RTM Locker Ransomware as a Service (RaaS) Now on
Linux

c uptycs.com/blog/rtm-locker-ransomware-as-a-service-raas-linux

Uptycs Threat Research

The Uptycs threat research team has discovered a new ransomware binary attributed to the
RTM group, a known ransomware-as-a-service (RaaS) provider. This is the first time the
group has created a Linux binary. Its locker ransomware infects Linux, NAS, and ESXi hosts
and appears to be inspired by Babuk ransomware's leaked source code. It uses a
combination of ECDH on Curve25519 (asymmetric encryption) and Chacha20 (symmetric
encryption) to encrypt files.

RTM Locker was identified during Uptycs' dark web hunting. Its malware is specifically
geared toward ESXi hosts, as it contains two related commands. Its initial access vector
remains unknown. Both asymmetric and symmetric encryption make it impossible to decrypt
files without the attacker's private key.

Notable similarities between RTM Locker and Babuk ransomware include random number
generation in addition to using ECDH in Curve25519 for asymmetric encryption. Babuk
differs slightly from RTM Locker by using sosemanuk for asymmetric encryption, while RTM
Locker uses ChaChaZ20.

The good news is that Uptycs extended detection and response (XDR) provides advanced
detection capabilities and YARA rules for detecting RTM Locker malware.

FAQ

Q. How are RTM Locker and Babuk ransomware related?

It appears RTM Locker leverages leaked source code from Babuk ransomware. Both
malware types use random number generation, Curve25519 implementation.

Q. How does this new ransomware infect Linux, NAS, and ESXi hosts?
The initial access vector for RTM Locker is unknown at this time.
Q. Can the encrypted files be decrypted without the attacker's private key?

Sorry, no. The combination of asymmetric and symmetric encryption makes decryption
impossible without the private key.

Q. What are some unique RTM Locker features compared to other ransomware strains?

117

https://www.uptycs.com/blog/rtm-locker-ransomware-as-a-service-raas-linux
https://www.uptycs.com/blog/tag/threat-research
https://www.uptycs.com/products/xdr

RTM Locker specifically targets ESXi hosts, contains two ESXi commands, and is the first
Linux binary created by the RTM group. It is also inspired by leaked source code from Babuk
ransomware.

Q. How did the Uptycs threat research team discover this threat actor’s ransomware?

We identified the RTM Locker threat during our ongoing dark web hunting. Such continual
research is imperative to better serve our customers.

Q. What measures can be taken to detect and mitigate RTM Locker?

Organizations can use advanced detection solutions such as Uptycs XDR. Its built-in YARA
rules and other advanced detection capabilities identify and mitigate RTM Locker
ransomware. To this end the Uptycs threat research team has shared a YARA rule to detect
RTM Locker.

Threat Attribution

The threat group RTM Locker was discovered by the Uptycs Threat Intelligence team during
our dark web hunting. Figure 1 shows the post made by the RTM group about their Locker,
which targets Windows, ESXi/Linux, and NAS systems.

217

RT M MpeacTaBAAem Ballemy BHUMaHMWIO NapTHePCKylo nporpamy RTM Team Locker
Cogrz
-CH+
team - Cogr Hanuca Ge3 kax nuGo 3aBMCHMOCTER

Now 30, 2021

M
== - Pabota no CHI

Reaction score - Cnue 6MnAcB M agpeca naHenei/6nora
Points
- Moboe obweHne Tonsko TOX
- Bepem B paGoTy MHTEPecHbIe ANA HaC TapreTsl B patoty
- MNpw oTNpagAeHN 3aRBKK GyiTe rOTOBL! OTBETMTL Ha PR/ BOMPOCOB
- He paGioTaem ¢ aHIOroBOPALMMK (MCKJIKOYEHWE EC/IM ECTh PYCCKO MOBOPALLMIA NapTHep)
- PaboTa HauMHaeTcA ot 70% B Bally CTOPOHY. YCNOBMA NEPECMATPUBEAIOTCA OT penyTaumMi, obkema Tapretos
- He Gepem B NapTHepbl BCeX MOAPA/A HAC MHTEPECYET KaYECTBO M ONbIT
- PaboTaem € TapreTamu ¢ NOTEHLMANLHEIM PEIOHAHCOM
Bo3morkHo co3ganne 6ungos Ha saw TOX (ToAbko ANA AIOAEN € permyTaupmeri)

KoHTakTel TonLKO yepes JIC ¢opyma (Toasko TOX)
3apanee NpoLly Tex KTo JIOUMT BCe noapaa 6e3 pazbopa He NUCaTh, He TPaTke Halle BpemMA.

ENG

Introducing the RTM Team Locker Affiliate Program
Soft:

-CHt

- The software is written without any dependencies
- ESXI/WIN/NAS

- Strong full encryption

Forbidden:
- Work in the CIS
- Draining builds and panel/blog addresses

- Any communication only TOX

- We take into work interesting targets for us to work

- When submitting an application, be prepared to answer a number of questions

- We do not work with English speakers (except if there is a Russian speaking partner)

- Work starts from 70% in your direction, the conditions are revised from the reputation, the volume of targets
- We do not take everyone as a partner. we are interested in quality and experience

- Working with targets with potential resonance

- It is possible to create builds for your TOX (only for people with a reputation)

Contacts only through the PM of the forum (only TOX)
1 ask in advance those who lock everything indiscriminately not to write, do not waste our time.

43 RTM Team Locker E28E 1
E 2

-CH++

- TYEMSEGS0 70% TG, MSE. BinBsEssdt
- BIAEE M AR, RiTNRSEaE G
- SEEEAEHRNHI—ETE

- alEChsG ToH SBENEE (DUEMTEAEA)

FIEEETIeIRT PV BEE (BUR TOX)
EESSRPEENESHARES, FEREhinmE.

Last edited:

.

© Report i Like * Reply

Fig. 1 - The post made by RTM group about its locker

https://2617658.fs1.hubspotusercontent-na1.net/hubfs/2617658/Fig%201.png

A previous Windows version of this ransomware was reported by Trellix, in which it mentions
an onion site link to contact the threat actor. This appears to have prompted the team to
move to Tox. The binary for this report contains no mention of the onion site; only a Tox ID is
mentioned (Figure 18).

Ve wark guysl W aee sl open or coopsration with serious partree
Iy this Bighvt of recent events in thi Theld of kas, we ane movisg away Trom e admin panel, bullding bullds for support tox. we will aley colect & bulld for partres
tea il with weer eeperiencat)

00 N fimakized

Fig. 2 - Attacker update about moving from an onion site to Tox

Technical Analysis

RTM lockear workfow l -{ b

Fig. 3 - Mind map of the Linux executable

The ransomware binary seems to be geared towards ESXi, because of the two ESXi
commands that were noticed at the start of the program. It is statically compiled and stripped,
making reverse engineering more difficult and allowing the binary to run on more systems.
The initial access vector is unknown.

4/17

https://www.trellix.com/en-us/about/newsroom/stories/research/read-the-manual-locker-a-private-raas-provider.html
https://2617658.fs1.hubspotusercontent-na1.net/hubfs/2617658/Fig.%202.png
https://2617658.fs1.hubspotusercontent-na1.net/hubfs/2617658/Fig%203.png

Decormpibi; rmain - (e esx_Me_ood.out) % W @ X
1
2 undefineds main(woid)
i
4
5 malloc_wrapperi);
6 | name_threads{);
T | run_esxi_commands(h;
8 | pthread wrapper_main{EDAT_@84d@17d,encrypt_file);
8| return B;
18}
11

Fig. 4 - Main procedure of the ransomware

name_threads, run_esxi_commands and pthread_wrapper_main are the important functions
in this binary. name_threads uses sysconf(3) with _SC_NPROCESSORS_ONLN as
argument to find out the number of threads to use in the program, and calls
name_thread_routine in the pthread_wrapper routine to name each thread as shown in
Figure 5.

Decompile: pthread_wrapper - (e_esx_Hfa_xhd.out) %G [i~ %
=7 IPETE — PITEI T UREN], il
1@ FUM_B240a268(1varl,e); -
31 FUH_pa4apbafelvar? « aul8,n);

*lundefinadd *j{1Var? &« @x58) = @

33 I¥ar? = FUN_@042ed3@(uvars * E);
35 if {1var2 I= @} {

FUN_8@4@al&@(alvart + 2,8);
ET) FUN_@@ddabsfe(olvarl = 7.8);
11 if (@ ¢ [int)param_1) {
i uvard = @:
A do
41 1¥ag2 = *plvarl:
42 uvard = {urdefinedd *)FUNM_284 20008 Bx18)
43 *(undefinedd =*){1var2 + uVard * 8) = puVard;
44 if {puVarl = (undefinedd *)dxd) |
A4 *{long **){puVarl + 4) = pl¥arl; ™
45 *muvar {intjuvara:
a4 pthread_create_2_1(puvari + z',u.'|;|11."_1_'|rr~-1|'|_'r-'|||:'inrl,: ard);
a4 FUN_@oada2ed(* (undefined® *)(*(long *){1Vari + uvard * &) = 8));
L] 1
LR Ward = uWard + 1;
=1 b while {uvars f= uvard);
5d }
3 go {
54 } while (*{int *}{plVvarl + 1} != (intjuVars);
55 return pl ;
56 }
37 FUM_BBaRECeR{plvarl + omd);
58 H
39 FUn_gdd2esf@iplvazl);
B2 1
61| return {leng *)exo;
62) |
Rl X

Flg. 5 - pthread_wraper calls pthread _create with name_thread_routine as an argument

name_thread_routine names each thread to use later in the encryption process. The threads
are named “Thread-pool-%d”, with the decimal number representing the index of the thread.
Shown in Figure 6, this is done using prctl(2) with PR_SET_NAME as its argument.

5/17

https://2617658.fs1.hubspotusercontent-na1.net/hubfs/2617658/Fig%204.png
https://2617658.fs1.hubspotusercontent-na1.net/hubfs/2617658/Fig%205.png

Decompile: name_thread_routne - (e_gsxi_fe_xfd.out] 5 [| ol
1 | |
2 |/* WARNIMG: Globals starting with °_' overlap smaller symbols at the same address *7 Ty
3
A urdefinedd name thread rautine{undefinedd *param 1)
3
B
7 lamg Ivarl;
2 lamg IVard:
k] int iVar3;
18| long
11| long 1Vars;
12| undefinedd *puVari:
13| wndefined lo & [16];
14| wundefined local_d2 [16]: LA

15| code *local_c8;
18| undefined loc ol [128];
17| undefinedd local d@;

local_d8 = FEXTB1G[@);

local _ed = ZEXTB1G[@);

sprintf wrapper(local es,@x2@, " Thread-pool-%d” , *paran_1);
prctl_wrapper{@xf, local eB);

lvard = *{long *)(param_1 + 4);
FUN_@@41d828({local cd);

local 4@ =- @;

local_c8 = FUM_234B730a;
FUN_@@48dbad(10 &local cE,@);

IWarl = 1Ward & @x18:

FUN_@adaabsa(1Varl);

“{int *)(lVard + B} = *{int *){lVard +« g} = 1:
FUN_@@dabled(1varl);

if [_DAT Bades3pd 1= 8) {

EEE e EREEREEEER

I.k.) [;

B

Fig. 6 - Threads being named inside name_thread_routine

After naming each thread, the run_esxi_commands routine is called. Notably, this is not
called on the NAS variant of the binary, since a NAS does not run ESXi.

6/17

https://2617658.fs1.hubspotusercontent-na1.net/hubfs/2617658/FIg%206.png

Drecompile: run_esx_commands - (e_esx_lfe_x6d.out)

1..' 4

12| uwndefined austack 1 [364] :

14| system(“esixcli wm process list »> wmlist. tmp 1xLi"|'
15 Jard = FUN_DRd2e208(axladdad)

16 vard = fTopen[“wnlisttmp. tat® ADAT_P@<Sd@d@cT) :

LF it (IVard I= @) (

18 15 o= fgots(ly B 100308, 1Vard):

19 if (Ivars I= @) { !
i var a;

21 LAE_aa@ fiaa

23 do {

23 if (*{char *)(lvar3 + Th) f= thnt) |

2 if (({*(char *piIvars + uvard) == ':') B& (¥ < uVazh)) &k

25 (i 1 = {int] . "ichar *){ + [ulong)| 1= 1)) == "07}) E&

26 {ir*ichar *) + [ulong) | 1-4)) == 'd" &&

27 [*{char *)[+ [ulong) 1 - B]) == "W]}]E&

28 (*{char *1(5 + 1 + To== T o

20 I 12 = [char *}{{ulong)(ivarl + 2} & 1Var

] oa {

31 N Warl;

32 Varl = Var7? & 1;

33 } while §ibyte)(* ET - @wIdl) < 18);

34 * IET = "\B')

a5 strncat| ;esxell wm process kill -t-force -w=" @);

36 strepy(a k Jard + qulang) (iVarl + 2));

a7 systen(a k i

38 1

20 alse | A
4p Varh = [1:

41 if (uvart I= @x1dfedd) goto LAS_294879ba;
42 }

43 B

44 = foets(IVard, ex1eons, r4]:

45 rh = @;

Fig. 7 - Two ESXi commands are run using this program

-

The two ESXi commands are:

1. “esxcli vm process list >> vmlist.tmp.txt”
This command lists all the ESXi VMs currently running on the system.

2. “esxcli vm process kill -t=force -w”
This command Kkills all the ESXi VMs that were found by the previous command

Interestingly, the file read by the program, vmlisttmp.txt, isn’t the file that it writes
to(vmlist.tmp.txt). The differing filenames are a mistake made by the ransomware author,
which suggests this ransomware might still be under development.

After the binary successfully kills all the running ESXi VMs, it begins the encryption routine
by calling pthread_wrapper_main.

pthread_wrapper_main seems to be a custom function that calls multiple pthread commands
to run the encryption process more efficiently. Figure 8 shows a snippet of FUN_00407580, a
function that is used to read the entire system using opendir(3), after which it performs
Istat(2) on the file descriptor and progresses through the function based on the results of the
system call.

717

https://2617658.fs1.hubspotusercontent-na1.net/hubfs/2617658/Fig%207.png

o

Drecompibe; FUMN_00407580 - (e_esx_HHe_x64,outh
2 uint 1

24 vart = opendir);

5 if (1varg != @) {

26 17 = readdir(l¥arG);
27 if | a1

28 closedir{Ivark);

29 }

kL) elsa {

n puVarle = undefined2
iz bvar2 = false;

a3 oo |

34 cWard = *{char *)(1var?
a5 if fcvard == “v@') {
16 i%ars = lstat_wrapper(lvar?
a7 if {iVazs !'= @) {

38 varf = | 15 & BxTofd:
1] if ({u¥ard == | fleVard = {uvars
49 poto LAR ORIa7ach;

41 goto LAD_ B0 515

42 }

*}i{param_2 + pazam_1});

+ RK1Z);

+ 013, lacal_c@)

e R == Qi) €< 2 uvar

a4 else if |
45 |LAE_@eda7vech:

45 ivars = checksun_func([char *}(lvar
47 if (ivars !'= @) {

48 cWard = *{char *j(l
49 puvarls = puVarle:

5@ if (cWard != "W@')
51 Jarl@ = {(char *)i(l
52 do |

53 *|char *)puVar = gWari:
S4 pu¥aris {undefined2 *) [long)puvar + 1):
55 ri =¥ :

Fig. 8 - A FUN_00407580 excerpt

e) {

* 2uld)).

T4 Bx1E):

+ Bixld4}):

]

== BxddB) == true

blx

|-1!'

Two parts of this function are intriguing: 1) the call to the actual encryption routine
(i.e.,encrypt_file referenced in the main function, and 2) how it finds which file to encrypt.

The Istat(2) system call returns 4 for a directory or 8 for a file. Figure 9 shows a function
excerpt where a checksum is performed, after which the encrypt_file function is called. This
checksum seems to only check file extensions and, like the source code that inspired it,

currently works for the following extensions:

dog .vmdk .vmem .vswp .vmsn

8/17

https://2617658.fs1.hubspotusercontent-na1.net/hubfs/2617658/Fig%208.png

5“
|_1_
i
L]
'l|..| b4

}
44 else 1T | I3 == B) |

45 LAB 2@42T6HCE:

44 IVars = checksum_tunc[{char =) (LVar? + @xl3));
47 if (i¥ar5 != @) {

48 Varl = *{char *){1var7 + 8x13):

45 Warls = puvarle;

58 il fevarl !'= "'y

51 varl@ = {char *){1vaz7 + 8xid):

52 do

2 *{char *)puvarls = cWard:

54 puvarls = Jundefined2 *)((long)puvarls + 1) ;
55 Vard = “pcWarlf:

36 I 118 = pcvarie + 1;

57 } while (cWard = "WA'):

58 ¥

59 *(undafined *jpuvarl):

G (*{code *)encrypt_file)(paTzan_1);

51 . P——

B2 }

&3]

Fig. 9 - Excerpt from FUN_00407580

e

The encryption function also usespthreadsto speed up execution. It obtains locks on
particular threads to prevent race conditions, then runs another function that encrypts a
single file.

Figure 10 shows the function called by encrypt_file. It has two constants, ‘expand 16-byte k'

and ‘expand 32-byte k™ related to the Salsa20/ChaCha family of ciphers. This leads us to
believe the file is encrypted using the same cipher family. Figure 11 shows the constants as
found in the function.

9/17

https://2617658.fs1.hubspotusercontent-na1.net/hubfs/2617658/Fig%209.png

[~

Deecamplle: PUN_D0S06680 - (& esx_|fe_obd.out)

12| Lyte =N
13| urdefined local 198 [32];
14| uvrdefined lacal_of [48];
15 uvrdefined lacal_ca [144];

17| u¥arz = malloc|@xaldasd) ;
18| Fuw_pdd@dlecd|local 128, @x2a);
18 local 128[8] = local 128[) & BxfB:

local 189 = local 109 & Buc3f | @udd;
21| FUN_ea4ee | local 198, Tocal 172 RDAT a8

22| FUN_0AAR2ATA([lacal_ef local_128 &DAT

23| has_salsa_@d_key(local_ce 8,
24 T3 = fopen{param_1, "reb"):
25 if (lvar3 1= @) {
26 local 138 = @;

T IVard = r:n.-.di- var?, 1, BcaBdded, 1varl) ;

28 1Var: 1 B
29 if {IvaTd 1= B) {
kL Vars = &;

kil do f

32 I¥ar5 = 1vax5 + IVard:
33 encrypl_bytes(L
EL FUM_ a2 2pia) 1
% furite{uvar? 1
G FUN_@adz2Rmaf Ivar

.“:IJ:

7 Ward = fread{uVard, 1, dxadaned, 1Var3);

38 b owhile [IVard I= @],
£ 1
ae local 138 = 1var5;

a1 freo[uvar?);
43 fwritelocal 188 1, Bx2B 1VWazi);
a3 fwrite(klacal_138,1,8, Ivar3);

A4 FUM_Pa17778 1¥ax3) :
45 FUN_B@a1fded] 1Vaxrs) ;
46 ivarl = FUN_88481738(param_1}):

a7 ubard = mallacf{long){ivar] + @x16));

a8 strncat{uVar? param_1,8);
an strepy{udars hrim_sxt] ;
58 rename| paran_1 uvarl);
51 freefuvarz):

o2 1

53| return;

F)’g. 10 - The FUN_00406680 function that encrypts a single file

The function in Figure 10 essentially encrypts a chunk of bytes read from fread(3) and writes
that, after which it probably seeks to the next chunk before reading it and encrypting the next

chunk of bytes.

https://2617658.fs1.hubspotusercontent-na1.net/hubfs/2617658/Fig%2010.png

g o h._l:'._':..:llsa_ll:l_l:i;:r'- |e_1$:1|_lf|_:tﬁ4.¢|.rl:} ﬁ L I..I-:. ﬁ - X

19 if ((@x1811@0U »» (param_Z & @x1f) & 1) == @} { N
28 return B;

21 H

22 “param_l = param_2;

23 if (param_4 == 37

24 param_1[1] =jdx

25 param_1[2] =Q§@x3328645a;

36 paran_1[3] =fax79622d3z; --""b' expand 32-bit k
27 param_1[4] =§@x5b3e6574;

28 param_1[5] = "p

9 param_1[6] = p

13 param_1[7] = par

1l param_1[B] = par 3[3]:

12 param_1[%] = param_3[4];

13 param_1[1@] = param_3[3];

14 paran_1[8xbh] = param_3[6];

15 paran_1[8xc] = param_3[7];

16 }

17 elas

1 if {param_4 != 16} {

3% return @;

a8]

a1 paran_1[1] § @1 787865; _,_J'
42 paran_1[2] 4 @x312a6d8he; expand 16-bit k
43 paran_1[3] 4 @ux7" [l __-’

44 paran_1[4] 4 @

a5 paran_1[5] = Tparam_

45 paran_1[§]

a4 paran_1[7]

48 paran_1[#]

i paran_1[%] =

9 paran_1[1@] = param_3[1];

&1 paran_1[#xh] = param_3[Z]:

52 paran_1[#xc] = :ar-‘ll‘_:ﬂ_-‘];l :

Fig. 11 - Constants related to the Salsa20/ChaCha cipher family

After searching through the entire file, the filename has an .RTM extension appended to it.

File encryption on Windows and Linux versions

The encryption algorithm has two steps:

1. Asymmetric encryption is initially used. The bad actor embeds a public key in the file,
with its corresponding private key remaining with the attacker. It generates a 32-byte
shared secret between the attacker's public key and the file ephemeral keys using the
Diffie-Hellman key exchange protocol.

2. It then uses ChaCha20 symmetric encryption. The shared secret is hashed to obtain a
32-byte key to be used with an asymmetric encryption algorithm. After encryption, each
public key is written at the end of its corresponding file (as with Linux) or appended as
an extension for Windows.

Both ECDH on Curve25519 and ChaCha are statically implemented without using any
libraries or crypt function.

The Encryption Process

1. An ephemeral key is generated by using:

11/17

https://2617658.fs1.hubspotusercontent-na1.net/hubfs/2617658/Fig%2011.png

¢ Windows — SystemFunction36 resolves to bcryptprimitives.ProcessPrng, which
generates a specified number of random bytes from the user-mode per-processor
random number generator.

e Linux — By reading /dev/urandom to generate a random sequence.

These random bytes are used as a private key during the Elliptic-Curve Diffie-Hellman
(ECDH) algorithm implemented on Curve25519.

% W==

|
push affset LibFilellame
call ds:londiibracyd __dntéd __Pfantcall sub_d01ECO(_ intéd, int)
ma hodule, eox aub_&01ECO peos near
1 i __unwind
push Ebp
push wid
push Ebx
o abp, eal
loc_484240; tmow rld, rdi
mo eow, dwerd 421300 =7 3L, CITant GBavULanoom : &/ dev, urandos
test BCN; ECX o esi, offset read r
Jnz short loc 806209 j=all 10_new_ fopa
TEET FAX, TEW
ti'] 1 l]l ahert los= 401EFF
=
ush offiet ProcNase ; temfunctlond 3
push LTE 3 heodule
all ds 1GetProcaddres
ECw, ean
Y dwerd 421308, ecw |
.
i) ff stasts ar 401ECO
WINDOWS mub_401ECE endp

LINUK

Fig. 12 - Random number generator as ephemeral key
2. The private key is now used to generate the public key on Curve25519.

* Windows — The public key is appended as an extension to the encrypted file.
e Linux — The public key is appended to the end of the encrypted file. This public key is
used for decryption in the event of a victim paying ransom.

Sem
&=

B | wiilEp il ejautE
2 gls| ~TaCE T

ED D2 ©% 7 | E1 F® B3 &1 FTC Bl
216 82 77 0B BE 3C OF IF 32 €2 4F OF IF 02 | thoiw
i 11 GF SD A1 &L CC 02 ®F 21 20 &C 9F 2§ 0% 1]
EL 50 ki 1E F§ 7) 9F 21 5B 54 E2 45 57 70 B
D4 BB 7E EE 37 46 CD B8 BD C4 62 F3 EC AE C2
23 F? CI L& 79 51 €A CD €8 81 52 E2 €D 34 28
OE 53 5% £0 25 %% 0% CB E£1 4& CO 27 &0 45 BA
JE &3 04 CD BS 37 C3 9E B2 ED C9 2% 83 CO D2
0% CB 84 29 Eb U5 CE F1 S4 4% A) AC B7 06 &k
4] IC &1 4E 64 £ B }e #1 39 D) FE IC AT
9% TF &% Cd 60 54 73 RO &F 11 €1 44 43 55 12
EB EA D4 5C 40 BB LE EE B4 6F &4 24 AF A Ch «
B9 Ch 34 BC DE SC 86 73 ED FB O7 A3 0D DE F3 | &*
Bl 57 Bl 71 78 E? 6E AD DD BC &k DC 50 D6 B2 |0 We
DE D Z4 51 b8 ES A i
BB 10 €F 01 %0 02 F % §F
ATV 3 300 PSR NPT MSACRAL LT e T M, Vi il 34 36 Cb 3D &% 31 2 H]
NI | B AAD Pes MW EF Dl 0 BF 30 &4 8C 7 CD BA CT
Ch 1D 45 AS BA OF 0§ 75 3B 4L FO EE 04 64 v, {
31 00 @3 BT ED AF 2F 36 24 4k E& 52 7 al.3 -3 .lle
26 2D &L BA BF EJ 02 D& ES Ed 7B 1B C Bh=q B0 A] ¥ Pl & el
Ay 31 cE EC C3 FE A% 23 68 04 EC sy b et o T Puliit hay generatadin
Sep 2
a0 it
GO1A0F90 | 14 00 00 S0 o0 00 0
Filw Dxtanaion having
Prulibe ey ganariied in

g 2

Pilarks tha start of tha
pubilc key Foreg

1&dl6e iy this cose
WINDOWS ENCRYFTED FILE

LINUR ENCRYPTED FILE CONTENTS

Fig. 13 - Encrypted files

12/17

https://2617658.fs1.hubspotusercontent-na1.net/hubfs/2617658/Figure12.png
https://2617658.fs1.hubspotusercontent-na1.net/hubfs/2617658/Figure13.png

3. A shared key is now generated, using the private key from step 1 and the attacker's public
key hardcoded in the file on Curve25519. This shared secret is now used in symmetric
ChaCha20 encryption.

TR T I
38 ED A7 D b 04 T3 B4 B9 Ra RS R TH
= oy

HARDCOOED ATTACEERS PUBLIC KEY B
SWIRDDWS FILE

AR AR 1Y i B2 Ak §1 L ik
i ! it

HAR Do DO ED ATTACKERS PUIBLIC KEY BN
WAIN FILE

Hardcoded Ariackurs Public ey used to
gareratn shind by a1 6 itep 3

WINDDWS FiLE

Fig. 14 - Code snippet showing shared key generation Curve25519

ChaChaZ20 is a symmetric encryption where:

o Key — 32-byte shared key from step 3

* Nonce — 8 bytes 0000000000000000

e Counter-0

e ChaCha20 is used for symmetric encryption in both Windows and Linux

o For Windows, only the first 8000 hex bytes are encrypted, and the remaining bytes
remain intact

o For Linux, the entire file is encrypted

%5
Ba
e
0o

78 70 61 |6e 64 20 33 (32 2D 62 79
CB D7V AE |E3 2F CB 98B [0E EA 33 BC
&7 6D FE |[ES 12 c8B 85 (56 1B E3 EA
00 00 00|00 00 00 OO0 (00 00 0O 00

74 65 20 6B
6F CB B2 ED
40 AF 9 4B
00 00 00 00

gxpand 32-byte k

.Ex®3/E..&5.0E %=
.mpe E.V.aéll JK

Fig. 156 - ChaCha key structure along with constants, key, counter, and nonce

File decryption

To decrypt the file, the public key, which is present in extension (WIndows) / end of the file
(Linux), is read and along with the attacker's private key the shared secret is obtained
allowing file decryption. Use of both asymmetric and symmetric encryption makes it
impossible to decrypt the encrypted files without the attacker's private key.

Similarities with Babuk ransomware

As

mentioned, RTM Locker was likely inspired from leaked source code of Babuk

ransomware.

13/17

https://2617658.fs1.hubspotusercontent-na1.net/hubfs/2617658/Figure14.png
https://2617658.fs1.hubspotusercontent-na1.net/hubfs/2617658/Fig%2015.png

e Linux random number generation is done by reading /dev/urandom, the same as for
Babuk ransomware

e Windows and Linux Curve25519 implementation is based on Babuk ransomware

e Both Linux versions encrypt files using the .log, .vmdk, .vmem, .vswp, and .vmsn file
extensions

e Both use ECDH in Curve25519 for asymmetric and ChaCha for symmetric encryption.

T LOCKER LRNUN SAMPLE CURVERSSLS

BASUK SOURCE COCH CURVEZSSLE AMPLERAEHTATION

IEPLERMINTATICNT

Fig. 16 - Similarities between RTM and Babuk ransomware

After the entire directory is read, FUN_0047580 leaves a ransom note in the current directory
that has a !!! Warning!!! filename (Figure 18).

184/LAR_@oaa7sfa:

183 17 = readdir] 1) H

186 I while { 1= &];

187 closadiz(

las 1F 0) AR

149 {strncatiparan_1, wazning! 117 param 2], *(int *)(DAT_ORdee2fd » dxic) 1= 0)) BE

110 | - fopen(paran_1,L04T_004boads) , 1=) { Iy
111 fwzite (Do A [6].0, (dong)= {inT *D{DAT_004 = #lc), IV |

112 FUN #4220 090 B, 1

113 Fl
114 F1®
115 }
116 }

17

118 retum:

Fig. 17 - Excerpt from FUN_0047580 that writes the ransom note

M_BaA1T TR
B

A\
N f4e@(b

Figure 18 shows the RTM Locker ransom note. They group has left a Tox ID to contact it to
decrypt the files after paying the ransom.

14/17

https://github.com/Hildaboo/BabukRansomwareSourceCode/blob/main/esxi/enc/curve25519-donna.cpp
https://github.com/Hildaboo/BabukRansomwareSourceCode/blob/main/esxi/enc/curve25519-donna.cpp
https://2617658.fs1.hubspotusercontent-na1.net/hubfs/2617658/Figure16.png
https://2617658.fs1.hubspotusercontent-na1.net/hubfs/2617658/Fig%2017.png

S cat V131, Waraingl 1y 041

111 Your network is infected by the RTH Locker commandl!l

ALl yvour documents, photos, reports, customer and employee data, databazes and othar
important files are encrypted and you cannot decrypt them yourself. They are also on
our servers! But don't worry, we will help you recover all your files)

The only way to recover your files is to buy our dedicated software. Only we can prov
ide you with thi= software, and only we can recover your files|

We value our reputation. If we do not fulfill our work and obligations, no one will p
ay us. It's not in our interest.

ALl of ocur decryption software is perfectly tested and will decrypt your data. ke wil
1 also provide support in case of problems

Te contact us, you need to install TOX {https: /S tox.chat/download.html), write ta our
support.
Contact: ABFE185AB2525ECBS4DD297 FEB4ALIFBASATCFEZF12DT20DDBCEDSCCAIFSBBAGF52D911126ACIDF

111

If you do not contact the support team within 48 hours, your data will be published i
n the public domain, and compromising data will be sent to your competitors, as well
as to the relevant requlatory authorities.

DO NOT ATTEMPT TO RECOVER THE FILES YOURSELFI
D0 NOT MODIFY ENCRYPTED FILES!
OTHERWISE YOU MAY LOSE ALL YOUR FILES FOREVERI

Fig. 18 - Ransom note

S sudo find / -type f -iname "*.RTM" 2>/dev/nu
JSrun/cloud-init/cloud-init-generator.log.RTM

Srun/cloud-init/ds-identify.log.RTM

JSrun/initramfs Joverlayroot.log.RTM

Srun/initramfs/fsck.log.RTM

fusr/share/doc/python3.B/pybench.log.RTM

fwar flib/mysql/tc. log.RTHM

fvar/lib/docker /containers f1142c893884baa9d1742b43d63c962291164b29T9196d7af5781Fa3can)
Tde040/1142cA93664baa2d1T42b43d63c962291164b2979196dTaf5TE1Ta3c60TdBO40 - json. Log.RTH
fvar/lib/docker /containers faded7326a8b88a12cc56cad557 36aed54d510bbacbd98OTETFa2a32ddd)
46094 fadedT326aBboBaliccitcad 55T I6aed 54d510bbachd989TETFa2a32dd046C094 - json. Log.RTH
fvarflib/docker fcontainers /c2d28ae4100543992Fbf310ce2e6dfbT135849ddTT6239bT02Cc1e1TB5T
de5951 /cid2Baedl0054a992FbTI10ce2ebdTbT135849ddFF6239bT02C1elTE5Tde5951-json. Log. RTH
fvar flib/docker fcontainers faefl3f2baae9cd6691b527545T4ba3dThbaT3accddeda3bdetsasnedall
3025eT jaeTlitibaaedcdis91b527545T4ba3ddThaT3accddedaibiet5a600d8113025eT-json. Log..RTH
Sfvar flib/docker /containers /ffa9098bs6da8Te5Tb8ca%eciel75c4b318TT15bd1a2eb5 T486edeeacs)
47273/ TTaoe98be6daBTe5Tb8ca%eclelT5cd4b3187715bd1a2ebiT486edecactadTET3-json. Log..RTH
Svar flib/docker /containers /447 3b6c5FabT87he0Cca2Ta014T8625276beB62T6422016689aT65b3828)
Saaabz /44T 3b6cS5TabfBTb60CB2Ta014T86252T6be862T642291668%aT65b382e5aaab2-json. Log..RTH
Svar flib/docker /containers /aag7Tbaaleat7519632d3463b2d1e2F7oc818T T 4a6d3Thbcdc48cB6de)
TT46a6/aaBTTbaaleal7519632d3463b2d1e2f79c818T4a6d3Tbbcdc48cB6cdeT T46a6-json. Log.RTH
Sfvar flib/docker /contalners /b57bbf1938004934901 3cec280f fd5accbabbebachba26995e5alecasd
pefTds /b5TbbT19389049349b13cec280f fd5adcchabiebachaz6995e5alecasdoedTd8- json. Log.RTH
Sfvar flib/docker /contalners /828408cd493ea59b6ac25cd2a0343T8ec25T835dTed4cacac2BT482cbde)
a4a734 /828468cd493ea59b6ac25cd9an343T8ec257835dTedcacae? b 794-json.log.RTH
Jvar flib/docker fcontalners f1d9b979a0F faa72b99835444256Tach8237483 03T c62e2bfc2BeBf5C

Fig. 19 - Files encrypted by the RTM Locker ransomware

Uptycs XDR Coverage

In addition to having YARA built in and being armed with other advanced detection
capabilities, Uptycs XDR users can easily scan for RTM Locker. XDR contextual detection
provides important details about identified malware. Users can navigate to the toolkit data
section in the detection screen, then click a detected item to reveal its profile (Fig. 20).

15/17

https://2617658.fs1.hubspotusercontent-na1.net/hubfs/2617658/Fig%2018.png
https://2617658.fs1.hubspotusercontent-na1.net/hubfs/2617658/Fig%2019.png

¥ 1 Aseri 1Tactic Advanced Threst i e R] .
o o 1010 '] x T ¥ @ ALTRING, |
Ao 2 Dvmntn 1 Teschicse g UTT0NY [PEREY

SGMALS DETECTION GRAPH COMTEXT ACTIVITIES

[T Sotby
Bl ATTACK Watri @ dsigrais B swe AR - Timae =

olooooooE@Oon
0 Yara rube mabchon process memary w240 £ 5 LTS Foc Fessal

& Sigrab Q1) Uty Ransormmard_ T M, Locker

@ TSROt CUTUTON U

Z_Bets_Protessstanling imtorsctive shell o)
¥ A Fie and Procosses [2)
- ST (I R

R Users(l)

= & Tooikits |1}

Fig. 20 - Uptycs detection

I0C

SHA256

55b85e76abb172536¢c64a8f6cf4101f943ea826042826759ded4ce46adc00638

b376d511fb69085b1d28b62be846d049629079f4f4f826fd0f46df26378e398b

d68c99d7680bf6a4644770edfe338b8d0591dfe143278412d5ed62848ffc99e0

YARA

Uptycs XDR scans the memory of newly launched processes and detects any presence of

suspicious strings by using YARA rules. The rule for detecting this RTM Locker has already
been made available to our customers.

If you're not an Uptycs XDR customer, you can use either the YARA tool or a third-party tool
to scan suspicious processes. Here we share the rule for your convenience.
rule Uptycs Ransomware_RTM_Locker
{
meta:

malware_name = "RANSOMWARE"

description = "Ransomware is a malware that encrypts sensitive information on your
system and asks for ransom in exchange for restoring the encrypted data."

author = "Uptycs Inc"

version ="1"

16/17

https://2617658.fs1.hubspotusercontent-na1.net/hubfs/2617658/Fig%2020.png

strings:
$Ransomware RTM_Locker 0 = "esxcli vm process list" ascii wide
$Ransomware_ RTM_Locker 1 = "vmlist.tmp.txt" ascii wide
$Ransomware_ RTM_Locker 2 = "esxcli vm process kill" ascii wide
$Ransomware_ RTM_Locker_3 ="Ill Warning!!!" ascii wide
$Ransomware_RTM_Locker 4 = "Your network is infected by the RTM Locker

command" ascii wide

condition:

all of (fRansomware_RTM_Locker*)

17/17

