Attack on Security Titans: Earth Longzhi Returns With New Tricks

@ trendmicro.com/en_us/research/23/e/attack-on-security-titans-earth-longzhi-returns-with-new-tricks.html

May 2, 2023
APT & Targeted Attacks

After months of dormancy, Earth Longzhi, a subgroup of advanced persistent threat (APT) group APT41, has reemerged
using new techniques in its infection routine. This blog entry forewarns readers of Earth Longzhi’s resilience as a
noteworthy threat.

By: Ted Lee, Hara Hiroaki May 02, 2023 Read time: (words)

We discovered a new campaign by Earth Longzhi (a subgroup of APT41) that targets organizations based in Taiwan,
Thailand, the Philippines, and Fiji. This recent campaign, which follows months of dormancy, abuses a Windows
Defender executable to perform DLL sideloading while also exploiting a vulnerable driver, zamguard64.sys, to disable
security products installed on the hosts via a bring-your-own-vulnerable-driver (BYOVD) attack. We also found that Earth
Longzhi uses a new way to disable security products, a technique we’ve dubbed “stack rumbling” via Image File
Execution Options (IFEO), which is a new denial-of-service (DoS) technique.

In addition, we’ve noticed that this campaign installs drivers as kernel-level services by using Microsoft Remote
Procedure Call (RPC) instead of using general Windows application programming interfaces (APIs). This is a stealthy
way to evade typical APl monitoring. We also found some interesting samples in our investigation that contained
information not only on Earth Longzhi’'s potential targets, but also techniques for possible use in future campaigns. This
blog entry seeks to forewarn readers that Earth Longzhi remains active and continues to improve its tactics, techniques,
and procedures (TTPs).

Attack vectors

Earth Longzhi’'s new campaign samples showed a tendency to exploit public-facing applications, Internet Information
Services (IIS) servers, and Microsoft Exchange servers to install Behinder, a well-known web shell, rather than send
pieces of document-based malware through email. As seen in this campaign, Behinder proved to be a powerful web shell
variant that can support multiple backdoor functions, including file operation, remote command execution (RCE),
interactive shell, and Socks5 proxy.

Malicious actors use this web shell to discover intranet information and deploy other pieces of malware and hacking
tools on a compromised machine.

1/19

https://www.trendmicro.com/en_us/research/23/e/attack-on-security-titans-earth-longzhi-returns-with-new-tricks.html
https://www.trendmicro.com/en_us/research/22/k/hack-the-real-box-apt41-new-subgroup-earth-longzhi.html
https://learn.microsoft.com/en-us/windows/win32/rpc/rpc-start-page
https://github.com/rebeyond/Behinder
http://r/

Entry point

Post-exploitation

Microsoft Exchange
server (Proxy login)

IS server

MpCmdRun.exe
MpDIpCmd.exe
Il —
Behinder
Hack tools

Figure 1. Infection routine used by Earth Longzhi

New tricks for DLL sideloading

Sideload C

Backdoor
(Croxloader)

© 2023 TREND MICRO

In the group’s new campaign, the malware was launched through legitimate Windows Defender binaries, MpDIpCmd.exe
and MpCmdRun.exe, instead of using document-based samples. The malware was disguised as a legitimate DLL,
MpClient.dll and was loaded by Microsoft Defender’s binaries. Our investigation showed two different types of malware
that were launched through this technique: One is a new variant of Croxloader, and the other is a tool that can disable

security products, which we dubbed “SPHijacker.”

2/19

https://www.trendmicro.com/vinfo/us/threat-encyclopedia/malware/Trojan.Win64.CROXLOADER.ZTKC/

a3c017fcecSd4adB5c16865bT15293e5aad 132fc51ad37b3414593¢8b14231a0

Signature info ()
Signature Verification

Signed file, valid signature

File Version Information

Copyright & Microsoft Corporation. All rights reserved.
Product Microsoft® Windows® Operating System
Description Microsoft Malware Protection DLP Command Line Utility

Original Name MpDIpCmd.exe

Internal Name MpDIipCmd

File Version 4,18.2205.7 (WinBuild.160101.0800)
Date signed 2022-06-19 20:02:00 UTC

Figure 2. Legitimate files used for DLL
1c2d22ee0a0d 1df5¢c13b1d290bfdc7abe7b07e1e4bbebeb9Bf64952aa2 113052

Signature info &

Signature Verification

Signed file, valid signature

File Version Information

Copyright © Microsoft Corporation. All rights reserved.
Product Microsoft® Windows® Operating System
Description Microsoft Malware Protection Command Line Utility

Original Name MpCmdRun.exe

Internal Name MpCmdRun

File Version 4.18.2205.7 (WinBuild.160101.0800)
Date signed 2022-06-19 20:02:00 UTC

sideloading

New Croxloader variant

Earth Longzhi’'s new campaign launched Windows Defender binaries as a system service. The new Croxloader variant,
disguised as MpClient.dll, was subsequently loaded. Once launched, Croxloader reads the payload named MpClient.bin
and decrypts its content. The new variant is almost identical to the older ones, except that it uses a different decryption
algorithm. The algorithm used in the original variant is (SUB 0xA) XOR 0xCC, while the algorithm for the new variant is
(ADD 0x70) XOR 0xDD. The final payload is identified as a Cobalt Strike beacon, which we detected as
Backdoor.Win64.COBEACON.ZYKB.

3/19

I | N\ l_B o101
Execute Load Read 1010
N ~ N

EXE 2 7 |IDLL “Joio

o101
_ _

SvcHost.exe MpCmdRun.exe/ MpClient.dll MpClient.bin
MpDIlpCmd.exe (Croxloader)
Decrypt

In-memory
processing

Cobalt Strike

b 4

© 2023 TREND MICRO

Figure 3. Earth Longzhi’'s malware execution chain

v2 = qgword_180019CB8(Str);

memmove(v1l5, Str, 2i64 * (vl + v2));

v3 = 2i64 * (int)qword_180019CB8(L"MpClient.bin");

v4 = qword_180019CB8(v15);

memmove(&v15[v4], L"MpClient.bin", v3);

vE = 0;

result = Call_CreateFileW(v15, Ox80000000i64, 7i64, 0i64, 3, 0, 0i64);
v7 = result;

LI ol 4 2 b1

Figure 4. Disguised as “MPClient.dll,” the loaded new Croxloader variant reads the encrypted payload, “MpClient.bin,”
and decrypts the content.

if (result)

{
result = qword_180019C08(v7, result, v1o, &v10, 0i64);
if ((_DWORD)result)

{
if (vie)
{
do
{
V9 = v5++;
*(_BYTE *)(v9 + v8) = (*(_BYTE *)(v9 + v8) + 0x70) ~ oxDD;
}
while (v5 < v10);
}

PP] N

Figure 5. Modified XOR algorithm

SPHijacker

4/19

SPHijacker, a new tool designed to disable security products, adopts two approaches to achieve this purpose. One
approach terminates the security product process by using a vulnerable driver, zamguard64.sys, published by Zemana
(vulnerability designated as CVE-2018-5713). Meanwhile, another approach disables process launching by using a new
technique that we named stack rumbling, which we will discuss in detail in succeeding paragraphs. Notably, this is the
first time we’ve seen such a technique being used in the wild.

Technical analysis

Based on our analysis, the mmmm.sys file (originally named Zamguard64.sys) is decrypted and dropped, after which it is
registered as a service. It then creates and starts the service through RPC as opposed to calling general Windows APls
to set up the service, as shown in Figure 6. We reckon that such a technique enables malicious actors to evade API call
monitoring.

if ((unsigned int)NdrClientCall3(
(MIDL_STUBLESS_PROXY_INFO *)&pProxyInfo,
0x10u, // OpNum: @x1@ --> ROpenServiceW (used to check if the service is existing.)
eie4,
v27,
L"mmmmmm" ,
dwFlagsAndAttributes,
&v28).Pointer)

LODWORD(hTemplateFile) = @xFO1FF;
NdrClientCall3(
(MIDL_STUBLESS_PROXY_INFO *)&pProxyInfo, // Target RPC endpoint:"\\pipe\\ntsvcs"
oxCu, // OpNum: @xC --> RCreateService
eis4,
v27,
L" mmmmmm" // ServiceName
L mmmmmm" , // DisplayName
hTemplateFile, // DesireAcess = @xF@1FF (SERVICE_ALL_ACCESS)
1, // SERVICE_KERNEL_DRINER
3, // SERVICE_DEMAND_START

L"C:\\Users\\Public\\mmmm.sys", // BinaryPathName
oie4,
eied,
eic4,
Q,
0i64,
0ie4,
0,
&v28);
LODWORD(dwCreationDisposition) = @;
if (!(unsigned int)NdrClientCall3(
(MIDL_STUBLESS_PROXY_INFO *)&pProxyInfo,
0x13u, // OpNum: @x13 --> RStartServiceW
eie6a,
v28,
dwCreationDisposition,
©i64) .Pointer)

Figure 6. Code showing service started via RPC

Once the service successfully starts running, SPHijacker proceeds to open the handle to the device named
\.\ZemanaAntiMalware to access the running driver. It then begins terminating the processes of security products based
on a predefined list. We detail the workflow of the operation here:

1. It sends input-and-output control (IOCTL) code 0x80002010 to register the process by its process ID (PID), as
trusted by the driver, as seen in Figure 7.

2. It conducts process discovery and collects the PID of targeted processes if they are running.

3. It sends IOCTL code 0x80002048 to terminate targeted processes by calling ZwOpenProcess and
ZwTerminateProcess, as seen in Figure 8.

5/19

https://nvd.nist.gov/vuln/detail/CVE-2018-5713

pe
{

{

ez sy, e res B . . .
for (result = Process32NextW{Toolhelp32Snepshot, Bpe); result; result = Process32NextW(Toclhelp32Snapshat, Bae) 14/

FileA = CreateFileA("\\\\.\\ZemanalntiMalware", @xCO0BOQOE, 8, ©i6d, 3Ju, BxBBu, Bied);
InBuffer = GetCurrentProcessId();

BytesReturned = @;

DeviceloControl(Filed, @xBe®@2016, &InBuffer, 4u, @ie4, &, &BytesReturned, BiB4);// Register this process with driver

.dwSize = 568;

Vi ow BiEd;
while { *{ BORD *}{(char *}&32 4 v3 * 1) == pr.szExeFile[v3]

iF (esud v 260)

{
ABEL_77:

InBuffer = pe.th32ProcessID;

By urned = @;

De trol(Filan, @x89082948, &Insuffer, du, @164, 8, &sSytesReturned, @id);// Send IOCTL to terminate process by process id
GetlLastErrer())

ry to find the target (Open full access to the target)

Fig

ure 7. IOCTL codes sent to register and terminate processes

ProcessHandle = 0i64;
vll = 8;
vd = -1073741823;
Timeout.QuadPart = -10000000i64;
if ((unsigned int)sub_140005994(al, &v11l) && v11l)
{
DnsPrint_RpcZoneInfo(
5,
(unsigned int)"ProcessHelper\\ProcessHelper.c",
493,
(unsigned int)"ZmnPhTerminateProcessById",
0,
"Critical process termination attempt blocked");
return (unsigned int)v4;
}
v4d = sub_140013268(&ProcessHandle, al, 1i64); // Call ZwOpenProcess
if ((v4 >=0)
{
v4d = ZwTerminateProcess(ProcessHandle, 9);
if ((int)(v4 + Ox80000000) < © || v4 == -1073741558)
{
if (a2)
{
v8 = al;
DnsPrint_RpcZoneInfo(
1,
(unsigned int)"ProcessHelper\\ProcessHelper.c",
519,
(unsigned int)"ZmnPhTerminateProcessById",
o,
"Wait for Process %d starting”,

LY
Figure 8. The handler function of “0x80002048” defined in “zamguard64.sys”
We listed the targeted processes for termination here. Note that many of these processes are for various security

products:

e 360rp.exe

e 360rps.exe
e 360Safe.exe
e 360sd.exe
o 360tray.exe
o 360Tray.exe

6/19

o Aliyun_assist_service.exe
e AliYunDun.exe

o AliYunDunUpdate.exe

e cyserver.exe

e cylray.exe

e MpcmdRun.exe

o MsMpEng.exe

o NisSrv.exe

o SecurityHealthSystray.exe
o tlaworker.exe

e yunsuo_agent_daemon.exe
e Yunsuo_agent_service.exeZhuDongFangYu.exe

Once the process termination is completed, SPHijacker disables process execution by forcefully causing the targeted

applications to crash upon launching, a technique we referred to earlier as stack rumbling. This technique is a type of

DoS attack that abuses undocumented MinimumStackCommitinBytes values in the IFEO registry key via the following
steps:

1. Modifying the registry HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File Execution Options\
{target process name}.

2. Creating a new value, MinimumStackCommitinBytes, with 0x88888888 as its data. Any value deemed large
enough is acceptable.

3. Waiting for the next process launch to take place. It's important to note that this depends on whether the targeted
process is antivirus-related. There is usually a need to wait for the operating system to reboot.

4. Once the targeted process is launched, it will soon crash due to stack overflow.

RegapenKeyEfo
HKEY_LOCAL_MACHINE,

o,
0xFOB3Fu,
&hkey);
RegCreateKeyA(hKey, "36@8Tray.exe", &v3);
Data = OxB88888888;
RegSetValueExA(v3, "MinimumStackCommitInBytes", @, 4u, (const BYTE *)&Data, 4u);

"SOFTWARE\\Microsoft\\Windows NT\\CurrentVersion\\Image File Execution Options\\",

Figure 9. An example of how disabling “360Tray.exe” is done by modifying the IFEO registry
Here’s the full list of targeted processes:

e 360rps.exe

o 360Safe.exe

e 360sd.exe

e 360sdrun.exe

o 360tray.exe

o 360Tray.exe

e aliyun_assist_service.exe
o AliYunDun.exe

e AliYunDunUpdate.exe
o CNTAoSMgr.exe

e cyserver.exe

e cylray.exe

e mcafee-security.exe
o mcafee-security-ft.exe
o MpCmdRun.exe

o MsMpEng.exe

¢ NisSrv.exe

7/19

o NTRTScan.exe
e gmbsrv.exe

* QQPCRTPexe
e QQPCTray.exe

o SecurityHealthSystray.exe

o tlaworker.exe
e TmCCSF.exe
o tmlisten.exe

o TmlListen.exe

e yunsuo_agent_daemon.exe
e yunsuo_agent_service.exe
e ZhuDongFangYu.exe

As a result of stack rumbling via IFEO, the targeted process failed to start with the exit code 0xC0000017, despite the

process requiring high privilege. The exit code means “Status No Memory.”

j]notepadex& 7584 = Thread Exdt
| notepad.exe 7584 % Thread Exdt
ﬁ notepadexe 7584 ﬁProcess Exit
£7 Event Properties
Event pProcess Stack
Date: 4/18/2023 12:35:22.7693308 AM
Thread: 9528
Class: Process
Operation: Process Exit
Result: SUCCESS
Path:
Duration: 0.0000000 0xC0000017
(=Status No Memory)

Exit Status: -1073741801 I
User Time: 1 onds
Kernel Time: 0.0781250 seconds
Private Bytes: 2,296,578,048
Peak Private Bytes: 4,591,771,648
Working Set: 5,373,952
Peak Working Set: 5,382,144

“notepad.exe” file that failed upon execution
IFEO registry has been known to contain various options for process creation. While it can be used to attach a debugger
to an executable file, it can also be used to interrupt the process execution flow, a method known as IFEO injection. We
couldn't find a complete documentation of MinimumStackCommitinBytes in any online resource. The IFEO values will be
loaded upon process initialization by ntdll!LdrplinitializeExecutionOptions. Now, let us reverse ntdll.dll.

Figure 10. An example of a

8/19

if (RtlInitUnicodeStringEx(&key_name, L"MinimumStackCommitInBytes”) >= @)

= viel;
= IwQueryValueKey(v12, &key name, 2i64, viol, 1024, &size);
/28 € @)

if (v25 == @x50000005)
while (1)

v32 = NtCurrentPeb()->ProcessHeap;
if (w32)

break;

lue = RtlAallocateHeap(v32, (dword_18816A530 + 1572864), size);

('value)
o

v34 = ZwQueryValueKey(v12, &key name, 2i64, value, size, &size);// get value of MinimumStackCommitInBytes
if (w34 >= 0)
goto LABEL_52;
if (v34 != GxB0000005)
goto LABEL_69;
RtlFreeHeap(NtCurrentPeb()->*ProcessHeap, @i64, value);

}
¥
¥
else
i
value = Bi64;
LABEL_52:
Type = value->Type;
if (((Type - 3) & @xFFFFFFFB) != @)
{
if (Type == 4) // REG_DWORD
{
if (value->Datalength == 4)
{
ze = 4;
data = *value->Data;
3
}
else if (Type != 11 &R Type == 1 88 (&data & 3) == @)// REG_SZ
{
size = 4;
v83.Buffer = value-»>Data;
v83.Length = value->Datalength;
vE3.MaximumLength = valus->Datalength;
RtlUnicodeStringToInteger(&vE83, @i64, &data);
¥
else if (Type == 4) // REG_DWORD
{
size = value->Datalength;
if (value->Datalength <= 4u)
memmove (&data, value->Data, value->DatalLength);
}
LABEL_69:
if (value)
RtlFreeHeap(NtCurrentPeb()->*ProcessHeap, @i64, value);
}
}
if (peb->MinimumStackCommit < data)
peb=>MinimumStackCommit = data; // update PEB-»MinimumStackCommit

Figure 11. Pseudocode of “ntdll!LdrplInitializeExecutionOptions”

The pseudocode ntdlllLdrpinitialize ExecutionOptions updates PEB->MinimumStackCommit with the value of
MinimumStackCommitinBytes in the IFEQO registry. It should be noted that Microsoft also doesn't provide documentation
on PEB->MinimumStackCommit. Let's debug the target process to identify how this value will be used.

Upon execution of the stack rumbling-affected process, a debugger catches a stack overflow exception in
ntdll!LdrpTouchThreadStack.

9/19

B:8008> g

ModLoad: eeee7fff 4bldesee eess7fff 4bleoees C:\WINDOWS\System32\IMM32.DLL
ModLoad: eeee7fff 49270082 eeso7fff 49282208 C: \WINDOWS\SYSTEM32\MSASNL.d11
(112c.116c): Stack overflow - code c@B8e@dfd (first chance)

First chance exceptions are reported before any exception handling.

This exception may be expected and handled.

ntdll!LdrpTouchThreadStack+8x76:

peeo7fff 4ced34d2 sbee mov eax,dword ptr [rax] ds:@0080672° 18co3eee-eeeeesee | Figure 12. Image
B:008> k
Child-SP RetAddr Call Site
80 80900872 18dB8f6e8 @8e7f{f 4cBcdebe ntdll!LdrpTouchThreadStack+8x76
81 8oe0Le72 18d8f768 eee7f{f 4c8cdcy3 ntdll!LdrpInitialize+@xle2
82 80900872 18dB8f888 eeve7f{f 4c8cdcle ntdll!LdrpInitialize+8x3b
83 PoeRBer72 1848230 SePEe00R B2EDELBE ntdll!ldrInitializeThunk+@xe

shows WinDbg catching a stack overflow exception in a running process
Upon reversing ntdll!Ldrp TouchThreadStack, we found that it receives PEB->MinimumStackCommit as an argument,
which was updated in ntdll!LdrplnitializeExecutionOptions.

linimumStackCommit = peb->MinimumStackCommit;
if (MinimumStackCommit)
us = LdrpTouchThreadStack(MinimumStackCommit);

'

Figure 13. Image shows “ntdll!LdrpTouchThreadStack” receiving “PEB->MinimumStackCommit”

The given value will be used to define the size of stack to commit upon initializing the stack of the main thread.
Therefore, if the value in PEB->MinimumStackCommit is large enough to touch beyond a stack region, the Windows
operating system triggers stack overflow. But the exception handler catches the exception overflow, which returns
STATUS_NO_MEMORY (=0xC0000017) as a result of ntdll!LdrpTouchThreadStack.

10/19

; NTSTATUS _ fastcall LdrpTouchThreadStack(size_t MinimumStackCommit)
LdrpTouchThreadStack proc near ; CODE XREF: sub_l186@74B8C+1DDTp
DATA XREF: .rdata:@eeeeeol5014895840

touch_address = gword ptr -43h

var_38 = gword ptr -38h
arg_@ = gword ptr 8
FUNCTION CHUNK AT . b Baa : e9201D BYTES

; FUNCTION CHUNK AT BYTES

3 —unwind { // __C_specific_handler

LY rll, rsp

oV [r1148], rbx

push rdi

sub rsp, 7&h

mOV rbx, rex ; rex = TEB-»MinimumStackCommit
mOV rdi, gs:3eh

lea rax, [rll+leh]

mov [r11-5@h], rax

moV gword ptr [rl11-58h], 38h ; '@"

lea r9, [rll-d8h]

xor r8d, r8d

mov rdx, [rdi+_TEB.NtTib.StackLimit]
or rex, GFFFFFFFEFFFEFFFFh

call ZwQueryVirtualMemory

test eax, eax

is short loc_1800833F1

mov rdx, [rsp+78hévar_38)

add rdx, 3808h ; low_stack_commit = MEMORY_BASIC_INFO->AllocationBase + 3"PAGE_SIZE
mov rax, [rdi+_TEB.NtTib.StackBase]

add rax, @FFFFFFFFFFFFF@@2h ; touch_address = Teb->NtTib.5tackBase - PAGE_SIZE

mov [rep+7Bhitouch_address], rax

<mp rax, rbx ; touch_address » enforced_stack_commit

jbe loc_1800C2478

mov rcx, rax

sub rex, rbx ; touch_limit = touch_address - enforced_stack_commit

cEp rex, rdx
cmovbe rex, rdx

loc_18@0833CD: ; CODE XREF: LdrpTouchThreadStack+884j
; LdrpTouchThreadStack+4611F4]
; DATA XREF:)
3 _tey { ff __except st loc_l18@0833E8
cEp rax, rox
jb short loc_l1800833E6 ; touch_address »>= touch_limit
mov eax, [rax] ; touch stack address (stack owerflow HERE)
mOV rax, [rsp+78h+touch_address]
sub rax, 1egoh
mov [rsp+78h+touch_address], rax ; touch_address -= PAGE_SIZE
jmp short loc_18@@833CD
loc_18@@833E6: ; CODE XREF: LdrpTouchThreadStack+74tj
Jmp short loc_l8@8@833EF

3} // starts at 18@@833CD

H

loc_18@@833E8: ; DATA XREF: .rdata:oooeeolselaBaiCio
H __except(loc_1B@@A6365) // owned by 188@833CD

mov eax, STATUS_NO_MEMORY

Jmp short loc_l8@@833F1

result of “ntdll'LdrpTouchThreadStack”

Figure 14. Disassemble

If ntdll!LdrpTouchThreadStack returns any error, ntdll.dll will invoke ZwTerminateProcess with the given error code, which

would be STATUS_NO_MEMORY (=0xC0000017) in this case.

11/19

MinimumStackCommit = peb->MinimumStackCommit;
if (MinimumStackCommit)
status = LdrpTouchThreadStack(MinimumStackCommit);

if (status >= 0)
{

if (!'dword_18016A528 || dword 18016A518 == 1
~esult = LdrProcessInitializationComplete();
goto LABEL_54;

)

¥

goto LABEL_58;

LABEL_58:
sub_1800D0998(status);
ZwTerminateProcess(-1i64, status);
RtlRaiseStatus(status, v12);

Figure 15. Snippet of pseudocode in “ntdIl.dIl”

As a result, we found that the value of MinimumStackCommitinBytes associated with a specific process in the IFEO
registry key will be used to define the minimum size of stack to commit in initializing the main thread. If the stack size is
too large, it will trigger a stack overflow exception and terminate the current process. This is how stack rumbling via IFEO
works.

Other notable threat-hunting findings

During threat hunting, we found related samples on a third-party malware scanning service provider and started tracking
the samples as Roxwrapper. Roxwrapper is disguised as a normal DLL file, srpapi.dll, and works as a dropper. We
checked Roxwrapper’s embedded content and found Bigpipeloader as one of the embedded components used in its
previous campaign. Bigpipeloader was previously used in past Earth Longzhi-related samples. Roxwrapper’s more
complicated encryption suggests that the attackers might still be testing it to see if it can better evade security products.

Table 1 shows all the components dropped by Roxwrapper and their corresponding descriptions:

Dropped file names Description

Tambahan TP MENLU-DUBES AS revDIR.docx = Embedded decoy documents
(Tong hop bao cao giao ban Khoi.docx)

ap.dll The SSP module loader through RPC, which is implemented based
on the proof of concept

apssp.dll A security service provider (SSP) module for credential dumping

dwm.exe A privilege escalation tool based on a proof of concept

dilhost.exe A type of malware used to collect and upload user data. It is also

used to download more payloads from remote servers.

12/19

Bigpipeloader, which we introduced in our previous Earth Longzhi
report

StartMenuExperienceHost.exe

Table 1. List of components dropped by Roxwrapper

Although Roxwrapper is not in the DLL file samples used in the actual incidents, this information is nonetheless
noteworthy because it can be indicative of Earth Longzhi’s potential targets. Also, the information points to a new
component, dwm.exe, which is a new privilege escalation tool that abuses Task Scheduler.

Embedded documents

We found some decoy documents written in Viethamese and Indonesian, as seen in Figures 16 and 17. Based on these
decoy documents, it can be inferred that the threat actors were keen on targeting users in Vietnam and Indonesia for its

next wave of attacks.

BAO CAO PHUC VU HOP GIAO BAN KHOI CNK&LHD
Thang 8/2022
Cidc nji dung chinh:
1. Tbng hop két qua SXKD trong théng 8/2022 ctia Khéi CNK-LHD oo, 1
2. Cac chi tiéu 1Al Chin:. . ..o oo e a e e nnaen 3
3. Tdng hop tinh hinh thue hién céc nhiém vu duoc giao tai cic cude hop giao ban Khdi.................. 4
4. K& ROACH TONE KT EGE -t ee et e ee e e e oo e e e ee e 5
e Téng hop két qua SXKD trong thing 8/2022 cia Khéi CNK-LHD
¢ San luong san xuat cac san pham chinh:
STT San phim DVT Kg;;‘;;“g t[lglf; [Igilt;;:g
8/2022 8/2022
Khi kho Triéu m3 633.00 581.00 92.00%
LPG Nghin tan 67.90 65.64 96.67%
BSR Nghin tan 39.80 38.04 95.58%
PVGAS Nghin tan 28.10 27.60 98.00%
3 Xang diu cic loai 537.49 577.42 107.43%
BSR Nghin tan 497.49 532.42 107.02%
PVOIL Nghin m3 40.00 45.00 112.50%
4 Phan dam Nghin tin 123.49 146.38 118.54%
4.1 PVFCCo Nghin tin 86.90 89.00 102.42%
- Dam Phi My Nghin tan 70.50 70.50 100.00%
- NPK Pha M¥ Nghin tan 15.90 18.00 114.00%
- Bam Kébo Nghin tan 0.50 0.50 100.00%

Figure 16. Snippet of a decoy document written in Viethamese

https://www.trendmicro.com/en_us/research/22/k/hack-the-real-box-apt41-new-subgroup-earth-longzhi.html#:~:text=Decoy%20document-,BigpipeLoader,-Aug%202021%20onward
https://www.trendmicro.com/en_us/research/22/k/hack-the-real-box-apt41-new-subgroup-earth-longzhi.html

<

N T O Y T e

JIKA DIANGKAT

Prioritas AS di UNGA 77

Catatan:

Tiga prioritas AS dalam SMU 77 PBB mendatang,
yakni:

¢ Combatting Food Insecurity
Masalah kerawanan pangan yang timbul akibat
perubahan iklim, COVID-19 dan konflik bersenjata
(terutama serangan Rusia ke Ukraina)

¢ Advancing Global Health and Global Health
Security
Penguatan ketahanan kesehatan global dalam
menuntaskan pandemi COVID-19, Kkerjasama
kesehatan seksual dan hak reproduksi,
kekurangan gizi, penyakit tidak menular dan
menular seperti HIV/AIDS, malaria, dan TBC,
kekerasan berbasis gender, serta mempercepat
upaya menuju universal health coverage dan
SDGs.

Figure 17. Snippet of a decoy document written in Indonesian

Privilege escalation by abusing task scheduler

Another notable component that we found in our threat hunting is dwm.exe, a new tool used for privilege escalation. It is
implemented based on an open-source proof of concept on GitHub. First, dwm.exe replaces the image path name and
the command-line information with C:\Windows\explorer.exe for defense evasion. Then, the Component Object Model
(COM) object, IElevatedFactoryServer, is used to bypass the Windows User Account Control (UAC) mechanism and
register the given payload as a scheduled task with the highest privilege. This approach enables the specified binary to
be launched with system privileges. This is the first time that we’ve seen Earth Longzhi actors use this relatively new
technique in its operations.

14/19

https://github.com/zcgonvh/TaskSchedulerMisc/blob/master/schuac.cs

dwProcessId = GetCurrentProcessId();
hProcess = OpenProcess(8x438u, @, dwProcessId);
((void (__fastcall *)(HANDLE, _QWORD, char *, _ int64, _QWORD))NtQueryInformationProcess)(
hProcess,
oied,
v17,
48i64,
0i64);
if (!ReadProcessMemory(hProcess, BaseAddress, &Buffer, 8ui64, 0ie4))
return 0i64;
if (!ReadProcessMemory(hProcess, Buffer + 3, &v16, 8uib4, @i64))
return 0i64;
GetWindowsDirectoryW(Source, @xl1e4u);
wescat_s(Source, @x1@5uib4, L"\\explorer.exe");// C:\Windows\explorer.exe (Used to patch original commandline and ImagePath)
Destination = (wchar_t *)j__malloc_base(@x104ui64d);
wescpy_s(Destination, @x1@4uibd, Source);
((void (__ fastcall *)(_QWORD))RtlEnterCriticalSection)(Buffer[7]);
((void (__fastcall *)(_ int64, wchar_t *))RtlInitUnicodeString)(Buffer[4] + 96i64, Destination);// Patch ImagePathName
((void (_ fastcall *)(__int64, wchar_t *))RtlInitUnicodeString)(Buffer[4] + 112i64, Destination);// Patch CommandLine
GetModuleFileNameW(@i64, Filename, 8xledu);
vi2 = *(_QWORD *)(Buffer[3] + 16i64);
v15 = *(_QWORD *)(v16 + 16);
while (1)
{

if (!ReadProcessMemory(hProcess, &v15, &vl4, 8uibd, @i64))
return 0i64;
if (!ReadProcessMemory(hProcess, *(LPCVOID *)(v14 + 8@), String2, *(unsigned __intl6 *)(v14 + 74), 0i64))
return 0i64;
if (lwesicmp(Filename, String2))
break;
v15 = *(_QWORD *)v14;
if (v15 == v12)
goto LABEL_19;

}
Figure 18. Code for changing image path and command-line information
POITUUPLIONS [I]-BITT1Idgs = &;

if (!CoInitializeEx(@i64, @))

if (CoInitializeSecurity(@i64, -1, @i64, @i64, @, 2u, 0i64, ©, 0i64) >= 0@)

{
Object = CoGetObject(pszName, pBindOptions, &riid, &ppv);// "Elevation:Administrator!new:{A6BFEA43-501F-456F-A845-983D3AD7B8FO}

if (Object)

sub_140001060((__int64)aCogetobjectFai, Object);

}
else
if (!(*(unsigned int (__fastcall **)(void *, void *, void *, __int64 *))(*(_QWORD *)ppv + 24i64))(
PPV,
&unk_140013340,
&unk_140013330,
&qword_140020CEQ))

Figure 19. Command to bypass UAC through COM object, “IElevatedFactoryServer”

As shown in Figure 20, the created scheduled task was set up with system privileges and disguised as a legitimate
Google Update scheduled task. The specified payload, dllhost.exe, is a downloader used to retrieve more payload from
the remote server.

15/19

k?xml version="1.0" encoding="UTF-16"?2>
<Tagsk veraigpn="1 3" xnlps="hitp.//schemas micrgsgft gom/windows/2004/02/mit/task">
<RegistrationInfo>
<Description>Microsoft</Description>
<URI>\Microsoft\Windows\Sysmain\GoogleUpdate</URI>
</RegistrationInfo>

<Triggers>
<RegistrationTrigger>
<Enabled>true</Enabled>
= </RegistrationTrigger>

] <IdleTrigger>
<Enabled>true</Enabled>
</IdleTrigger>
<TimeTrigger id="AttackCalendarTriggerId">
<Repetition>

<Interval>PT2M</Interval>
<StopAtDurationEnd>false</StopAtDurationEnd>
- </Repetition>
<StartBoundary>2021-10-11T11:00:00</StartBoundary>
<Enabled>true</Enabled>
</TimeTrigger>
- </Triggers>
f <Principals>
<Principal id="Author">
<UserId>SYSTEM</UserId>
<RunLevel>HighestAvailable</RunLevel>
<LogonType>InteractiveToken</LogonType>
</Principal>
= J EL J.LlL.J.pm
<Settings>
<MultiplelInstancesPolicy>IgnoreNew</MultipleInstancesPolicy>
<DisallowStartIfOnBatteries>false</DisallowStartIfOnBatteries>
<StopIfGoingOnBatteries>true</StoplfGoingOnBatteries>
<AllowHardTerminate>true</AllowHardTerminate>
<StartWhenAvailable>true</StartWhenAvailable>
<RunOnlyIfNetworkAvailable>false</RunOnlyIfNetworkAvailable>
<IdleSettings>
<Duration>PT2M</Duration>
<WaitTimeout>PT1H</WaitTimeout>
<StopOnlIdleEnd>true</StopOnIdleEnd>
<RestartOnIdle>false</RestartOnIdle>
</IdleSettings>
<AllowStartOnDemand>true</AllowStartOnDemand>
<Enabled>true</Enabled>
<Hidden>false</Hidden>
<RunOnlyIfIdle>false</RunOnlyIfIdle>
<WakeToRun>false</WakeToRun>
<ExecutionTimeLimit>PT72H</ExecutionTimeLimit>
<Priority>7</Priority>
- </Settipngs>
<Actions Context="Author'">
<Exec>
<Command>C:\Users\Public\Downloads\dllhost.exe</Command>
</Exec>
</Actions>
-</Task>

Figure 20. XML file for scheduled task created by “dwm.exe”

Profile of Earth Longzhi’s recent targets

16/19

A closer look at the samples we’ve gathered reveals that the group’s new campaign is aimed at the Philippines, Thailand,
Taiwan, and Fiji. Government, healthcare, technology, and manufacturing comprise the affected industries. Organizations
in the Philippines, Thailand, and Taiwan had already been among Earth Longzhi’s previous targets, while the attacks on
Fiji-based firms were the first we’ve seen in our monitoring of the group. Based on the document embedded in the
samples that we saw, Vietnam and Indonesia are possibly the group’s next targeted countries.

{ Taiwan

Thailand “l1 Philippines

/R

Figure 21.

Fiji

" Affected
countries

Potential
targets

2023 TREND MICRO

Geographic distribution of Earth Longzhi’s targets in its latest campaign and potential targets for future campaigns

Conclusion

In the fourth quarter of 2022, we discovered a new subgroup of APT41 that we tracked as Earth Longzhi. In the process,
we revealed two different campaigns that took place from 2020 to 2022. This follow-up article to our previous report aims
to flag readers that Earth Longzhi remains in circulation and is expected to improve its TTPs. Here, we revealed that the
campaign deployed a fake mpclient.dll, launched through signed Windows Defender binaries, to decrease its risk of
exposure. To evade and disable security products, Earth Longzhi adopted the following approaches:

17/19

https://www.trendmicro.com/en_us/research/22/k/hack-the-real-box-apt41-new-subgroup-earth-longzhi.html
https://www.trendmicro.com/en_us/research/22/k/hack-the-real-box-apt41-new-subgroup-earth-longzhi.html

1. It used Microsoft Windows RPC to create a system service instead of standard Windows APlIs.

2. It terminated running security products via a vulnerable driver, zamguard64.sys, which is essentially a BYOVD
attack.

3. It modified IFEO registries to restrict the execution of security products.

We also shared some interesting threat-hunting findings. Although the samples that we’ve collected resemble testing
files, they can still be useful because they contain information on Earth Longzhi’s potential targets and new techniques
that it might employ in the future. From the embedded documents that we’ve collected, we can infer that Vietnam and
Indonesia are the countries that they will likely aim at next. Notably, the group’s possible abuse of Task Scheduler to
escalate privileges for persistence is a new technique that it might use in future campaigns.

Another noteworthy insight is that the threat actors showed an inclination for using open-source projects to implement

their own tools. There is evidence to suggest that the group spruces up its toolset during periods of inactivity. With this
knowledge in mind, organizations should stay vigilant against the continuous development of new stealthy schemes by
cybercriminals.

MITRE
Tactics Techniques
Credential Access T1003.001 - OS Credential Dumping: LSASS
Memory
Execution T1569.002 - System Services: Service
Execution
Defense Evasion T1574.002 - Hijack Execution Flow: DLL Side-
Loading
T1140 - Deobfuscate/Decode Files or Information
T1070.004 - Indicator Removal: File Deletion
T1036.005 - Match Legitimate Name or Location
Persistence T1053.005 - Scheduled Task
Privelege Escalation T1548.002 - Bypass User Account Control
T1068 - Exploitation for Privilege Escalation
T1546.012 - Event Triggered Execution: Image File Execution
Options Injection
Indicators of compromise (IOCs)
SHA256 Detections

7910478d53ab5721208647709ef81f503ce123375914cd504b9524577057f0ec Rootkit.Win64.SPHIJACKER.ZYKB

ebf461be88903ffc19363434944ad31e36ef900b644efa31cde84ff99f3d6aed Trojan.Win64.CROXLOADER.ZYJL

21ffa168a60f0edcbc5190d46a096f0d9708512848b88a50449b7a8eb19a91ed Trojan.Win64.CROXLOADER.ZTKC

942b93529¢45f27cdbd9bbcc884a362438624b8cabb721d51036ddaebc750d8e Trojan.Win64.CROXLOADER.ZTKC

75a51d1f1dd26501e02907117f0f4dd91469c7dd30d73a715f52785ea3ae93c8 Backdoor.Win64.COBEACON.ZYKB

4399c5d9745fa2f83bd1223237bdabbfc84c9c77bacc500beb25f8ba9df30379 Backdoor.Win64.COBEACON.ZYJL.enc

8327cd200cf963ada4d2cde942a82bbed158c008e689857853262fcda91d14a4 Backdoor.Win64.COBEACON.SMTHA

9ecebab51baafe79b45d412c5347a3d2a07de00cc23923b7dee1616dee087905 Trojan.Win32.ROXWRAPPER.ZYJL

18/19

630bb985d2df8e539e35f2da696096e431b3274428f80bb6601bbf4b1d45f71e

Trojan.Win32.ROXWRAPPER.ZYJL

ef8e658cd71c3af7c77ab21d2347¢7d41764a68141551938b885da41971dd733

HackTool.Win64.TaskSchUAC.ZYJL

e654ecc10ce3dfof33d1e7c86¢704cfdcIcfoc6f49aal1af2826cbcdb659e97¢

Trojan.MSIL.DULLDOWN.ZTKA

16887b36f87a08a12fe3b72d0bf6594c3ad5e6914d26bff5e32c9b44acfec040

HackTool.Win64.MIMIKATZ.ZYKA

39de0389d3186234e544b449e20e48bd9043995ebf54f8c6b33ef3a4791b6537

Domain/IP Description
194.31.53[.]128 c&C
198.13.47[.]158 C&C
207.148.115[.]125 c&C
64.227.164[.]34 Cc&C
evnpowerspeedtest[.Jcom C&C
www.updateforhours[.Jcom C&C
dns.eudnslog[.Jcom C&C
asis.downloadwindowsupdate[.Jco C&C

194.31.53[.]128

Download site

198.13.47[.]158

Download site

HackTool.Win64.MIMIKATZ.ZYKA

19/19

