
1/13

Unpacking ICEDID | Elastic
elastic.co/security-labs/unpacking-icedid

Unpacking ICEDID

A comprehensive tutorial with Elastic Security Labs open source tools

By

Cyril François

04 May 2023
English

Preamble

ICEDID is a malware family discovered in 2017 by IBM X-force researchers and is
associated with the theft of login credentials, banking information, and other personal
information. ICEDID has always been a prevalent family but achieved even more growth
since EMOTET’s temporary disruption in early 2021. ICEDID has been linked to the
distribution of several distinct malware families including DarkVNC and COBALT STRIKE.
Regular industry reporting, including research publications like this one, help mitigate this
threat.

https://www.elastic.co/security-labs/unpacking-icedid
https://www.elastic.co/blog/author/cyril-francois
https://securityintelligence.com/new-banking-trojan-icedid-discovered-by-ibm-x-force-research/
https://www.justice.gov/opa/pr/emotet-botnet-disrupted-international-cyber-operation
https://malpedia.caad.fkie.fraunhofer.de/details/win.darkvnc
https://www.cybereason.com/blog/threat-analysis-report-all-paths-lead-to-cobalt-strike-icedid-emotet-and-qbot

2/13

ICEDID is known to pack its payloads using custom file formats and a custom encryption
scheme. Following our latest ICEDID research that covers the GZip variant execution chain.

In this tutorial, we will introduce these tools by unpacking a recent ICEDID sample starting
with downloading a copy of the fake GZip binary:

Analyzing malware can be dangerous to systems and should only be attempted by
experienced professionals in a controlled environment, like an isolated virtual
machine or analysis sandbox. Malware can be designed to evade detection and infect
other systems, so it's important to take all necessary precautions and use specialized
tools to protect yourself and your systems.

54d064799115f302a66220b3d0920c1158608a5ba76277666c4ac532b53e855f

Environment setup

For this tutorial, we’re using Windows 10 and Python 3.10.

Elastic Security Labs is releasing a set of tools to automate the unpacking process and help
analysts and the community respond to ICEDID.

Script Description Compatibility

decrypt_file.py Decrypt ICEDID encrypted
file

Windows and
others (not
tested)

gzip_variant/extract_gzip.py Extract payloads from
ICEDID fake GZip file

Windows and
others (not
tested)

gzip_variant/extract_payload_from_core.py Extract and decrypt
payloads from the rebuilt
ICEDID core binary

Windows and
others (not
tested)

gzip_variant/load_core.py Load and execute core
custom PE binary

Windows only

gzip_variant/read_configuration.py Read ICEDID configuration
file contained in the fake
GZip

Windows and
others (not
tested)

rebuild_pe.py Rebuild a PE from ICEDID
custom PE file

Windows and
others (not
tested)

https://www.elastic.co/security-labs/thawing-the-permafrost-of-icedid-summary
https://bazaar.abuse.ch/sample/54d064799115f302a66220b3d0920c1158608a5ba76277666c4ac532b53e855f/

3/13

In order to use the tools, clone the Elastic Security Lab release repository and install the
nightMARE module.

git clone https://github.com/elastic/labs-releases

cd labs-release

pip install .\nightMARE\

The nightMARE module

All tools in this tutorial use the nightMARE module, this library implements different
algorithms we need for unpacking the various payloads embedded within ICEDID. We’re
releasing nightMARE because it is required for this ICEDID analysis, but stay tuned - more to
come as we continue to develop and mature this framework.

Unpacking the fake GZip

The ICEDID fake GZip is a file that masquerades as a valid GZip file formatted by
encapsulating the real data with a GZip header and footer.

GZip

header and footer
GZip magic bytes appear in red.

The GZip header is rendered in green.

The dummy filename value is blue.

After the GZip header is the true data structure, which we describe below.

FakeGzip data structure

We will use the labs-releases\tools\icedid\gzip-variant\extract_gzip.py script to unpack
this fraudulent GZip.

https://github.com/elastic/labs-releases
https://attack.mitre.org/techniques/T1036/008/
https://docs.fileformat.com/compression/gz/

4/13

usage: extract_gzip.py [--help] input output

positional arguments:

 input Input file

 output Output directory

options:

 -h, --help show this help message and exit

We'll use extract_gzip.py on the ICEDID sample linked above and store the contents into a
folder we created called “extract” (you can use any existing output folder).

python extract_gzip.py
54d064799115f302a66220b3d0920c1158608a5ba76277666c4ac532b53e855f extract

==

Fake Gzip

==

is_dll: True

core: UponBetter/license.dat (354282 bytes)

stage_2: lake_x32.tmp (292352 bytes)

extract\configuration.bin

extract\license.dat

extract\lake_x32.tmpRead more

This script returns three individual files consisting of:

The encrypted configuration file: configuration.bin
The encrypted core binary: license.dat
The persistence loader: lake_x32.tmp

Files extracted from the fake GZip

Decrypting the core binary and configuration files

The configuration and the core binary we extracted are encrypted using ICEDID’s custom
encryption scheme. We can decrypt them with the labs-
releases\tools\icedid\decrypt_file.py script.

5/13

usage: decompress_file.py [--help] input output

positional arguments:

 input Input file

 output Output file

options:

 -h, --help show this help message and exit

As depicted here (note that decrypted files can be written to any valid destination):

python .\decrypt_file.py .\extract\license.dat .\extract\license.dat.decrypted

python .\decrypt_file.py .\extract\configuration.bin
.\extract\configuration.bin.decrypted

The core binary and the configuration are now ready to be processed by additional tools.
See the data from the decrypted configuration presented in the following screenshot:

Hex

view of the decrypted configuration file

Reading the configuration

The configuration file format is presented below.

Configuration file

6/13

The configuration can be read using the labs-releases\tools\icedid\gzip-
variant\read_configuration.py script.

usage: read_configuration.py [--help] input

positional arguments:

 input Input file

options:

 -h, --help show this help message and exit

We’ll use the read_configuration.py script to read the configuration.bin.decrypted file we
collected in the previous step.

python .\gzip-variant\read_configuration.py .\extract\configuration.bin.decrypted

==

Configuration

==

botnet_id: 0x3B7D6BA4

auth_var: 0x00000038

uri: /news/

domains:

 alishaskainz.com

 villageskaier.comRead more

This configuration contains two C2 domains:

alishaskainz[.]com
villageskaier[.]com

For this sample, the beaconing URI that ICEDID uses is “/news/”.

Rebuilding the core binary for static analysis

ICEDID uses a custom PE format to obfuscate its payloads thus defeating static or dynamic
analysis tools that expect to deal with a normal Windows executable. The custom PE file
format is described below.

7/13

Custom PE file format

If we want to analyze the core binary, for example with IDA Pro, we need to rebuild it into a
valid PE. We use the labs-releases\tools\icedid\rebuild_pe.py script.

usage: rebuild_pe.py [--help] [-o OFFSET] input output

positional arguments:

 input Input file

 output Output reconstructed PE

options:

 -h, --help show this help message and exit

 -o OFFSET, --offset OFFSET

 Offset to real data, skip possible garbage

However, when attempting to use rebuild_pe.py on the decrypted core binary,
license.dat.decrypted, we receive the following error message:

python .\rebuild_pe.py .\extract\license.dat.decrypted .\extract\core.bin

Traceback (most recent call last):

 File "rebuild_pe.py", line 32, in <module>

 main()

 File "rebuild_pe.py", line 28, in main

 custom_pe.CustomPE(data).to_pe().write(args.output)

 File "nightmare\malware\icedid\custom_pe.py", line 86, in __init__

 raise RuntimeError("Failed to parse custom pe")

RuntimeError: Failed to parse custom pe

The subtlety here is that the custom PE data doesn’t always start at the beginning of the file.
In this case, for example, if we open the file in a hexadecimal editor like HxD we can observe
a certain amount of garbage bytes before the actual data.

https://hex-rays.com/IDA-pro/
https://mh-nexus.de/en/hxd/

8/13

Prepended garbage bytes
We know from our research that the size of the garbage is 129 bytes.

Identifying garbage size

With that in mind, we can skip over the garbage bytes and rebuild the core binary using the
rebuild_pe.py script using the “-o 129” parameter. This time we, fortunately, receive no
error message. core.bin will be saved to the output directory, extract in our example.

python .\rebuild_pe.py .\extract\license.dat.decrypted .\extract\core.bin -o 129

The rebuilt PE object is not directly executable but you can statically analyze it using your
disassembler of choice.

IDA view of core.bin
We assigned custom names to the rebuilt binary sections (.mare{0,1,2,...}).

9/13

Rebuilt binary

section names
We want to credit and thank Hasherezade’s work from which we took inspiration to build this
tool.

Executing the core binary (Windows only)

The core binary can’t be executed without a custom loader that understands ICEDID’s
custom PE format as well as the entry point function prototype.

From our research, we know that the entry point expects a structure we refer to as the
context structure, which contains ICEDID core and persistence loader paths with its
encrypted configuration. The context structure is described below.

Context structure

To natively execute the core binary we use the labs-releases\tools\icedid\gzip-
variant\load_core.py script, but before using it we need to create the context.json file that’ll
contain all the information needed by this script to build this structure.

For this sample, we copy the information contained in the fake gzip and we use the path to
the encrypted configuration file. We’ve included an example at
gzip_variant/context.json.example.

https://github.com/hasherezade/funky_malware_formats/blob/f1cacba4ee347601dceacda04e4de8c699971d29/iced_id_parser/iceid_to_pe.cpp#L10

10/13

Example configuration file
Please note that “field_0” and “stage_2_export” values have to be found while reversing
the sample.

Populating values from

previous research
Here we use values from our previous research as placeholders but we have no guarantee
that the sample will work 100%. For example, in this sample, we don’t know if the #1 ordinal
export is the actual entry point of the persistence loader.

We also reproduce the first stage behavior by creating the UponBetter directory and moving
the license.dat file into it.

license.dat in the UponBetter directory

We execute the labs-releases\tools\icedid\gzip_variant\load_core.py script using the
decrypted core binary: license.dat.decrypted, the context.json file.

WARNING: The binary is going to be loaded/executed natively by this script, Elastic
Security Labs does not take responsibility for any damage to your system. Please
execute only within a safe environment.

11/13

usage: load_core.py [--help] [-o OFFSET] core_path ctx_path

positional arguments:

 core_path Core custom PE

 ctx_path Path to json file defining core's context

options:

 -h, --help show this help message and exit

 -o OFFSET, --offset OFFSET

 Offset to real data, skip possible garbage

Because we have the same garbage bytes problem as stated in the previous section, we use
the “-o 129” parameter to skip over the garbage bytes.

python .\gzip-variant\load_core.py .\extract\license.dat.decrypted .\gzip-
variant\context.example.json -o 129

==

Core Loader

==

Base address: 0x180000000

Entrypoint: 0x180001390

Press a key to call entrypoint...

When launched, the script will wait for user input before calling the entry point. We can easily
attach a debugger to the Python process and set a breakpoint on the ICEDID core entry
point (in this example 0x180001390).

Breakpoint set on the ICEDID core entry point
Once the key is pressed, we reach the entry point.

ICEDID

entry point
If we let the binary execute, we see ICEDID threads being created (indicated in the following
screenshot).

12/13

ICEDID threads being created

Unpacking and rebuilding payloads from the rebuilt core binary

For extracting any of the payloads that are embedded inside the core binary, we will use the
labs-releases\tools\icedid\gzip-variant\extract_payloads_from_core.py script

usage: extract_payloads_from_core.py [--help] input output

positional arguments:

 input Input file

 output Output directory

options:

 -h, --help show this help message and exit

We’ll use this script on the rebuiltcore binary.

python .\gzip-variant\extract_payloads_from_core.py .\extract\core.bin core_extract

core_extract\browser_hook_payload_0.cpe

core_extract\browser_hook_payload_1.cpe

From here, we output two binaries corresponding to ICEDID’s payloads for web browser
hooking capabilities, however, they are still in their custom PE format.

ICEDID payloads
Based on our research, we know that browser_hook_payload_0.cpe is the x64 version of
the browser hook payload and browser_hook_payload_1.cpe is the x86 version.

Browser hook payload

architectures

13/13

In order to rebuild them, we use the rebuild_pe.py script again, this time there are no
garbage bytes to skip over.

python .\rebuild_pe.py .\core_extract\browser_hook_payload_0.cpe
.\core_extract\browser_hook_payload_0.bin

python .\rebuild_pe.py .\core_extract\browser_hook_payload_1.cpe
.\core_extract\browser_hook_payload_1.bin

Now we have two PE binaries (browser_hook_payload_0.bin and
browser_hook_payload_1.bin) we can further analyze.

Payloads for further analysis
Attentive readers may observe that we have skipped the VNC server unpacking from the
core binary, a decision we made intentionally. We will release it along with other tools in
upcoming research, so stay tuned!

Conclusion

In this tutorial we covered ICEDID GZip variant unpacking, starting with the extraction of the
fake GZip binary, followed by the reconstruction of the core binary and unpacking its
payloads.

ICEDID is constantly evolving, and we are going to continue to monitor major changes and
update our tooling along with our research. Feel free to open an issue or send us a message
if something is broken or doesn’t work as expected.

Elastic Security Labs is a team of dedicated researchers and security engineers focused on
disrupting adversaries through the publication of detailed detection logic, protections, and
applied threat research.

Follow us on @elasticseclabs and visit our research portal for more resources and research.

https://github.com/elastic/labs-releases/issues
mailto:threat-notification@elastic.co
https://twitter.com/elasticseclabs

