Redline Stealer - Static Analysis and C2 Extraction

l embee-research.ghost.io/redline-stealer-basic-static-analysis-and-c2-extraction/

Matthew April 10, 2023

Ghidra Featured
Deep dive analysis of a redline stealer sample. | will use manual analysis to extract C2
information using a combination of Ghidra and x32dbg

Deep-dive analysis of a packed Redline Stealer sample. Utilising manual analysis and semi-
automated string decryption to extract C2 information and ultimately identify the malware.

1/52

https://embee-research.ghost.io/redline-stealer-basic-static-analysis-and-c2-extraction/
https://embee-research.ghost.io/tag/ghidra/

In this write-up, | intentionally try to touch on as many concepts as possible in order to
demonstrate practical applications and hopefully provide a better learning experience for the
reader.

Quick Caveat

| realized after the initial post that this sample is actually Amadey Bot. The analysis and
RE techniques remain equally relevant, but the sample is not actually Redline as the
title suggests :)

(There is a second file in the .cab which contains Redline Stealer, which may explain
why the initial file was semi-incorrectly marked as Redline)

| was able to determine this by researching the decrypted strings that are detailed at
the end of the post.

If you're interested in how to use decrypted strings to identify or confirm a malware
family. Jump to the bonus section "Utilising Decrypted Strings To Identify the Malware
Family" of this blog.

Link Sample

The initial file can be downloaded from Malware Bazaar with SHA256: .
449d9e29d49dea9697c9a84bb7cc68b50343014d9e14667875a83cade9adbc60

Analysis Summary

Feel free to jump to certain sections if you are already comfortable with some of these
concepts.

o Saving the file and extracting the initial .exe

o Using Entropy to identify that the initial .exe is packed

e Using a debugger to manually unpack the first payload

« Initial analysis of the unpacked payload

« Identifying interesting strings and imports

o Static Analysis to establish context of interesting strings and imports
o Utilising a debugger to analyse the String Decryption function

o Automating the String Decryption using X32dbg

» Utilising Decrypted strings to identify the malware family.

Actual Analysis

The analysis can kick off by downloading the above file and transferring it into a safe
analysis machine. (I strongly recommend and personally use ELARE-VM for analysis)

2/52

https://malpedia.caad.fkie.fraunhofer.de/details/win.amadey?ref=embee-research.ghost.io
https://malpedia.caad.fkie.fraunhofer.de/details/win.redline_stealer?ref=embee-research.ghost.io
https://bazaar.abuse.ch/sample/449d9e29d49dea9697c9a84bb7cc68b50343014d9e14667875a83cade9adbc60/?ref=embee-research.ghost.io
https://www.mandiant.com/resources/blog/flare-vm-the-windows-malware?ref=embee-research.ghost.io

The file can be extracted with the password infected.

Name Date modified Type

ﬁ 449d9e29d49dea9697c9a84bb7cc68b50343014d9e 1466787 5a83cade9adbc60.exe 4/10/2023 2:06 AM Application 1,065 KB

449d9e29d49dea9697c9a84bb7cc68b50343014d9e14667875a83cade9adbc60.zip 4/10/2023 9:06 AM 7zFM.exe file 1,022 KB

Unzipping the file with the password "infected"
After successful extraction - detect-it-easy can be used to perform an initial analysis of the
file.

This reveals that the file is a 32 bit executable. Which in this case is actually a Microsoft
Cabinet file. This is essentially a .zip that can be executed as a .exe file.

Detect It Easy v3.01 _ - *

File name ’7
C:\Users\Milhouse\Desktop\Redline2\449d9e29d49dea9697c9a84bb7cc68b50343014d9e14667875a83cade9adbcb0.exe

File type Entry point Base address MIME
PE32 00406a60 > Disasm 00400000 Memory map ’T
as|

[] ’7 - ¥ . ®w . .]
PE Import Resources S

Sections TimeDateStamp SizeOfImage Resources
Entropy
0005 > 2022-05-25 05:49:06 0010f000 Manifest Version
Hex

Scan Endianness Mode Architecture Type
Detect It Easy(DiE) LE 32 1386 GUI

sfx Microsoft Cabinet(11.0.0.99.0.1)[-]

compiler Microsoft Visual C/C++(2017 v.15.6)[msvcrt]
archive Microsoft Cabinet File(1.03)[LZX,89.0%,2 files]
linker Microsoft Linker(14.13, Visual Studio 2017 15.6%)[GUI32]

Signatures |:| Deep scan About
Scan
> g | 2mms Exit

Initial Malware Analysis using Detect-it-easy
The file is similar enough to a . zip that 7-zip is able to extract the contents of the file just
like a regular zip file.

| was able to use 7zip to extract the contents, creating two new exe's in the process. These
are si684017.exe and un007241.exe in the screenshot below.

3/52

https://www.youtube.com/watch?v=FB_e1mIhykk&ref=embee-research.ghost.io
https://learn.microsoft.com/en-us/windows/win32/msi/cabinet-files?ref=embee-research.ghost.io

Name Date modified Type

ﬁ 449d9e29d49dea9697c9a84bb7cc68b50343014d9e14667875a83cade9adbc60.exe 4/10/20 06 AM Application 1,065 KB

si684017.exe 4/9/20 46 AM Application 236 KB

46 AM Application 800 KB

2023 2:
[F8 449d9e29d49dead697c9a84bb7cc68b50343014d9e 14667875a83cade9adbc60.zip 4/10/2023 9:06 AM 7zFM.exe file 1,022 KB
33
33

2
ﬁ un007241.exe 4/9/202.

Additional files after extracting initial .cab.
For now, I'll focus on the si684017.exe file.

Initial Executable File

The initial is file recognized as a 32-bit exe file by detect-it-easy.

Interestingly - it was not a .NET as most Infostealers generally are. This means that the
usual DnSpy won't be applicable here.

(Check out my analysis of dcrat for tips on using_Dnspy)

Detect It Easy v3.01 B = X

File name

C:\Users\Milhouse\Desktop\Redline2\si684017.exe

File type Entry point Base address MIME
PE32 00405137 > Disasm 00400000 Memory map ’T
as|

PE Import Resources TLS S

Sections TimeDateStamp SizeOfImage Resources
v Entropy
0004 > 2022-04-14 02:19:55 000a8000 Version

Hex
Scan Endianness Mode Architecture Type

Detect It Easy(DiE) LE 32 I386 GUI

compiler Microsoft Visual C/C++(2008)[libemt]
linker Microsoft Linker(9.0)[GUI32]

Options
Signatures |:| Deep scan About
Scan
> Log 196 msec Exit

Initial file analysis using Detect-it-easy
During initial analysis, | always want to determine if the file is potentially a packed loader

rather than a final payload. If | have reason to suspect a packed payload, | typically focus on
unpacking rather than strings or other static analysis.

A packed sample will typically contain areas of significantly high entropy.

4/52

https://www.malwarebytes.com/blog/threats/info-stealers?ref=embee-research.ghost.io
https://embee-research.ghost.io/dcrat-manual-de-obfuscation/
https://www.oreilly.com/library/view/practical-malware-analysis/9781593272906/ch02s04.html?ref=embee-research.ghost.io

To determine areas of entropy - | utilized the Entropy Graph feature within Detect-it-easy.

Entropy — O X

Type Total Status Offset

Reload
PE32 7.22935 packed 00000000 0003ae00

Entropy Bytes
Regions

Offset Size Entropy Status
PE Header 00000000 00000400 249093 not packed
Section(0)['.text’] 00000400 0002ce00 7.73924 packed
Section(1)[".data’] 0002d200 00002800 1.93715 not packed
Section(2)[".rsrc'] 0002fa00 00009800 4.72361 not packed
Section(3)[".reloc'] 00039200 00001c00 3.34292 not packed

100,000 150,000 200,000

e
T |

Malware Entropy Analysis Using Detect-it-easy
This revealed a very area of high entropy within the file. This is a strong indicator that the file
is a packed loader and not the final payload.

In situations like this - | proceed to focus on unpacking the file.

Since this is a "regular" exe file and not a .NET-based file - | proceeded to unpack the file
using X32dbg.

Unpacking Using X32dbg

When a standard-exe-based loader unpacks a file, it typically uses a combination of
VirtualAlloc , VirtualProtect and CreateThread. These functions allow the malware to
allocate new sections of memory that can be used to store and execute the unpacked
payload.

5/52

Advanced malware will heavily obfuscate these functions and/or avoid using them
completely. But in 90% of cases - the previously mentioned functions are relevant.
(Check out my blog_on API hashing for how this obfuscation can be done)

In most malware - We can set breakpoints on the virtualAlloc and VirtualProtect
function calls and monitor the results using Hardware Breakpoints . This will alert when the
newly allocated buffer is accessed, from there it is generally simple to obtain the decoded
payload.

To summarise this:

e Identify a Function of Interest (In this case virtualAlloc)

o Create a breakpoint to monitor virtualAlloc

e Obtain the Memory Buffer created by virtualAlloc

e Use a Hardware Breakpoint - to alert when the new memory buffer is accessed
» Allow the malware to execute until the buffer is filled

» Save the buffer to a file

I've previously written a thread on how to use Hardware Breakpoints to unpack Cobalt Strike
Loaders. You can check it out here.

Loading the File into X32dbg

To initiate this process - | dragged the file into a debugger (x32dbg) and allowed the file to
execute until the Entry Point. This can be done by loading the file and once clicking the F9
button.

& oy £ Log @ Notes &l Breakpoints lemory Maj ¥ call Stack £ s

EIP ECX EDX ESI EDI E8 69480000

E9 78FEFFFF
8BFF
5

E9 OFFOFFFF
8BFF
55

5

56
E8 BIFIFFFF
59

8BC6
SE
5D
c2 0400
& watch 1 & Locals 2 struct

kerne132.76BE00EQ

0 18 00|FO 7D 68 14 00 16 00(50 7¢C 6
0_02_00 |0 68 OE 00
08

E3 D3 FO|06 00 00 00 OC 7C 68 77|01 00 00
88 13 35(96 5D BD 4F |8E 2D A2 44|02 25 F9

Viewing the Entrypoint using a Debugger (x32dbg)

Creating The Breakpoints

6/52

https://www.huntress.com/blog/hackers-no-hashing-randomizing-api-hashes-to-evade-cobalt-strike-shellcode-detection?ref=embee-research.ghost.io
https://stackoverflow.com/questions/8878716/what-is-the-difference-between-hardware-and-software-breakpoints?ref=embee-research.ghost.io
https://twitter.com/embee_research/status/1568910991244820481?lang=en&ref=embee-research.ghost.io
https://x64dbg.com/?ref=embee-research.ghost.io
https://stackoverflow.com/questions/3745672/about-the-entry-point-of-pe-in-windows?ref=embee-research.ghost.io

Breakpoints were then required in order to inspect the appropriate virtualAlloc function.

Note that in this case - the primary interest is in the output (or return value) of
virtualAlloc. The relevance of this is that we care about the data at the "end" of the
breakpoint, and not at the moment where the breakpoint is hit.

If that's confusing then let's just see it in action (it's always confusing the first dozen times)
Set two breakpoints using the following commands

bp VirtualAlloc, bp VirtualProtect

6810C0O |EE E3 D3 FO|06 00 00 00|0C_7C 68 77|01 00 00 00| 7409.....
77681000 | 9A 88 13 35|96 5D BD 4F|8E 2D A2 44|02 25 F9 3A|...5.]%0.-¢D

Command: bp VirtualAlloc

Breakpoint at 76BDF9F0 set!

Setting a breakpoint on VirtualAlloc using 2dbg
Hit Fo (Continue) again, allowing the malware to execute until a breakpoint is hit.

A breakpoint is immediately hit on the virtualAlloc function

ssFF
i

8BEC

D
FF25 6C13CA76
cc

ERROI D_PARAMETER)
STATUS_VARIABLE_NOT_FOUND)

X
16 00 18 Of
00 00 02 000

78

0000 00 00

EE E3
0 |9A 88 13 35(96 5D BD 4F|8E 2D A2 44|02 25 F9 3A|..
Default hd

INT3 breakpoint at <kernel32.VirtualAlloc> (76BDF9FO)! Time Wasted Debugging: 0:02:40:49

Triggering a breakpoint on VirtualAlloc

The primary purpose of virtualAlloc is to allocate memory and return an address to the
newly allocated buffer. This newly allocated memory is contained in the EAX register when
the function is completed.

TLDR: Since I'm only interested in that buffer - | utilized the Execute Until Return or
CTRL+F9 to jump straight to the end of the function and obtain the result.

7/52

Debug Tracing Plugins Favourite

Run F9

Run until selection F4
Pause F12
Restart Ctrl+F2

Close Alt+F2

How to "Execute Until Return'

Step into F7

Step over F8

Execute till return Ctrl+F9

Run to user code Alt+F9

Advanced

using x32dbg
Allowing the malware to Execute Until Return - provides an EAX register containing the

address of the memory buffer to be used by the malware.

8/52

EAX 02250000
EBX 00000000
ECX 38480000
EDX 02250000
EBP 0019E7EC
ESP 0019E7CC
ESI 0019EA38
EDI 0000011cC

EIP 75AE7ASC

EFLAGS 00000246
ZF 1 PF1 AF O
OF 0 SF 0O DF O
CF0O TF 0O IF 1

LastError 00000057 (ERROR_INVALID_PARAMETER)
LastStatus C0000100 (STATUS_VARIABLE_NOT_FOUND)

Default (stdcall) Unlocked

Viewing the memory buffer returned by VirtualAlloc

There is nothing particularly special about EAX, it is just the standard register used for
returning the results of a function.

To learn more about EAX and calling conventions - there's a great video on that from
OALABS.

To monitor the buffer returned by virtualAlloc, Right-Click on the returned address
02250000 address and select Follow in Dump.

This will cause the bottom-left window to display the newly-allocated memory.

The buffer of memory currently contains all 00's, as nothing has used or written to the buffer

c2 1000 N
88C8 Hide FPU
E8 EAC3FEFF
E8 FO
Modify value Enter
{ Increment value
Decrement value
PathcchFindExtension ZEtojvalue
Follow in Dump
{ Follow in Dump
Follow in Disassembler
{ Follow in Memory Map
@ Copy value Ctri+C = [unlocked
Copy all registers
Highlight
U

@ Copy old value: 0019EA38
5
Dump 1 Dump 2 Dump 3 Dump 4 Dump 5 & watch 1 £ Locals 7 stuct 00000000

00342
Address Hex ASCIT 00001000

) |00 00 00 00(00 00 00 00|00 00 00 00|00 00 00 00
) | 00 00 00 00/ 00 00 00 00 00 00 00 00 00 00 00 00
00

00000040

00 00|00 00 00 00 00 00 00 00|00 00 00 00
) 00 00 0000 00 00 00|00 00 00 00|00 00 00 00
) [00 00 00 00(00 00 00 00|00 00 00 00(00 00 00 00
00000224
00000001

00 00 Of 0
00 00 00(00 00 00 00|00 00 00 00|00 00 00 00

Using x32dbg (Follow In Dump) to view the contents of a memory buffer

9/52

https://www.youtube.com/watch?v=9lzW0I9_cpY&ref=embee-research.ghost.io

It is important to be notified when that buffer of 00's is no longer a buffer of 00o's.

To achieve this - A hardware breakpoint can be applied on the first byte of the newly
allocated buffer.

Breakpoint Hardware, Access il Byte

rFind Fattern... Ctri+b Hardware, Write 4 Word

Find References Ctrl+R Hardware, Execute +8]

m Dword

Sync with expression S Memory, Access d ptr ss:[ebp+10]

r ds:[edi],0
Allocate Memory Memory, Read

e./5AE7ADA
d ptr ss:[ebp+C]

Go to ' Memory, Write
. 75AE7ADA
Hex
Memory, Execute k 75 AE7ADA
lea esi,uword ptr ds:[eax+edx*?2
Text Xor ecx,ecx
cmp eax,esi
Integer kernelbase.75AE7ADA
push ebx

movzx edx,word ptr ds:[eax]
Float : :

Address
Dump 1

Address ===y Disassembly

022500004 | 00 Uu uu|uu uu
02250010%==88==80 00 00|00 00
02250020 | 00 00 00|00 00
02250030 | 00 00 00,00 00
02250040 | 00 00 00 00 00
02250050 | 00 00 00,00 00
02250060 | 00 00 00,00 00
02250070 | 00 00 00 00 00
02250080 | 00 00 00|00 00
02250090 | 00 00 00|00 00
022500A0 | 00 00 00 00 00
02250080 | 00 00 00|00 00
022500¢0 | 00 00 00|00 00
02250000 | 00 00 00|00 00

Command:

Hardware breakpoint at 02250000 set!

creation of a Hardware Breakpoint
Once the hardware breakpoint is set - the malware can continue to execute using the F9
button.

The Hardware Breakpoint will immediately be triggered.

Address
02250000
02250010
2250020
02250030
02250040
02250050
02250060
02250070
02250080
02250090
22500A0
02250080
022500c0
22500D0

Command:

Hardware breakpoint (byte, read/write) at 02250000!

Triggering a Hardware Breakpoint using X32dbg

Once this happens, use CTRL+F9 (Execute Until Return, aka "just finish what you're doing
now, but don't do anything else") to allow the malware to continue writing to the buffer without
actually executing it.

(Utilising cTRL+F9 will cause the malware to stop at the end of the current function -
preventing the execution of the rest of the malware)

Once the current function is finished - the buffer will look something like this.

Address ASCIT

02250000 g.A..U.7.7....

02250010 7 B GER

02250020 ny EOP.E. Péil.

02250030 LA.e..

02250040

02250050 .

02250060 nyyc pPyYyy
2250070 kernc tyyyel32¢C.
2250080 xyyy.d11.¥|yyy..
2250090 . pyyyPyud.EAC. py

022500A0 ny1rtc tyyyualA

02250080 C xyyy1loc. ¥|yyy

022500c0 -PYYYPYUAyU.

022500D0 C pyyyvirtc. tyy
022500E0 yualPC.xyyyrotecC
22500F0 . | yyyet. ... pyyyP
2250100 yuAyU E@c pyyyv
2250110 1rt§.tyy9ua1F§.x
2250120 yyyree...pyyyPyu

02250130 AyU..E.C. yGet

02250140 yy

02250150 y

02250160 pynyyuAyU

02250170 -pyyyTermg. tyyy1

02250180 natc xyyyeProc \

Nn220N1an y -~ ~ WitmrAnece A

ommand: |

Identifying a Memory Buffer containing Shellcode

Unfortunately - the first buffer does not contain an unpacked PE file. It does contain a large
buffer of shellcode which is used to unpack the next section using another virtualAlloc.

11/52

If the file was sucessfully unpacked - it would typically look something more akin to this

69 73 20 70|72 6F 67 72|61

/] h (] () [} 4
Identifying an unpacked PE file in a memory buffer

In this case there is only shellcode in the buffer. You can typically determine that the buffer is
shellcode by the presence of the EB (jmp) byte. You can also confirm suspected shellcode by
inspecting the instruction using Right-Click -> Follow in Disassembler.

If the code disassembles without errors (No glaring red sections) - it is highly likely to be
shellcode.

c2 0c00 C
55 push ebp
SBEC mov ebp,esp
81EC 00100000 sub esp,1000
C745 C0 2DOE0000 mov dword ptr ss:[ebp-40],E2D
A8 00004000 mov dword ptr ss:[ebp-58],si684017.40000
SOFFFFFF lea eax,dword ptr ss:[ebp-BO]
push eax
lea eax,dword ptr ss:[ebp-2C]
push eax
lea eax,dword ptr ss:[ebp-68]
50 push eax
E8 FB080000 2250928
83c4 0OC add esp,C
E8 04000000 225003C
add byte ptr ds:[eax],al
add byte ptr ds:[eax],al
pop eax
mov dword ptr ss:[ebp-94],eax

[EB [oF] 2250005

Dump 1 Dump 5 & watch1 4 Locals 2

Address
02250000

X - .
FF|FF 50 FF 55/D4 89 45 C4 C7 85 70 FF|.pyyyPyuod.EAC. py

Using x32dbg to validate shellcode contained in a mérﬁory buffer
At this stage - the shellcode could be dumped into a file for further analysis.

However, It is often better to allow the shellcode to execute. Malicious actions taken by the
shellcode will often trigger the same breakpoints intended for the "original" malware.

Obtaining The Unpacked Payload

Hitting F9 (Continue) to allow the malware to execute - another breakpoint is hit on
VirtualAlloc

12/52

8 Notes

76BDFIFO [
/6BDFOF2
6BDFIF3

¥ Breakpoints Memory Map ¥ call Stack

mov edi,edi
push ebp
mov ebp,esp

£ sEH

™ Script

¢

virtualAlloc

Symbols

6BDF9F5
6BDF9F6
6BDFOFC
6BDF9FD
6BDFOFE
6BDF9FF
6BDFA00
6BDFAQL
6BDFA02

pop ebp

dword ptr ds:[<&virtualAlloc>] JMP.&VirtualAlloc

76BDFAOB
76BDFAQOC

MoveFileA

P
mov edx,dword ptr ss:[ebp+C]

Xor eax,eax
mov ecx,dword ptr ss:[ebp+8]
push eax

push 2

Viewing VirtualAlloc function in a debugger (x32dbg)
Using the same trick of Execute Until Return, Select EAX and Right-Click -> Follow
in Dump, the second allocated buffer can be obtained.

@ Notes & ¥ call Stack Script & References @ Threads Handles @ Trace

AE/ASC |

Breakpoints Source

1000

Memory Map Symbols

[er]
8l Hide FPU

0019E7DC
0019D7¢8
0019EA38
0000011C

Default (stdcall)

1: [esp+4] 00000000 00000000
[esp+8] 00039400 00039400
[esp+C] 00001000 00001000

1

[esp+10] 00000004 00000004
: [esp+14] 776FAE60 ntd11.776FAE6D

02250250
00000000
00039400
00001000

Dump 2 Dump 4 Dump 5 & watch 1 & Locals 7 struct

ASCIT
00 00 0

00 00

00 00 0

4
60 | ntd11.776FAEGD

006BE38C
00680000
40280062
00000000
00000001
00000000
006BE1DO
00000001
00000001
006BELD8
00000000
00000000
00190850
776C1D5D

00 00
0/00 0

Using x32dbg to locate another memory buffer returned by VirtualAlloc
Another Hardware Breakpoint will need to be set at the start of the buffer.

13/52

Breakpoint Hardware, Access il Byte

Find Pattern... Ctrl+B " Hardware, Write 4 Word

Sync with expression S
& P Memory, Access ptr ss: [eb
Allocate Memory Memory, Read ds:[edi],0

. 75AE7ADA

Go to ptr ss:[eb

Memory, Write

Hex f Memory, Execute b

Dump 1 vump « vump > 4 Watch 1

Text

Address p=re

02290000 00 K Integer 00 00 00 00
ou 00 00 00 OO0 ..o i i i
00 00 00 00 00 ... ivviinenn.
00 Float 00 00 00 00| ...t
00 00 00 00 OO ... ivv i
00 Address 00 00 00 OO0 ... iiee ..
00 00 00 00 00

00 _ 00 00 00 00|
00 Disassembly 00 00

00 wu wu wuiww vv vx wv wx wx =x 0000 00 00 00|
22900A0 |00 00 00 00 00 00 00 0000 00 00 00 00 00 00 00|
02290080 | 00 00 00 00/ 00 00 00 0000 00 00 00/00 00 00 00|

Creatiné another Hardware Breékbbiﬁt-on‘thé-me‘méfy address
Allowing the malware to continue to execute - the hardware breakpoint is hit. This time
containing a promising M. (First half on an MZ header)

(Side note that my debugger suddenly crashed here and had to be restarted - hence the
slight change of address in future screenshots)

14/52

https://subscription.packtpub.com/book/security/9781789610789/4/ch04lvl1sec57/mz-header?ref=embee-research.ghost.io

Hardware breakpoint (byte, read/write) at 02160000!

Memory buffer - potentially containing an unpacked pe-file payload

Allowing the malware to continue to execute - A complete MZ/PE file can be found. At this
point, the unpacked file has been successfully loaded into memory.

Address

02160000

02160010

02160020

02160030

02160040 .9 LIt LLIlTh
02160050 is program canno

02160060 t be run in DOS
02160070

02160080
02160090
021600A0
02160080
0216000
02160000
021600E0
021600F0
02160100
02160110
02160120
02160130
02160140 | 0
02160150
02160160

A complete Pe-file written to the memory buffer
Saving the Unpacked File

To save the unpacked file - Right -Cclick on the start address and select Follow in Memory
Map

m Follow in Disassembler

Follow in Memory Map

Label Current Address

Watch DWORD

Modify Value

Breakpoint

Find Pattern... Ctrl+B
Find References Ctrl+R
Sync with expression S
Allocate Memory

Go to

Hex

Dump 1 Text

RUUress e
02160000 | §D Integer
aAEN~TalasFa _;8

02160020 | 00 .
02160030 | 00 oat
02160040 | OE

02160050 | 69 Address
02160060 | 74
02160070 | 6D g
02160080 | 5D

Disassembly

VEILEIT IO A0 vf o e (e o0 o em g oem wn o
021600A0 |42 07 96 1F|0B 6F 92 1E|CC 02 96

to save a memory buffer using x32dbg
This will reveal the location where the buffer was allocated. The entire memory buffer can
then be saved by using Right-Click and bump Memory to File

VO0BBO00
01346000

&
&
i
&

Reserved (00D10000)

02160000 | 0003A000 |%

N21a0000 [00003000 % Heap (ID 1)
021A3000 | 0000D0O0O0 | Reserved (021A0000)
66D50000 00001000 |& System msim932 dill

02160{3““ o
021A0C #

021A3C Follow in Disassembler

66D50C

66D51C & Follow in Dump
66D57C

Egggi : Dump Memory to File
66D556

75540C Comment

75541C

button used to dump the memory to a file using x32dbg
The file can now be saved as unpacked.bin (or any other file name of choosing)

File name: | unpacked.bin
Save as type: |Binary files (*.bin)

A~ Hide Folders

Specifying a name for the unpacked file

Initial Analysis - Unpacked Payload

The file is a 32-bit executable with no (recognized) packers or obfuscation.

17/52

Detect It Easy v3.01 B = X

File name

C:\Users\Milhouse\Desktop\Redline2\unpacked.bin

File type Entry point Base address MIME
PE32 00416025 > Disasm 00400000 Memory map ’T
as|

[)
PE Import Resources TLS Overlay e

Sections TimeDateStamp SizeOfImage Resources
. Entropy
0005 > 2023-04-08 14:49:43 0003000 Manifest

Hex
Scan Endianness Mode Architecture Type

Detect It Easy(DiE) LE 32 1386 GUI

compiler Microsoft Visual C/C++(-)[-]
linker Microsoft Linker(14.24**)[GUI32]

Options
Signatures |:| Deep scan About
Scan
> Log 182 msec Exit

Initial analysis of suspected unpacked payload using detect-it-easy

The entropy graph does not contain any areas of significantly high or flat entropy -
suggesting that the file is not packed and does not contain any additional payloads.

18/52

Entropy

Type
PE32

Entropy Bytes
Regions

PE Header
Section(0)[".text']
Section(1)[".rdata’]
Section(2)[".data’]

Section(3)[".rsrc']

Total
6.29560

Status

not packed

100,000

Offset

00000000

Offset
00000000
00000400
0002b600
00035200
00036200

150,000

Size
00000400
0002b200
00009c00
00001800
00000200

0003a000

Entropy
2.76415
6.45620
4.84964
1.40114
4.72050

200,000

Reload

Status
not packed
not packed
not packed
not packed
not packed

Additional Entropy Analysis - Suggesting no hidden payloads - No significant areas of
entropy

Since this was potentially a final payload - | checked the strings for any unobfuscated
information.

This revealed some base64 encoded data - but | wasn't able to successfully decode it.

19/52

The base64 encoding has likely been combined with additional obfuscation.
Strings — O X

0x00000000 - 0x00039fff (0x0003a000) D ANSI D Unicode 15 % Search

Offset v Size String W
79 00030a3c 00000010 76XoROUVDKN10Q==
30 00030a60 00000028 GA4FBRNIRRQss)0FeUPGLNLICNG5DXypnDG1XL D=
81 00030aa8 00000044 P41JNwgsMiN IWehdhdw4SQX2) ffmGI97FfIUYpSkNr3FSjdiSm4SW ZrRkX2U UU==
82 00030af0 0000005¢ P41JNwgsMiN IWehdhdw4SQX2) ffmGI97FflUYpSkNI3FSjdiSm4SW ...
X] 00030b68 00000018 T6TnAtbuADBKGEeQJxdwDTvd
84 00030b84 0000003c¢ P41JNwgsMiN IWehdhdw4SQX2) ffmGI97FflUYp5kNr3FSjdiSm4SW ZrRk
85 00030bd4 00000014 DG1HRNAC6EMdA1KMIxN =
86 00030c00 00000058 P41JNwgsMiIN IWehdhdw4SQX2J ffmGI97FfIUYpSkNI3FSjdiSm4SW ...
87 00030c5¢ 00000014 EZNWIMMHMi1DHUgDKL==
88 00030d20 00000018 T7BoRt8b4Ep5N2gndx h4wo5
89 00030dec 00000010 86 0dxzqEgXh1Gp=
90 00030e00 00000010 66NBAdYJEXArOGqq
91 00030e14 0000001c M6N3LdIR3VRiJ3exeBOgKMWjgA==
92 00030e34 00000010 PLBYyRUM94S)e3Gya
93 00030e48 00000014 LZREMST8MO1j3H7fdhZ=
94 00030e6¢ 00000014 N6xXC5xYp5012xEqfZb==
95 00030e80 00000014 PKxxRxH8MONg3XCneCp=
9% 00030ea8 00000010 MK1m6xbpAD6iNg==
97 00030ec4 00000018 HDQzNxbRQUpQOWGZdhgX7G==
98 00030ee0 00000010 Lqd3RxYdRUXhOXB=
99 0003018 00000010 Q6dxJxYdRUXhOXB=

Filter ’7
’7

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Base64 Encoded Strings contained within the malware file
Failing to decode the "base64"

Recipe BB input
S Q 1 DG1HRNAC6EMdALIKMIXN=
or EZNWIMMHMi1DHUGDKL==
Split delimiter Merge delimiter MK1m6XprD61Ng==|
\h \n D Ignore errors
mec 58 = 3
From Base64 O n
Output
Alphabet
A-Za-70-9+/= “mMGDD~&C%"%Re ' %,
e oV$A*2-C=Te (
Qe FEnEn>¢6)

Remove non-alphabet chars D Strict mode

Cyberchef - Failure to decode the base64 strings - signs of additional obfuscation

20/52

Import Analysis

Imported functions are an additional valuable source of information. Especially for suspected
unpacked files.

The imported functions referenced capability that suggested the file can download data and
make internet connections.

Since these functions need C2 information in order to work, this is a good sign that the C2
config may be contained within this file.

iginalFirstThu imeDateStam orwarderChai Name FirstThunk Hash

00035f70 00000000 00000000 00036372 0002d024 6964c580 KERNEL32.dll
00035f4c 00000000 00000000 00036414 0002d000 5455aa3b ADVAPI32.dlI
0003611c 00000000 00000000 0003645a 0002d1d0 0f35467b SHELL32.dll

- 00036130 |00000000 |00000000 |00036500 |0002d1e4 |b794cd2a | WININET.dII

Thunk Ordinal
00036466 HttpOpenRequestA
000364ec InternetReadFile
000364d8 InternetConnectA
000364c4 HttpSendRequestA
000364ae InternetCloseHandle
0003649%e InternetOpenA
0003648e InternetOpenW
0003647a InternetOpenUrlA

~N o A wWw N =~ O

Malware Import Analysis Using Detect-it-easy

Ghidra Analysis

At this point | decided to analyze the file further using Ghidra. My plan was to utilise Ghidra
to gather more information on the suspicious imports related to c2 connections
InternetReadFile, InternetConnectA, HttpSendRequestA etc.

In addition to this - | wanted to investigate the suspicious "base64" strings identified with
detect-it-easy.

To investigate both - | intended to utilise cross references or x-refs to observe where the

strings and imports were used throughout the code. From here | hoped to find arguments

passed to the internet functions (hopefully containing a C2), or to find the logic behind the
function that accesses the base64 encoded strings.

21/52

To Summarise - My plan was to Utilise Ghidra to...

 Investigate the suspicious strings - which function are they passed to? what does that
function do with them? Can | trace the input and output of that function?

* Investigate Suspicious Imports - Check where the imports were used, and what
arguments were being passed. Can | set a breakpoint and view the decrypted C2's?

String Searching with Ghidra

| took the first approach first, using Ghidra to search for strings within the file.

4 Search For Strings

v Require Null Termination Minimum Length: | 5
Pascal Strings Alignment: Dec
Word Model: StringModel.sng

Memory Block Types Selection Scope
®) Loaded Blocks @) Search All
All Blocks

Searching for Strings Using Ghidra
By filtering on ==, | was quickly able to narrow the results down to the previously identified
base64 strings. This was not all relevant strings but was a solid starting point.

22/52

& e

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Locating base64 strings using Ghidra
| double clicked on one of the larger strings, taking me to it's reference within the file.

A

From here | could hit CTRL+SHIFT+F to find references to this string. Alternatively you could
Right Click -> References -> Show References to Address

4 Edit Help

References to s_PSdWNVYEPCFY2nCjciW... ! R

o_P5NVYERCFY2nC3 CNA4SHXhGS i Y2KQ 0... *) _

ds

Using Ghidra to locate Cross-references from strings
Clicking on the one available reference - reveals an undefined function acting upon the

string.

23/52

Decompile: UndefinedFunction_00401b80 - (unpacked.bin)

Elvoid UndefinedFunction 00401b80

5 FUN 00414550 (~DAT 00438474
6 "P5dWNVYEPCEFY2nC) ciWA4SWXhq51iY2KOSIFy4eUpd0p F22rdCOXRNAL30Xb1EC171t46xYpLkxqOQ=—="
7 int 0x50

_atexit (¢LAB 0042b120

Encountering an Undefined Function in Ghidra
By clicking on the first address of the function and hitting F, we can define a function at the
current address.

FUN 00414550 (“DAT 00438474
"P5dWNVYEPCFY2nCjciWA4SWXhg5iY2KQSIFy4eUp40p F22rdCOXRNAL30Xb1lEC171t46xYpLkxqOQ=="
int 0x50

atexit AB 0042b120

Defining a Function in Ghidra
After defining a function - the decompiler output now looks much cleaner.

return;

Viewing a new function in Ghidra - an obfuscated string can be seen
From here we can enter the function at FUN_00414550 and investigate.

The function contains a bunch of c++ looking junk which was difficult to analyse - so |
decided to take a slightly different approach.

24/52

Viewing a suspicious function using Ghidra
| checked the number of cross references on the FUN_00414550 function. A high number of
cross references would indicate that the function is responsible for decoding more than just
this encoded string.

If the same function is used for all string related decryption, then perhaps a debugger and a
breakpoint is the better approach.

At minimum - a debugger will at least confirm the theory that this function is related to string
decryption.

String Decryption Via X32dbg

| decided to investigate the string decryption using X32dbg.

To do this - | would need to set a breakpoint on the function that | suspected was responsible
for string decryption.

Attempting to copy-and-paste the address directly from Ghidra will likely result in an error as
the addresses may not align.

Syncing Addresses with Ghidra and X32dbg

25/52

To Sync the Addresses between Ghidra and X32dbg. We need to find the base of our current
file. This can be found in the memory map and in this case is 003e0000. Although it may be
different for you.

& CpU B Notes v Breakpoints L Memory Map % call Stack d SEH 8@ Script £ Symbols ?: Source

Address __ Size Party Info Content Type Protection Initial
003E0000 §00001000 |# User unpacked.bin IMG =Ri=== ERWC-
UUSETOUU™ 0002c000 |# User " text” Executable code IMG ER--- ERWC-
00400000 | 0000A000 |# User ".rdata" Read-only initialized data IMG - ERWC-
00417000 | 00003000 (# user ' Initialized data IMG = ERWC-
0041A000 | 00001000 | User ".rsrc” Resources IMG = ERWC-
0041B000 | 00003000 |# User " oc" Base relocations IMG === ERWC-
00660000 | 00001000 |# User MAP =[R=== R===
¥ User MAP R=== AR

00670000 | 00001000

How to identify a base address in a debugger (x32dbg)
From here we can select the memory map within Ghidra.

EF .

Decompile: FUN_00401b80 - (unpacked.bin)

How to use Ghidra to Sync a Memory Address
Then select the Home button

<% File Edit Help

i# Memory Map - Image Base: 00400000

Memory Blocks

(< J< QN

<N NN RN JQ<]

<N N J<B<N J] |
SEEEEEQCE
SEEEEEES

Using Ghidra to Sync memory address with x32dbg
and set the base address according to what was obtained with x32dbg.

26/52

< File Edit Help

Memeory Blocks
N S S S |

«# Base Image Address

003e0000|

Cancel

[N J B P J P
<N J<N B N<JJ<

Using Ghidra to sync a memory address with x32dbg
From here, the address of the suspected-string-decryption function will be updated
accordingly and be in-sync with x32dbg.

Decompile: FUN_003e1b80 - (unpacked.bin)

String Decryption Function in Ghidra with Updated Memory Address
The new function address is 0034550 . This value can be used to create a breakpoint inside
of x32dbg.

Rl N FH D OB Decompile: FUN_003f4550 - (unpacked.bin)

LTI T

R Q

Updated Memory Address in Gira

27/52

creating a breakpoint on a known suspicious function
The breakpoint is then hit with an argument of j h1#A

Memory Map ¥ call Stack £ SEH @ Script £ symbols

,dword ptr
cx,dword ptr

,dword ptr
1 edi

E8 5E3D0000
83C4 0C
C6041F 00
Default (stdcall)

¥ Source References ® Threads

Hide FPU

1: [esp+4] 0041236C unpacked.0041236C "6e3d32d239380a49b6183128fe71eall”

: [esp+8] 00000020 00000020

[esp+C] 003FB164 unpacked.003FB164

5D
Cc2 0800
81FF FFFFFF7F

Ace7 mennnnnn

Dump 1 Dump 3 Dump 4 Dump 5 ." Watch 1 @ |Locals ? Struct

Beginning of a suspicious function in x32dbg

2
4: [esp+10] 003F6025 <unpacked.EntryPoint> (003F6025)
5: [esp+14] 003F6025 <unpacked.EntryPoint> (003F6025)

007EFAA4 |[[003E1031 | return to unpa
ed. "6e3d

Allowing the malware to Execute Until Return will retrieve the result of the function. In this

case it was a large hex string that was pretty uninteresting.

0800
8E5D0000
FDOA0000

88DAFEFF 00417874

00000086

0096FB84
ESI 0040D21C
EDI 00000004

2C2F4100
78100000

AF 0
DF 0
IF 1

Hide FPU

00000000 (ERROR_SUCCESS)
s €000007C (STATUS_NO_TOKEN)

Default (stdcall)

[esp+4] 0041236C unpacked.0041236C "6e3d32d239380a49b6f83128fe71eall”
[esp+8] 00000020 00000020
[esp+C] 003FB164 unpacked.003FB164

[esp+10] 003F6025 <unpacked.EntryPoint> (003F6025)
[esp+14] 003F6025 <unpacked.EntryPoint> (003F6025)

End of a suspicious function - viewing the returned value - possible decoded string
However, Clicking F9 or continue will cause the Decryption code to be hit again.

Sadly, this again revealed some largely uninteresting strings

28/52

00418144
00000086

00000000
nannonnn

004181BC
00000086
00000000

00417cC/C
00000086
00000000

aTalalalalalalal

004180FC
00000086
00000000

I event_ually realised that this function was not used to decode the final strings. But was
rather to obtain copies of the same base64 obfuscated strings that were previously found.

At this point | experimented with the Suspicious imports, but could not reliably trace them
back to a function that would obtain the decrypted c2's .

However - | did get lucky and was able to locate an interesting function towards the main
malware function of the code.

This function was located at 003d29bo.

Locating Main

| was able to locate main by browsing to the EntryPoint.

29/52

Attempting to locate the main function using Ghidra

30/52

Decompile: FUN_003f4040 - (unpacked.bin)

(void)

10
11 return;
12|}
13

Successfully finding the main function within Ghidra

Decompile: FUN_003e9870 - (unpacked.bin)

N

= &local 10;
(&stackOxfffffe=24 *x) &) -

w

puVard =B (local 188, inistackifffffe24) H
local 8

o
Iy

o

rlocal 11c);
Identifying a possible string decryption function in Ghidra
When this function is executed - a base64 encoded value is passed as an argument.

Hide FPU

FF
48604000
00000000

s 00000000 (ERROR_SUCCESS)
E8 8CFDFFFF €000007C (STATUS_NO_TOKEN)
83c4 04

8045 cO
€645 FC 01

5 08
C745 FC 00000000
8D4D CO
8

Default (stdcall)

8D55 08
8D4D D8 1: [esp+4] OOEDSEF8 OOEDSEF8 "IXC4RaDPERIODA=="
E8 16FEFFFF 2: [esp+8] 40000062 40000062
C: [e 00CFFBD8 00CFFBD3
€645 FC 02 I r 2 4: 0] 0070006F 0070006F
8D55 D8 5: 4] 00000010 00000010

Base64 Function Arguments viewed in a debugger.
Executing until the end of the function - A value is obtained which the malware used to

create a folder in the users temp directory.

Hide FPU
OCFFCF4
B9D000

00CFFC9C
00EC74F0
00EC7B50

p,esp
FFFFFFFF
68 806D4000
gg:Al 00000000
81EC 0C040000
0C704100 [41700c] eax: 5 8 rror 00000000 (ERROR_SUCCESS)
€000007C (STATUS_NO_TOKEN)

[ebp-101,eax

Default (stdcall)

5

8D45 F4 s

64:A3 00000000 n d 8 5 5 : [esp+4] OOEDSEF8 OOEDSEF8

8BF2 n [esp+8] 40000062 40000062
[esp+C] OOCFFBD8 OOCFFBD8

: [esp+10] 0070006F 0070006F

: [esp+14] 00000010 00000010

i,ecx
89BD ECFBFFFF dword ptr
89BD ECFBFFFF dw
68 00040000
onoC cncoccce

Obtaining a decoded value using x32dbg
The next call to this function - took a base64 encoded argument and returned a file name
that the malware was copied into.

Hide FPU
O0CFFCAOQ

00B9D000O
O00CFFCC4

3D3D514F
OOCFFE78
00CFFC9C

A second encoded value in eax- viewed in x32dbg

32/52

Hide FPU

00CFFCC4
0089D000
/CCEDB33
00EC0000
O0CFFE78
00CFFC9C

Default (stdcall) 5 Unlocked

1: [esp+4] 00ED5000 OOED5000
2: [esp+8] 00CFFD30 OOCFFD30f&"C:\\Users\\Milhouse\\AppData\\Local\\Temp\\595f021478"
3: [esp+C] 0000000A 0000000A
4: [esp+10] O0OCFFE78 OOCFFE78
5

: [esp+14] 00000010 00000010

A decoded filename - located using return addresses in x32dbg

At a location of 003e9870 - was a function responsible for checking the location of the current
running file.

If the location did not match c:\\users\\
<user>\\appdata\\local\\temp\\595f021478\\oneetx.exe - then the malware would
terminate.

Here we can see the return value from the function.

Hide FPU

00CFFCC4
0089D000
7CCEDB33
00EC0000
OOCFFE78
00CFFCOC

Default (stdcall) 5 Unlocked

: [esp+4] 00ED5000 OOED5000

: [esp+8] 00CFFD30 OOCFFD30|&"C:\\Users\\Milhouse\\AppData\\Local\\Temp\\595f021478"
: [esp+C] 0000000A 0000000A

: [esp+10] O00CFFE78 OOCFFE78

: [esp+14] 00000010 00000010

As well as the outgoing function calls in the Ghidra Function Tree.

33/52

Outgoing References - FUN_003e9870
1~ FUN_003e29b0

- GetTempPathA

- FUN_003f46a0

- FUN_003f4a20

- GetModuleFileNameA
1~ FUN_003f4550

3~ FUN_003f4b70

3~ FUN_003f5da4

- @__security_check_cookie@4
1~ FUN_003fa40c

- _fopen

_fclose

- FUN_003e4e30

- FUN_003f40d0

- CreateDirectoryA

- FUN_003e5ac0

- FUN_003e8bc0

- FUN_003e4e00

- FUN_003f41f0

- FUN_003f41b0

1~ FUN_003e3780

N
i
]
i
]
i
]
i
]
i
|
i
|
i
|
i
|
i
|
i
|

i Iy
|
i
]
i
]
i
]
i
]
i
]
i
]
i
]
i
]
i
]
I .
- eXIt

o
..
.ﬁ.
.ﬁ.
..
o
o
o
o
o
.ﬁ.
o
.ﬁ.
.ﬁ.
..
.ﬁ.
.ﬁ.
.ﬁ.
.ﬁ.
.ﬁ.
by
.ﬁ.

Viewing the Function Tree Using Ghidra
After the directory check is performed - the malware enters FUN_003e7b70 attempts to
creates a mutex with a value of 006700e5a2ab05704bbb0c589b88924d

DVar2 =
if (Dvarz !=
return;
}
(0);

pcVarl = (
(*pcvarl) () ;

return;

| s ——————————————————————————— ||
By breaking on CreateMutexA - The value of ee6700e5a2abe5704bbboc589b88924d can be seen

as an argument.

Hide FPU

00AB4B98
00638000
00000000
0063E000
0055FDB4
0055FD60

If the mutex creation returned a value of 0xb7 (Already Exists) - then the malware would
terminate itself.

ERROR_ALREADY_EXISTS

183 (0OxB7)

) lpName) ;

Bypassing Anti-Something Checks

These two checks on the file path and Mutex can function as pseudo anti-debug checks. In
order to continue analysis, they needed to either be patched or bypassed.

In order to bypass the file path check - | allowed the malware to execute inside the analysis
VM and copy itself to the correct folder. | then opened the new file inside the debugger.

Alternatively - You could have patched or nop'd the function. but | found that just moving it to
the expected folder worked fine.

36/52

[| This PC » Local Disk (C:) » Users » Milhouse » AppData » Local > Temp > 595f021478

Microsoft Name Date modified Type

Mozilla IE oneetx.exe 4/10/2023 9:27 AM Application

Once the new file was loaded - | updated the base address in Ghidra to match the new
address in x32dbg.

VUURAULUUY (SRR o AL < LAl (L0

00AAQ000 00001000 ¥ oneetx.exe
00AATQ00 | 0002C000 1% " oyt Executable code

00ACD000 | 0000A000 & Y. rdata” Read-only initialized data

00AD7000 | 00003000 % .data" Initialized data
00ADAQQO | 00001000 | .rsrc" Resources
00ADB000O | 00003000 % .reloc" Base relocations
00AEOQQ0 | 000FC000 | Reserved

Once | updated the base address - | set a breakpoint on CreateMutexA and the suspected
decryption function FUN_XXXX29b0

) ;

5 .o 100 24+ at+ram~l FFEFFFF)

Once | hit the breakpoint on createMutexA - | stepped out of the function using Execute
Until Return and then Step Over twice.

This allowed me to see the return value of b7 from the GetLastError function. When |
allowed the malware to continue to run - it quickly terminated itself without hitting the
decryption breakpoint.

FF15 90D0OACO00 dword ptr

FF15 4CDOACO0 dword oz

3D B7000000 c ™

74 01 ’ ECX
EDX 00770000
EBP 004FFBC8

A 00 p
2C160100 C onee C ESP 004FFBC4

Default (stdcall)

To fix this - | used Edit to patch the return value to be B6 instead.

37/52

& Edit

Expression:

Bytes:
Signed:
Unsigned:

ASCII:

000000B6
B6000000
182
182

-1

000000B7
003AEO00
00770000
00770000
004FFBC8
004FFBC4

Default (stdcall)

OK Cancel 1: [esp+4] 004FFC10 004FFC10
2: [esp+8] 00AB5FID oneetx.0

Patching a return value using X32dbg
Upon running the malware - The decryption function was hit again.

Following the return of the decryption function using Exeute Until Return revealed a pretty
boring \\ character.

EAX 004FF970

EBX 004FFBOO

ECX C351E3AF
But allowing it to hit a few more times - it eventually returned a value of startup which was
pretty interesting.

004FFAFO
003AE000
C351E3AF

Hittiné again revealed a registry path of

SOFTWAREN\Microsoft\\Windows\\CurrentVersion\\Explorer\\User Shell Folders

Hide FPU
EAX 004FFAD8
EBX 003AE000
EC..\: C3_5']_.E3AF
Eventually some more interesting values were returned. Including a partial command likely
used to create persistence.

38/52

EAX 004FFA6C
EBX 003AEOQ0

As well as some possible signs of enumeration

EAX 004FF2FC
EBX 004FF508
ECX C351E3AF

EAX 004FF374
EBX 004FF508

EAX 004FF4C8
EBX 003AE000

Evehtually - The names of some security products was also observed. Likely the malware
was scanning for the presence of these tools.

004FF4B0
004FF990

rAC1IcCc2AC

004FF4B0
FFFFFFO0

C2 Information

Allowing the decryption function to continue to execute and hit our breakpoint. We can
eventually observe C2 information.

EAX 02A3FDC4
EBX 00000000
ECX C3S1E3AF

02A3FCE4
00000000
02A3FCFC
00770000

AutOI;Ia-ting the De.cryp;ién‘ - Kinda

Eventually the constant breakpoint + execute until return combination got tiring. So | decided
to try and automate it using a Conditional Breakpoint and Log.

To do this - | allowed the malware to execute until the end of a decryption function.

E8 562C0100 oneetx.AB5732
8BES

mov esp,ebp
Eg ~~~~~ EAX 012FF6F0
8 27790100 oneetx. ABA40C e
Py ECX CB76089D
= i EDX 0000000F
) EBP_ 012FF878

And then created a Conditional Breakpoint that would log any string contained at eax, then
continue execution.

$ =

-~ Breakpoints W Memory Map d Call Stack E

E8 562C0100 oneetx.AB5732
8BES mov e;p,ebp

a1

E8..22290100 oneetx.ABA40C
CC

r
® Edit Breakpoint oneetx.00AA2ADF
Break Condition:

Log Text: Decoded {s:eax}
Log Condition: eax 1= 0
Command Text: ;run

Command Condition:

Name:
Hit Count:

Singleshoot |M| Silent Fast Resume Save Cancel
led €dX,aworad pLr 55.Lepp-L]
Settiing a Conditional Breakpoint (and logging a value) using X32dbg
Allowing the malware to continue to execute. | could observe the decoded values printed to

the log menu of x32dbg.

40/52

f Breakpoints ™ Memory Map 4 call stack ?' SEH f Script i Symbols

emInfo"

Successfully using conditional breakpoints to decode a malware sample.
This revealed some c2 information - referencing an IP with 1/87 detections as of 2023/04/10

1 @ 1 security vendor flagged this IP address as malicious

/87
77.91.124.207 (77.91.124.0/24)

AS 203727 (Daniil Yevchenko)

Community Score

DETECTION DETAILS RELATIONS COMMUNITY

The full list of decoded strings can be found here.

41/52

&"SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\Explorer\\User Shell Folders"
&"SYSTEM\\CurrentControlSet\\Control\\ComputerName\\ComputerName"
&"SOFTWARE\\Microsoft\\Windows NT\\CurrentVersion"
&"abcdefghijklmnopqgrstuvwxyz0123456789-_"
&"/Create /SC MINUTE /MO 1 /TN "
&"/plays/chapter/index.php"
&"GetNativeSystemInfo"
&"cred.dll|clip.dll|"
"77[.]91[.]124[.]207"

"Panda Security"

"AVAST Software"

"Kaspersky Lab"

"Programbata\\"

"ComputerName"

"CurrentBuild"

"kernel32.d1l1l"

"Bitdefender"

"Doctor Web"

"https://"

"Plugins/"

"SCHTASKS"

"http://"

" /TR \""

"Startup"

"Comodo"

"Sophos"

"Norton"

"Avira"

"\" /F"

L"\\-="

"POST"

"gvs="

"3.70"

"&sd="

"&os="

"&bi="

"&ar="

Il&pC:II

"&un="

"&dm="

"gav="

"&lv="

"&Og:“

"ESET"

"dll"

I|<C>I|

n id:H

"AVG"

?7??

Bonus: Utilising Decrypted Strings To Identify the Malware Family

42/52

This section was not in the original blog, but was later added when | was informed by
another researcher that the malware might not be Redline.

| then revisited my analysis and determined that the sample was Amadey Bot.

| was able to determine this mostly by researching (googling) the decrypted strings.

| thought it would be useful for others to see what this process looked like :)

Decrypted strings are not just useful for C2 information. They are equally as useful for
identifying the malware that you are analyzing.

Unless you are analyzing the latest and greatest APT malware, your sample has likely been
analyzed and publically documented before. You'd be surprised how much you can
determine using Google and the "intext" operator. (Essentially it forces all search results to
contain your query string, significantly reducing unrelated content)

From decrypted strings, try to pick something specific.

For example, the following decrypted string &"cred.d11|clip.d11|" can be used to craft a
Google query of intext:clip.dll intext:cred.dll malware.

This returns 7 results that reference a combination of Redline Stealer and Amadey Bot.

The first link contains IOC's from an Amadey Bot sample, which align closely with the sample
analysed in this blog.

(PID) Process (2908) mnolyk.exe
c2 (1) 62.204.41.5/Bu58Ngs/index.php
Version 3.66
Options
Drop directory 5eb6b96734
Drop name mnolyk.exe
Strings (116) SCHTASKS

/Create /SC MINUTE /MO 1 /TN

/TR"

"/F

SOFTWARE\Microsoft\Windows\CurrentVersion\RunOnce
SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\User Shell Folders
Startup

Rem

cmd /C RMDIR /s/q

SOFTWARE\Microsoft\Windows\CurrentVersion\Run

43/52

https://www.googleguide.com/advanced_operators_reference.html?ref=embee-research.ghost.io

In the second link - An additional Amadey sample is analysed with the exact same filename
as this one. Albeit with a different C2 server.

Malware configuration

Amadey
(PID) Process
C2 (1)
Version
Options
Drop directory
Drop name

Strings (116)

(1692) oneetx.exe
http://193.233.20.36

3.69

c5d2db5804

oneetx.exe

SCHTASKS

/Create /SC MINUTE /MO 1 /TN

At this point - | would have moderate confidence that the sample is Amadey Bot.

For additional confirmation, | would typically google this family and see if any TTP's are the

same or at least similar.

| googled Amadey Bot Analysis and discovered this blog from AhnLab.com.

44/52

https://asec.ahnlab.com/en/36634/?ref=embee-research.ghost.io

amadey bot analysis

Q Al [Images [] Videos [E News () Shopping : More

About 8,570 results (0.29 seconds)

Fraunhofer-Gesellschaft
https://malpedia.caad.fkie.fraunhofer.de » win.amadey

Amadey (Malware Family)

Amadey is a botnet that appeared around October 2018 and is being sold for about 500$ on
Russian-speaking hacking forums. It periodically sends information ...

AhnLab
https:/fasec.ahnlab.com » ...

Amadey Bot Being Distributed Through SmokelLoader

Jul 21, 2022 — Amadey Bot, a malware that was first discovered in 2018, is capable of stealing

information and installing additional malware by receiving ...

BlackBerry
https://blogs.blackberry.com » 2020/01 » threat-spotli...
Threat Spotlight: Amadey Bot Targets Non-Russian Users

Jan 8, 2020 — Amadey is a simple Trojan bot first discovered in October of 2018. It is primarily
used for collecting information on a victim's environment, ...

The Ahnsec blog details an extremely similar installation path and strings.

Amadey Installation Path
> %BTEMP%\9487d68b99\bguuwe.exe

Command registered to Task Scheduler

> cmd.exe /C REG ADD “HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\User Shell Folders” /f
/v Startup /t REG_SZ /d %TEMP%\9487d68b99\

> schtasks.exe /Create /SC MINUTE /MO 1 /TN bguuwe.exe /TR “%TEMP%\9487d68b99\bguuwe.exe” /

The Ahnsec Blog also references a list of AV products that are enumerated by Amadey Bot.

45/52

https://asec.ahnlab.com/en/36634/?ref=embee-research.ghost.io

Anti-malware Name Number

X 0
Avast Software 1
Avira 2
Kaspersky Lab 3
ESET 4
Panda Security 5
Dr. Web 6
AVG 7
360 Total Security 8
Bitdefender 9
Norton 10
Sophos 1M
Comodo 12
Windows Defender (assumed) 13

Coincidentally, almost all of those strings were contained in our sample

46/52

"Panda Security"
"AVAST Software"
"Kaspersky Lab"
"ProgramData\\"
"ComputerName"
“"CurrentBuild"
"kernel32.dl1l"
"Bitdefender"
"Doctor Web"
"https://"
"Plugins/"
"SCHTASKS™
"http://"

" JTR \""
"Startup”
"Comodo"
"Sophos"
"Norton"

"Avira"

The Ahnsec blog also references specific parameters that are sent in POST requests made
by Amadey Bot.

47/52

https://asec.ahnlab.com/en/36634/?ref=embee-research.ghost.io

Item

Data Example

Meaning

Vs

sd

0s

bi

ar

pc

un

dm

av

0g

Coincidentally, almost all of those same fields (first column) are referenced in our decrypted

strings.

Since POST request parameters are pretty specific - Was confident my sample was actually

129858768759

3.21

37bbd7

PCNAME

USERNAME

DOMAINNAME

Amadey bot.

Infected system’s ID
Amadey version
Amadey ID

Windows version

ex) Windows 7 -9
Windows 10 -1

Windows Server 2012 - 4
Windows Server 2019 - 16

Architecture (x86 - 0, x64 - 1)

Admin privilege status (1 if admin privilege is available)
Computer name

User name

Domain name

List of installed anti-malware

Setas 0

Setas 1

Table 1. Data sent to the C&C server

48/52

L"\\-="
"POST"
"&vs="
"3.70"
"&sd="
"&os="
"&bi="

"&ar=
Il&r)C=
"&un=

"&dm="

"&av=
"&lv="

"&Og:

"ESET"
I|dlll|

"<c>

11 id:“
IIAVGII
’e?

At this point, | also reviewed a second blog_from Blackberry. Which confirmed much of the
same analysis as AhnSec.

At this point, | was comfortable re-classifying the malware as Amadey bot.

(I also learned not to blindly follow tags from Malware Reps)

Conclusion and Recommendations

At this point I'm going to conclude the analysis as we have successfully located the C2
information and identified the malware family. In a real life situation, this analysis could serve
multiple purposes.

Decrypted strings can be googled to aid in malware identification.

Decrypted strings contain commands and process names that can be used for
process-based hunting

Decrypted Strings contain URL structure which can used to hunt or develop detection
rules for proxy logs.

Decrypted Strings contain an IP that could be used to identify infected machines.
Decrypted Strings can be used to enhance a Ghidra or IDA database - enhancing the
decompiler output and leading to better RE analysis.

49/52

https://blogs.blackberry.com/en/2020/01/threat-spotlight-amadey-bot?ref=embee-research.ghost.io
https://asec.ahnlab.com/en/36634/?ref=embee-research.ghost.io

o Better automation could be used to make a config extractor - useful for a threat

intel/analysis pipeline. (Replacing x32dbg with Dumpulator would be a great way to do
this)
e +lots of fun :D

Virustotal

At the time of this analysis (2023/04/10) - There is only 1/87 detections for the C2 on
Virustotal

1 @ 1 security vendor flagged this IP address as malicious

/87
77.91.124.207 (77.91.124.0/24)

AS 203727 (Daniil Yevchenko)

Community Score

DETECTION DETAILS RELATIONS COMMUNITY
[
1 @ 1 security vendor flagged this IP address as malicious 4P gi(g

/87
77.91.124.207 (77.91.124.0/24)

AS 203727 (Daniil Yevchenko) I

Community Score

DETECTION DETAILS RELATIONS COMMUNITY

Crowdsourced context ©

HIGH 1 MEDIUM 0 LOW O INFO 0 SUCCESS 0

/\ ©nC Panel - according to source ViriBack - 2 days ago
Y A domain seen in a CnC panel URL for the Amadey malware resolved to this IP address

Security vendors' analysis (O Do you want to automate checks?

ViriBack @ Malware Abusix @ Clean
Acronis ©) clean ADMINUSLabs (©) clean
AICC (MONITORAPP) ©) clean AlienVault ©) clean

Decoded Strings

A full list of strings obtained using the log function of x32dbg.
(Noting that these are in order of length and not location of occurrence.)

50/52

&"SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\Explorer\\User Shell Folders"
&"SYSTEM\\CurrentControlSet\\Control\\ComputerName\\ComputerName"
&"SOFTWARE\\Microsoft\\Windows NT\\CurrentVersion"
&"abcdefghijklmnopgrstuvwxyz0123456789-_"
&"/Create /SC MINUTE /MO 1 /TN "
&"/plays/chapter/index.php"
&"GetNativeSystemInfo"
&"cred.dll|clip.dll|"
"77[.]91[.]124[.]207"

"Panda Security"

"AVAST Software"

"Kaspersky Lab"

"Programbata\\"

"ComputerName"

"CurrentBuild"

"kernel32.d1l1l"

"Bitdefender"

"Doctor Web"

"https://"

"Plugins/"

"SCHTASKS"

"http://"

" /TR \""

"Startup"

"Comodo"

"Sophos"

"Norton"

"Avira"

"\" /F"

L"\\-="

"POST"

"gvs="

"3.70"

"&sd="

"&os="

"&bi="

"&ar="

II&pC:II

"&un="

"&dm="

"gav="

"&lv="

"&Og:“

"ESET"

"dll"

I|<C>I|

n id:H

"AVG"

???

Useful Links

51/52

AhnSec Labs - Blog_on Amadey Stealer

Blackberry Blog - Amadey Bot Analysis

Mandiant - Repo for Flare VM Install

X32dbg Documentation - Conditional Breakpoints in X32dbg

52/52

https://asec.ahnlab.com/en/36634/?ref=embee-research.ghost.io
https://blogs.blackberry.com/en/2020/01/threat-spotlight-amadey-bot?ref=embee-research.ghost.io
https://github.com/mandiant/flare-vm?ref=embee-research.ghost.io
https://help.x64dbg.com/en/latest/introduction/ConditionalBreakpoint.html?ref=embee-research.ghost.io

