
1/11

dodo-sec

Malware-Analysis/Indirect Syscalls.md at main · dodo-
sec/Malware-Analysis · GitHub

github.com/dodo-sec/Malware-Analysis/blob/main/Cobalt Strike/Indirect Syscalls.md

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both
tag and branch names, so creating this branch may cause unexpected behavior. Are
you sure you want to create this branch?

1
contributor

Users who have contributed to this file

main

An analysis of syscall usage in Cobalt Strike Beacons

Thanks to the suggestion of my good friend Nat (0xDISREL), I spent the
last week digging into a Cobalt Strike beacon made with the latest leaked
builder. His idea was to analyze and understand how CS approached
syscalls.

Sample

This analysis was conducted in an x64 bit payload with the hash
020b20098f808301cad6025fe7e2f93fa9f3d0cc5d3d0190f27cf0cd374bcf0

4, generated by the recently leaked 4.8 version of Cobalt Strike. It's
publicly available for download in unpacme. I will not go over unpacking
the sample for the sake of brevity, but doing so is pretty straightforward
and shouldn't present any problems.

A quick refresher

https://github.com/dodo-sec/Malware-Analysis/blob/main/Cobalt%20Strike/Indirect%20Syscalls.md
https://twitter.com/0xDISREL
https://unpac.me/


2/11

Before we get to the actual reversing, let's get a quick refresher on what
system calls look like under Windows.

According to calling convention, arguments are setup in the appropriate
registers before the instruction SYSCALL is executed, handling execution to
the Kernel. One of such arguments is the code for the system call (in the
picture above, it's passed via the eax register). These system calls reside
in ntdll and provide evasion benefits by allowing you to avoid calling APIs
that are likely hooked by AV/EDR.

How Cobalt Strike does it

During the first steps of analysis of the unpacked payload we'll come
across references to qwords and calls to registers.

https://github.com/dodo-sec/Malware-Analysis/blob/main/Cobalt%20Strike/img/syscall-ntdll.png


3/11

Inspecting said qwords will lead us to the .data section, where they don't
hold any values (yet).

Inspecting other references to these addresses will land us in a function
that looks a lot like an import by hash routine - there are repeated calls to
the same function, each time passing a different hexadecimal value and a
.data section address among its arguments.

https://github.com/dodo-sec/Malware-Analysis/blob/main/Cobalt%20Strike/img/register-call.png
https://github.com/dodo-sec/Malware-Analysis/blob/main/Cobalt%20Strike/img/data-qwords.png


4/11

Case closed then, the empty qwords would receive pointers to the
resolved API functions, right? All that's left is to identify the hashing
algorithm and start renaming things? Well, not quite. This write-up is not
called "analyzing import by hash", after all.

Let's take a look at the function that's called before all the hashes start
showing up. I've named it mw_prepare_indirect_syscalls.

https://github.com/dodo-sec/Malware-Analysis/blob/main/Cobalt%20Strike/img/possible-import-by-hash.png


5/11

Preparing system calls

The first part of it is run of the mill PEB walking and PE parsing to get
names of exported functions. Note also that there is a check of
IMAGE_EXPORT_DIRECTORY.Name against ntdll.dll very slightly
obfuscated (it's just written backwards and split over three cmp
instructions). This tells us the author is only interested in ntdll. That makes
sense, considering they're after syscalls. There is a memset , to which we'll
come back later.

The next block of code will check the function name for the prefixes Ki and
Zw.If either prefix matches there is a call to the hashing function, which is a
ROR 8 ADD algorithm that iterates over each word and uses 0x52964EE9 as
a hardcoded XOR key.

https://github.com/dodo-sec/Malware-Analysis/blob/main/Cobalt%20Strike/img/get-ntdll-names.png


6/11

A function starting with Ki will only be used if its hash matches
0x8DCD4499; on a 22H2 version of Windows 10 I couldn't find an export
from ntdll that matched such value. This routine then will act on at most
one function starting with Ki and all starting with Zw. Appropriate values
will populate a structure whose address was supplied to
mw_prepare_indirect_syscalls - I've decided to call it
syscalls_organized_by_hash. It is described below.

function_hash is the calculated hash for the exported function; ntdll
address of function is an address to the function's code as pointed to
by IMAGE_EXPORT_DIRECTORY.AddressOfFunctions;
ptr_to_function_syscall_block is a pointer to the system call gadget
related to said function, which resides in ntdll.dll memory. Remember the
memset call earlier? It's used to zero that structure out. The r13 register

struct syscalls_organized_by_hash {

DWORD function_hash;

DWORD ntdll_address_of_function;

QWORD ptr_to_function_syscall_block;

};

https://github.com/dodo-sec/Malware-Analysis/blob/main/Cobalt%20Strike/img/check_ki_zw.png
https://github.com/dodo-sec/Malware-Analysis/blob/main/Cobalt%20Strike/img/ror8_add_word.png


7/11

points to it, and the additions at each address confirm the size of each
struct member. After all the Zw prefixed functions are placed in the
structure, an algorithm will sort their positions according to the
ntdll_address_of_function, from lowest to highest. After this is done,
the struct will contain the hashes, addresses of functions in the ntdll
executable and pointers to the syscall gadgets for all functions with a Zw
prefix, sorted in ascending order according to the
ntdll_address_of_function values.

Setting up the syscalls structure

Going back to the function that resembled import by hash with what we've
learned, we can see the that mw_get_indirect_syscalls_by_hash is
supplied the syscalls_organized_by_hash, alongside the hash and a
pointer to those empty qwords. After using the hashing algorithm to
generate enums from ntdll exports, we can solve the hashes to see which
APIs they intended to get the syscall code blocks to.

mw_get_indirect_syscalls_by_hash works by looking for the supplied
hash in the syscalls_organized_by_hash structure. Once that is found, it
will retrieve the pointer to the syscall code block and call a function that
validates said block - mw_validate_syscall_codeblock.

The way the verification works is simple. It will loop through the
syscalls_organized_by_hash struct (they are actually organized by
ascending order of ntdll_address_of_function, but I didn't know that
back when I created the structure) until it finds the supplied hash. The

https://github.com/dodo-sec/Malware-Analysis/blob/main/Cobalt%20Strike/img/setup_syscalls.png


8/11

functions are organized inside ntdll by ascending order of syscall codes - a
function that uses code 0x1 is succeeded by one that uses code 0x2 and
so forth. Because of this, once a hash is found the counter in edi will be
equal to the syscall code. The validation function checks for the op codes
of the SYSCALL and RET instructions.

Once the desired entry is found, a new structure (which I've named
syscalls) will receive a pointer to the syscall code block, a pointer to the
SYSCALL instruction and the value of the syscall code. Although the code is
a dword, I've made all members of struct qwords for convenience (that way
I don't need to create a member for padding between different syscalls
entries). The struct is as follows:

https://github.com/dodo-sec/Malware-Analysis/blob/main/Cobalt%20Strike/img/get_syscalls_by_hash.png
https://github.com/dodo-sec/Malware-Analysis/blob/main/Cobalt%20Strike/img/validade_syscall.png


9/11

Now all that's left is use that model to generate the structure that will result
from setting up the syscalls and apply it to the range of qwords that are
passed to the mw_get_indirect_syscalls_by_hash function. Following
cross-references to each member will lead us to places where the
structure is used in the beacon code.

Syscall usage

struct syscalls {

QWORD ptr_to_syscall_block;

QWORD ptr_to_syscall_instruction;

QWORD syscall_code;

};

https://github.com/dodo-sec/Malware-Analysis/blob/main/Cobalt%20Strike/img/syscalls_struct.png


10/11

Let's take a wrapper function used to get thread context as an example.

According to the value in a dword I've named use_syscalls_flag, the
beacon will take one of three possible approaches.

If the flag is equal to 1, it will call the desired syscall block directly;
this means getting the correct code into eax is handled by the ntdll
code.
If the flag is equal to 2, it will call a function responsible for getting
the appropriate code from syscall.syscall_code into eax and
jumping to the SYSCALL instruction.
If the flag is neither 1 or 2, it will simply call an API instead.

If a syscall is made by either method, the code will return 1 in eax.
Otherwise, it returns the result from the standard API that was called. The
presence of the flag leads me to think all beacons will have the
mechanisms for handling syscalls. Choosing to use indirect syscalls in the
builder would simply set the appropriate flag(s) in the binary, instead of
producing a payload that doesn't handle syscalls at all.

Acknowledgements

Nat for suggesting looking into this in the first place and providing me with
a beacon I could reverse.

https://github.com/dodo-sec/Malware-Analysis/blob/main/Cobalt%20Strike/img/syscall_usage.png
https://twitter.com/0xDISREL


11/11

Duchy for pointing out how to quickly unpack a beacon and for general
help regarding structures created and used by the payload.

https://twitter.com/DuchyRE

