Deep Dive Into PIPEDREAM’s OPC UA Module,
MOUSEHOLE

7 dragos.com/blog/pipedream-mousehole-opcua-module/

May 5, 2023

Blog Post

BLE: (7 15 W N

(80 ODMANY

i

B

TONDAVIDBOWIE

AR e o

y Sam Hason

05.05.23

1/7

https://www.dragos.com/blog/pipedream-mousehole-opcua-module/

—_— . ')

pad, e
| Tioe—— o= SRt L)

Al daa o —— "»“F.\’H;

In April of 2022, Dragos published a whitepaper and hosted a webinar discussing
PIPEDREAM, the seventh known industrial control systems (ICS)-specific malware
developed by the CHERNOVITE threat group. Dragos followed up with a blog titled,
“‘Analyzing PIPEDREAM: Results from Runtime Testing.” Continuing this research, Dragos
is releasing additional information on the Open Platform Communications Unified
Architecture (OPC UA) module nicknamed MOUSEHOLE, focusing on further analysis and
runtime testing results.

In the first post of this two-part blog, Dragos analysts briefly provide background on OPC
UA fundamentals, then dive into a high-level overview of MOUSEHOLE’s capabilities,
discuss the open-source Python library utilized by MOUSEHOLE, and finally highlight other
libraries that an adversary could abuse in a similar way. In part two, Dragos analysts
discuss the static and dynamic analysis of MOUSEHOLE, an experiment we conducted to
showcase MOUSEHOLE's capabilities, and what industrial control system (ICS) asset
owners and security practitioners can do to protect against rogue OPC UA clients.

What is OPC UA?

Open Platform Communications Unified Architecture (OPC UA) is a popular industrial
protocol allowing for data communication between various devices and systems. OPC UA
was created to better address the needs of the growing industrial automation market,
moving away from its predecessor, OPC Classic’s reliance on Windows and COM/DCOM
technology. OPC UA is platform independent, meaning it can be used on Windows, Linux,

2/7

https://hub.dragos.com/whitepaper/chernovite-pipedream
https://hub.dragos.com/on-demand/pipedream-malware-chernovite-activity-group
https://www.dragos.com/threat/chernovite/
https://www.dragos.com/blog/analyzing-pipedream-results-from-runtime-testing/

or MacOS hosts, and includes all functionalities found in the OPC Classic specification.’
OPC UA was released in 2008 by the OPC Foundation and later added as an IEC standard
(IEC 62541).

Simply put, OPC UA is an industrial and Internet of things (IoT) communication standard
and can directly impact how critical systems function. For example, logic running a
programmable logic controller (PLC) could use variables set and modified by a separate
device through the OPC UA protocol.

It is important to remember that while MOUSEHOLE abuses the OPC UA protocol, there’s
nothing inherently insecure about OPC UA. In fact, the protocol provides a variety of
impressive security settings and configurations.? 3 4 While vendors who produce OPC UA
server software may not require strong security settings to be configured by the user,? that
is a vendor implementation issue and not an OPC UA problem.

For more information on the technical details of the OPC UA specification, please see the
OPC Foundation’s online reference.

What Is MOUSEHOLE?

/\ Multiplatform OPC UA client

application designed to interact
with OPC UA servers.

MOUSEHOLE
FORMAT TARGETS
Python framework OPC UA servers
MOUSEHOLE is one of five modules in PIPEDREAM, the seventh known industrial control
systems (ICS)-specific malware. MOUSEHOLE is a Python program that functions as an

OPC UA client application. It is designed for easy interaction with OPC UA servers from the
command line and contains various capabilities, including:

e Scanning a network for an OPC UA server

 Brute forcing the authentication mechanism

o Reading the structure of a server

» Reading and writing to specific node attributes

o Setting various security settings such as security mode, policies, certificates, and
private keys

3/7

https://reference.opcfoundation.org/

An adversary with an understanding of a victim’s operational technology (OT) environment
could modify a node’s value attribute on a poorly secured OPC UA server, causing a direct
impact on operations, including the possibility of Loss of Control to connected control
systems.

MOUSEHOLE leverages the open-source Python library, python-opcua, which significantly
reduces the complexity of interacting directly with the protocol, thus lowering the bar of
sophistication required to impact operations successfully.

MOUSEHOLE and the Python-OPCUA Library

The python-opcua library, while deprecated, is available on GitHub for anyone to download
and use. This APl makes it incredibly easy for a programmer to connect, authenticate, and
send requests to an OPC UA server with only a few API calls. The library exposes various
services to the programmer, such as the read or write attribute service, which can be called
upon by the client and executed by the server. The library achieves this by implementing
internal Python classes and objects that comply with the OPC UA Service Set protocol
specification. These Python objects are sent in binary format, interpreted, and executed by
the server.

Let’s walk through an example client application to demonstrate how simple it is to connect
to and manipulate an OPC UA server. We will discuss the get value function (which reads a
node’s value attribute) to demonstrate how the API works under the hood. Our script will
connect to a poorly secured server (anonymous authentication enabled), read a node value
attribute, and finally, write a value to the node. In total, the final script looks like the
following:

47

https://github.com/FreeOpcUa/python-opcua
https://reference.opcfoundation.org/Core/Part4/v105/docs/5

from opcua import =x

First, generate the client variable...
client = Client('opc.tcp://192.168.97.2:4840"

Connect to the server...

client.connect

Read a node's value attribute...
node = client.get_node('ns=2;s=Channell.HighPressureSetpoint’
node_value = node.get_value

Write a node's value attribute...
node.set_value(100

Figure 1: A Simple OPC UA Client Application

Only six lines of code are needed to connect, receive, and send data to the server, which
are the foundational components of MOUSEHOLE'’s functionality. However, a lot is
happening under the hood that the programmer may be blissfully unaware of.

For example, the get value method executes a series of functions that populate a Python
ReadRequest object representing the OPC UA read service. This ReadRequest object is
binarized and sent to the server, which is then interpreted and executed, as shown in Figure
2. The value is sent back to the client and, in our example script, stored in the node_value
variable seen in Figure 1.

read(self, parameters):
. logger.info(" read")

request = ua.ReadRequest()
request.Parameters = parameters

data = self._uasocket.send_request(request)

response = struct_from_binary(ua.ReadResponse, data)
. logger.debug(response)
response.ResponseHeader.ServiceResult.check()

Figure 2: Screenshot of Python-OPC UA library, Read Command Being Sent to Server

5/7

https://reference.opcfoundation.org/Core/Part4/v105/docs/5.10.2

The set_value method works similarly but instead sends a WriteRequest object
representing the write service to the server. The APl makes it as simple as possible to
interact with the OPC UA server without exposing the programmer to the complexities of
OPC UA or its internal structures.

Open-Source Industrial Protocol Libraries

From a programming perspective, MOUSEHOLE is not a sophisticated tool. Most of the
code is a simple command line interface for the python-opcua library, where much of the
complexity is hidden. The programmer must understand only the highest-level function calls
and objects. This abstraction of knowledge is a double-edged sword; it simplifies the job of
a legitimate developer while allowing adversaries to quickly develop programs that can
cause serious industrial impact with little required expertise in the technology and protocols.

There are dozens of open-source industrial protocol libraries and APIs on GitHub that could
be abused in a similar fashion, including Modbus, BACnet, DNP3, IEC 104, IEC 61850
Ethernet/IP and CIP, Ethercat, and many more.® Some of these libraries and APIs are
incredibly advanced and provide significant capabilities to the user. For example, the open-
source PyModbus implementation is a full-featured server and client application with a
command line interface. An adversary could download this tool and have a significantly
more capable Modbus equivalent to MOUSEHOLE. Dragos has no evidence that these
libraries have been leveraged to create malicious tools. Nonetheless, these libraries could
be abused in the future.

In Summary

CHERNOVITE's creation of a malicious OPC UA tool is more indicative of OPC UA’s
ubiquity than the protocol’s security. CHERNOVITE could have easily used any number of
open-source libraries that implement common industrial protocols, many of which are less
secure than OPC UA. As the proliferation of ICS tools and knowledge expands, it is
paramount that defenders understand what emerging threats may exist and take action to
mitigate the risk.

Part two of our blog covers the runtime experiments we conducted with MOUSEHOLE and
best practices for OPC UA server security. Stay tuned! In the meantime, be sure to check
out other PIPEDREAM-related content on our blog:

6/7

https://reference.opcfoundation.org/Core/Part4/v105/docs/5.10.4

Get the Complete Analysis

Learn more about the discovery and capabilities of CHERNOVITE’s PIPEDREAM malware
in our whitepaper.

Download Whitepaper

Source:

7/7

https://hub.dragos.com/whitepaper/chernovite-pipedream

