4023C0, 0x0FF480D71)>>> a =
bytearray(a)>>> b = bytearray(b)>>> for i in range(len(a)):... a[i] ^= b[i]...>>>
abytearray(b'.xyz\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00')

https://medium.com/walmartglobaltech/metastealer-string-decryption-and-dga-overview-5f38f76830cd

2/4

Attempting to decode all or the majority of the strings in an automatic manner would require
finding the relevant blocks of code. After some investigation, it seems longer strings use the
VPXOR instruction, which can leverage 128 bit(XMM) or 256 bit(YMM) length operands.

A quick and dirty way to decode strings is to find all the PXOR and VPXOR instructions and
then walk backwards to find all the DWORD stack loads to get most of the strings decoded.

rule_source = '''

rule meta_s

{

 meta:

 author = "sysopfb"

 strings:

 $snippet1 = {66 0? ef}

 $snippet2 = {c5 ?? ef}

 condition:

 ($snippet1 or $snippet2)

}

'''

def yara_scan(raw_data, rule_name):

 addresses = {}

 yara_rules = yara.compile(source=rule_source)

 matches = yara_rules.match(data=raw_data)

 for match in matches:

 if match.rule == 'meta_s':

 for item in match.strings:

 if item.identifier == rule_name:

 addresses[item.identifier] = item.instances

 return addresses

data = open(sys.argv[1], 'rb').read()

ret = []

out = None

length_off = Falsesnippet = yara_scan(data, '$snippet1')prev_offset = 0for val in
snippet['$snippet1']: offset = val.offset test = data[prev_offset:offset] vals =
re.findall(b'''\xc7\x85..\xff\xff....''',test) if vals != []: if len(vals) > 8:
temp = vals[-8:] else: temp = vals try: xdata = temp[0][-4:] xdata += temp[1]
[-4:] xdata += temp[2][-4:] xdata += temp[3][-4:] xkey = temp[4][-4:] xkey +=
temp[5][-4:] xkey += temp[6][-4:] xkey += temp[7][-4:] xdata = bytearray(xdata)
xkey = bytearray(xkey) for i in range(len(xdata)): xdata[i] ^= xkey[i]
print(b''.join(xdata.split(b'\x00'))) except: pass prev_offset = offset

Then repeating a similar approach for PVXOR but accounting for larger assortment of
strings, as previously mentioned this will only get a majority of the strings decoded but it is
enough to determine that this stealer has much functionality including references to starting
socks, backconnect, punching holes in the firewall and detonating shellcode:

3/4

Decrypted Strings:

syschromefirefoxedgenotepadippasswordcmdinputFG StartedshellcodemodeResult:
bc_addrportsocks started:1775uuid/api/client/newffoxdir=in
version.xyzokos_cryptencrypted_keyRtlGetVersionWindows 10Windows VistaWindows
7Windows 8Windows
8.1Proactionstatuspasswdloader_idfilesdurscriptFALSEtypetask_result/tasks/collectROOTn
Typecmd.exemicrosoft\\windows/c "echo start "" "Failed to create task
definitionaction=allow program="(\\d{1,3})\\.(\\d{1,3})\\Default\\Login
Data\\Default\\Web Data

A more exhaustive method for harvesting stack loaded and then decoded strings would be
using a CPU emulator similar to how we showed against BazaLoader[5] previously.

Domain Generation Algorithm:

Additional domains the sample attempts to communicate with that appeared to be DGA.

IDA: Pushing seed, (0x1234) before calling DGA

IDA: DGA Routine

Converted to Python:

Now that the host names have been generated, the url can be built using the tld and uri from
the decrypted strings. An attempt to connect to each host will be made until a response is
received. At the time of writing this, only one of the derived hostnames,
(wgcuwcgociewewoo.xyz) would resolve. The ip it resolves to, (pictured below) also contains
another hostname that used to be active, (mmswgeewswyyywqk.xyz). Both of these domains
are in the list derived by the DGA when using the seed value 0x1234. Going back further we
can find additional seed values being used at different time periods; 0xabc8, 0x9b2f, 0x7b2f,
0xc17a, 0x2f73 and 0x4b9a.

When KELA[6] first observed the threat actor “_META_” offering a new stealer, it was
marketed as having the same functionality and panel as RedLine[7] Stealer. After seeing
references to backconnect, socks, and loader id’s in the decrypted strings, we can see that
the improvements made to this tool now offer more than just credential theft.

IOCs

Endpoint:

powershell -inputformat none -outputformat none –NonInteractive -Command Add-
MpPreference -ExclusionExtension "exe"AppData\Local\Microsoft\Windows\hyper-
v.exehyper-v.ver

Network:

4/4

mmswgeewswyyywqk.xyz
wgcuwcgociewewoo.xyz

yiogqkksoyysqiky.xyz

ikuasuggwiewymsi.xyz

uosqysascuwmqgyk.xyz

uiouaqcqqcgueweg.xyz

uawqgawkguwiqeyk.xyz

kaewquswkswcmsim.xyz

aaycciywcgaqwkky.xyz

mkgcsmogqewauaiw.xyz

185.172.129.192

185.203.116.71

167.88.12.112

[a-z]{16}.xyz:1775/api/client/new[a-z]{16}.xyz:1775/api/client/verify[a-z]
{16}.xyz:1775/api/client_hello[a-z]{16}.xyz:1775/tasks/get_worker[a-z]
{16}.xyz:1775/tasks/collect[a-z]{16}.xyz:1775/avast_update

Full DGA dump for every currently known seed can be found at:
https://github.com/sysopfb/open_mal_analysis_notes/tree/master/metastealer_dga

References

1: https://twitter.com/Unit42_Intel/status/1646940355936256000

2:
https://www.virustotal.com/gui/file/6cf8bfba1b221effcb1eccec0c91fb0906d0b8996932167f65
4680cb3ac53aac

3: https://en.wikipedia.org/wiki/Domain_generation_algorithm

4: https://research.nccgroup.com/2022/05/20/metastealer-filling-the-racoon-void/

5: https://medium.com/walmartglobaltech/decrypting-bazarloader-strings-with-a-unicorn-
15d2585272a9

6: https://www.bleepingcomputer.com/news/security/new-blackguard-password-stealing-
malware-sold-on-hacker-forums/

7: https://www.proofpoint.com/us/blog/threat-insight/new-redline-stealer-distributed-using-
coronavirus-themed-email-campaign

https://github.com/sysopfb/open_mal_analysis_notes/tree/master/metastealer_dga
https://twitter.com/Unit42_Intel/status/1646940355936256000
https://www.virustotal.com/gui/file/6cf8bfba1b221effcb1eccec0c91fb0906d0b8996932167f654680cb3ac53aac
https://en.wikipedia.org/wiki/Domain_generation_algorithm
https://research.nccgroup.com/2022/05/20/metastealer-filling-the-racoon-void/
https://medium.com/walmartglobaltech/decrypting-bazarloader-strings-with-a-unicorn-15d2585272a9
https://www.bleepingcomputer.com/news/security/new-blackguard-password-stealing-malware-sold-on-hacker-forums/
https://www.proofpoint.com/us/blog/threat-insight/new-redline-stealer-distributed-using-coronavirus-themed-email-campaign

