Dcrat Deobfuscation - How to Manually Decode a 3-Stage
.NET Malware

l embee-research.ghost.io/dcrat-manual-de-obfuscation/

Matthew April 8, 2023

dnspy Featured
Manual analysis and deobfuscation of a .NET based Dcrat. Touching on Custom Python
Scripts, Cyberchef and .NET analysis with Dnspy.

1/27

https://embee-research.ghost.io/dcrat-manual-de-obfuscation/
https://embee-research.ghost.io/tag/dnspy/

Analysis of a 3-stage malware sample resulting in a dcrat infection. The initial sample
contains 2 payloads which are hidden by obfuscation. This analysis will demonstrate
methods for manually uncovering both payloads and extracting the final obfuscated C2.

If you've ever wondered how to analyse .net malware - this might be the blog post for you.

Tooling

Samples

The malware file can be found here
And a copy of the decoding scripts here

Initial Analysis.

The initial file can be downloaded via Malware Bazaar and unzipped it using the password
infected

Name

B fd687a05b13c4f87f139d043c4d9d936b73762d616204bfb090124fd163c316e.exe
fd687a05b13c4f87f139d043c4d9d936b73762d616204bfb090124fd163c316e.zip

detect-it-easy is a great tool for initial analysis of the file.

Pe-studio is also a great option but | personally prefer the speed and simplicity of
detect-it-easy

Detect-it-easy revealed that the sample is a 32-bit .NET-based file.
- The protector confuser(1.x) has also been recognized.

2/27

https://bazaar.abuse.ch/sample/fd687a05b13c4f87f139d043c4d9d936b73762d616204bfb090124fd163c316e/?ref=embee-research.ghost.io
https://github.com/embee-research/Decoders/tree/main/2023-April-dcrat?ref=embee-research.ghost.io
https://bazaar.abuse.ch/sample/fd687a05b13c4f87f139d043c4d9d936b73762d616204bfb090124fd163c316e/?ref=embee-research.ghost.io
https://github.com/horsicq/Detect-It-Easy?ref=embee-research.ghost.io
https://www.winitor.com/download?ref=embee-research.ghost.io

Detect It Easy v3.01 - O X

File name

C:\Users\Milhouse\Desktop\dcrat2\fd687a05b13c4f87f139d043c4d9d936b73762d616204bfb090124fd163c316e.exe

File type Entry point Base address MIME
PE32 004518ae > Disasm 00400000 Memory map ’T
as

| [S e
PE Import Resources .NET Strings

Sections TimeDateStamp SizeOfImage Resources

Entropy

0003 > 2023-04-01 03:36:33 00056000 Manifest Version
Hex

Scan Endianness Mode Architecture Type

Detect It Easy(DiE) LE 32 1386 GUI

protector Confuser(1.X)[-]
library .NET(v4.0.30319)[-]
linker Microsoft Linker(11.0)[GUI32]

Options
Signatures |:| Deep scan About
Scan
359 msec Exit

Initial analysis using Detect-it-easy

Before proceeding, | checked the entropy graph for signs of embedded files.

| used this to determine if the file was really dcrat, or a loader for an additional payload
containing dcrat.

In my experience, large and high entropy sections often indicate an embedded payload.
Indicating that the file being analyzed is a loader.

3/27

Entropy

Type Total
PE32 7.97990

Entropy Bytes
Regions

PE Header
Section(0)[".text']
Section(1)[".rsrc’]

Section(2)[".reloc’]

50,000

Offset

Offset
00000000
00000200

0004fc00
00050200

100,000 150,000 200,000

00000000 00050400

Size Entropy Status
00000200 2.70760 not packed
0004fa00 7.98897 packed

00000600 4.12711 not packed
00000200 0.10473 not packed

250,000 300,000 350,000

Save

Close

Entropy Analysis of the Initial .exe file - Showing a large section of high entropy
The entropy graph revealed that a significant portion of the file has an entropy of 7.98897
(This is very high, the maximum value is 8).

This was a strong indicator that the file is a loader and not the final dcrat payload.

In order to analyze the suspected loader, | moved on to bnspy

Dnspy Analysis

Utilizing Dnspy, | saw that the file had been recognized as rewrwr . exe and contained
references to confuserEx. Likely this means the file is obfuscated using Confuserex and
might be a pain to analyze.

4/27

https://mkaring.github.io/ConfuserEx/?ref=embee-research.ghost.io

System;

dnlib (3.3.2.0)
dnSpy (6.1.8.0)

rewrwr (4.2.6.1) : ConfusedBy("ConfuserEx v1.0.8")]

= rewrwr.exe
D& PE
> =B Type References

D =-B References
D Bl Resources
4 {}) _
P %, <Module> @02000001
> %, ConfusedByAttribute @0200

Dnspy overview of the initial file
In order to peek at the code being executed - | right-clicked on the rewrwr .exe name and
selected go to entry point

This would give me a rough idea of what the actual executed code might look like.

The file immediately creates an extremely large array of unsigned integers. This could be an
encrypted array of integers containing bytecodes for the next stage (further suggested by a
post-array reference to a Decrypt function)

[1 array =

1880563524U,
3110281651U,
3737408670U,
1376871950U,
185872267U,
769682325U,
287549547U,
2095780025U,
3864692579U,
Viewing Encrypted Arrays using Dnspy

<Module>

(

[]1 array = [16];

[1 array2 = [16];
num = (JA_1;

(i=0; i< 16; i++)

Using Dnspy to locate and view the Decryption function

The initial array of uints was so huge that it was too large to display in Dnspy.

https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-dtyp/52ddd4c3-55b9-4e03-8287-5392aac0627f?ref=embee-research.ghost.io

Given the size, | suspected this array was the reason for the extremely high entropy
previously observed with detect-it-easy

After the array, there is again code that suggests the array's contents are decrypted, then
loaded into memory with the name koi

3821091257U,

2830783130,

732224790U,

2882807258U,

"Not showing all elements because this array is too big (78747 elements)"
¥s
Assembly executingAssembly = Assembly. 0);

Module manifestModule = executingAssembly. -
gchandle = <Module>. (array, 306067877U);
[] array2 = ([1)gchandle. ;
Module module = executingAssembly.loadModule("koi", array2);
Array. (array2, @, array2.)
gchandle.Free();

Given the relative simplicity of the code so far - | suspected the encryption was not complex,
but still, | decided not to analyze it this time.

Instead, | considered two other approaches
o Set a breakpoint after the becrypt call and dump the result from memory.
e Setamodule breakpoint to break when the new module decrypted and loaded. Then
dump the result into a file.

| took the second approach, as it is reliable and useful for occasions where the location of
decryption and loading isn't as easy to find. (Typically it's more complicated to find the
Decryption function, but luckily in this case it was rather simple)

Either way, | decided to take the second approach.

Extracting Stage 2 using Module Breakpoints

To extract stage 2 - | first created a module breakpoint which would break on all module
loads.

To do this, | first opened the module breakpoints window.
Debug -> Windows -> Module Breakpoints

6/27

Debug Window Help (xs P Stat P

Windows Breakpoints Ctrl+Alt+B
Start Debugging... Module Breakpoints
Start Without Debugging Ctrl+F5 2 Exception Settings Ctrl+Alt+E
Attach to Process... Ctrl+Alt+P Output
Attach to Process (Unity)... ;;g;Zé’;;D i
Toggle Breakpoint F9 3609776243V,
_ 116963954U,
03 Options...

i I 32253094938U,

How to set a module breakpoint using Dnspy

| then created a module breakpoint with two wildcards. This will break on all new modules
loaded by the malware.

Module Breakpoints
+= P& G E serch

Name Dynamic InMemory Load Order Process AppDomain

/] = L] L]

Module breakpoint to break on all loaded modules
| then executed the malware using the start button

P Start ,Q

Dnspy button to Start or Continue execution
| accepted the default options.

7/27

Debug engine .NET Framework

Executable C:\Users\Milhouse\Desktop\dcrat2\fd687a05b13c4f87f139d043c-
Arguments
Working Directory C:\Users\Milhouse\Desktop\dcrat2

Break at Don't Break

Default options for Dnspy Debugging are ok

Immediately, a breakpoint was hit as mscorelib.dll was being loaded into memory. This is a
default library and | ignored it by selecting Continue

Analyzer Module Breakpoints

LoadModule A=05FF0000 S=0056C000 mscorlib.dll

Dnspy alert when a module breakpoint has been triggered

P Continue

Once executing - the Continue button can be used to resume execution
The next module loaded was the original file being analyzed, which in this case can be safely
ignored.

After that, a suspicious-looking koi module was loaded into memory. (If you don't have a
modules window, go to debug -> windows -> modules)

8/27

https://www.processlibrary.com/en/directory/files/mscorlib/28337/?ref=embee-research.ghost.io

Debug Window Help v P Continue

Windows Breakpoints Ctrl+Alt+B
Start Debugging... Module Breakpoints
Exception Settings Ctrl+Alt+E

Continue Output

Watch
Stop Debugging Shift+F5 o Autos Ctrl+Alt+V, A
Detach All Locals Alt+4
Terminate All Call Stack Ctrl+Alt+C
Restart Ctrl+Shift+F5 Threads Ctrl+Alt+H
Attach to Process... Ctrl+Alt+P Modules Ctrl+Alt+U

Attach to Process (Unity)... Processes Ctrl+Alt+Z

Step Into F11 Memory

Step Over F10 Disassembly
Step Out Shift+F11

Toggle Breakpoint acuritySafeCritical]

{# Options... FileStream GetFile(

How to View Currently Loaded Modules in Dnspy
Here | could see the koi module had been loaded.

@020

PlnvokeAttributes @0200 | [Modules
Pointer @020005EE
PortableExecutableKinds «
ProcessorArchitecture @C Name Optimized
PropertyAttributes @020(No
Propertylnfo @020005F0 exe INo

@
ReflectionContext @0200
ReflectionTypeloadExcep
ResourceAttributes @020
Resourcelocation @0200i
RtFieldinfo @020005BC
RuntimeAssembly @020C

RuntimeConstructorinfo (¥
| » Analyzer Module Breakpoints Locals

Process All

No

LoadModule DYN=0 MEM=1 05F10000 000D5C00 koi

Example of a suspicious module being loaded into memory
At this point, | saved the koi module to a new file using Right-Click -> Save Module.

! Copy Ctrl+C
k Select All Ctrl+A

[SecuritySafeCritical]
FileStream Go To Medule Enter
{
100 %
Open All Modules

Modules Show in Memory Window

Process All = Search Hexadecimal Display

Name
Copy Filename

lH Save Module...

NY

Dnspy Option for Saving a Loaded Module
| then exited the debugger and moved on to the koi.exe file.

Analysis of koi.exe

The koi.exe file is another 32-bit .net file. Containing references to confuserkx

Detect It Easy v3.01 — O X

File name

C:\Users\Milhouse\Desktop\dcrat2\koi.exe

File type Entry point Base address MIME

PE32 v 004d705e > Disasm 00400000 Memory map e
as
PE Import Resources .NET S

Sections TimeDateStamp SizeOfImage Resources

Entropy
0003 > 2059-04-16 11:12:07 000dc000 Manifest Version

Hex
Scan Endianness Mode Architecture Type

Detect It Easy(DiE) LE 32 1386 GUI

protector Confuser(1.X)[-]
library .NET(v4.0.30319)[-]
compiler VB.NET(-)[-]

linker Microsoft Linker(80.0)[GUI32]

Options

Signatures |:| Deep scan About
> Log 505 msec Exit

Initial Analysis of a .NET file using Detect-it-easy
This time it does not seem to contain any large encrypted payloads.

Although the overall entropy is low, large portions of the graph are still suspiciously flat.
This can sometimes be an indication of text-based obfuscation.

10/27

Entropy

Type Total Status Offset
PE32 3.49955 not packed 00000000 000d5c00

Entropy Bytes
Regions
Offset Size Entropy Status
PE Header 00000000 00000200 2.72211 not packed
Section(0)['.text'] 00000200 000d5200 3.49612 not packed
Section(1)['.rsrc'] 000d5400 00000600 4.12383 not packed
Section(2)[".reloc’] 000d5a00 00000200 0.10473 not packed

N W Y o (e)] ~ [ee]
[B W N AN F R AR SRR

[y

o

I I
600,000 800,000

I I
200,000 400,000

Entropy Analysis when a text based obfuscation is used
| moved on and opened koi.exe using dnspy.

This time there was another rewrwr . exe name and references again to ConfuserEx

PresentationFramework (5.0.0.0)
dnlib (3.3.2.0)

dnSpy (6.1.8.0) : ConfusedBy("ConfuserEx v1.0.0")]
rewrwr (4.2.6.1)

System.Runtime (5.0.0.0)

mscorlib (4.0.0.0)

rewrwr (4.2.6.1)

System;

P PE

P =B Type References

P =-B References

> Ml Resources

>} -

>} rewrwr

P{} rewrwrMy

P {} rewrwrMy.Resources
P O System (4.0.0.0) Modules

File Overview with Dnspy

100 %

There was no Entry point available, so | started analysis with the rewrwr namespace in the
side panel. This namespace contained one Class named Form1

The Form1 class immediately called Form1_Load, which itself immediately referenced a large
string that appears to be base64 encoded.

VisualBasic.CompilerSer

e rewrwr

Avvvvvvvevvvvw

N

a
a
a
a
a
a
a
a
@ d
a
u:ﬂ.
a
a
4
a
4

sender, E\

100% ~

Modules

Process All £ Search

Example of Entry Point Contalnlng Obfuscated Data

Despite appearing to be base64 - the text does not successfully code using base64. This
was an indicator that some additional tricks or obfuscation had been used.

Recipe S Input + 0Oz 8 =

from Basebd TAT1IAAAAAAAAAAAAAAQAAAAAAAUAAAACSDADSDCGSHWHOAAAAAQBEF cGOGAAAAEAAAABDAALMASACAATEAOACAAD
rom Base TAWAAAAGMASAAAAQIACAAAAVMAWACAABMAWAAASAAAKABAAAAACAAAAVAAZACAAAAAZAAAAAAAKABAAAAACABAAUA
Alohabet AgADAAAAAZAAAAAAAKABAAWAAZAAAAAAAZACAAAAAZAAAAAAAKACAAAAACAAAAUAAZADAAAAAZAAAAAAAKABAAAAA
A-Za-20-9+/= v CAAAAUAAGACAAAAAZAAAAAAAKADEAAAAKCAAGF AAECDAGZAAMCCAKSEASCBACZAAMAOAYATANBABMAQATKACOALH/

bAd4BAC459mQOMAPAEATATAALTgRKQEABANT jAFAr8AEAAeVKTAALKCLCFAQLWOTEAATBQIqeQATAZ5DAIAOAMKBA

tLOBIABeoAYBEAAGYASK+AJKFAIAOAUKMKYCLIAINQeQKI cAA0eACiLAftISAYAABMKAAIAMKUAOKgBOMAEMASKMAN v
Remove non-alphabet chars D Strict mode LA A 18 A A AR OIL T DT OAAAD AL AAACMAMD =5 AOL0AAND A AMDTOLAADMOLULID A AL AT A oA A DAMAAACDALOAAAALI-E

nec 8616 = 1 Tr Raw Bytes ¢ LF

o1 ABL, AR -A(s 0@ B @ 0 04

Attempting to Decode Base64 Using Cyberchef - InltlaIIy fails due to additional obfuscatlon
| decided to jump to the end of the base64-looking data - Noting that there were about 50
large strings in total. Each titled stri str2 ... all the way to str49

It was very likely these strings were the cause of the flat entropy graph we viewed
earlier. Text based obfuscation tends to produce lower entropy than "proper" encryption

12/27

"ABGAAAAAAACAACAARAFAAFAAQAAAAOA
JAVAVAVAY Sy AVAVAYAVAVAVANVZAVAVAVLIVAVAYAY S AVAVAVAVAVAY Y o VAVAY:

Example of another "base64" obfuscated string in Dnspy
At the end of the data was the decoding logic. Which appeared to be taking the first
character from each string and adding it to a buffer.

text2 = "";
length = text.

(i 1; i <= length; i++)

text2 = . (
{
text2,

Strings. (text, i, 1),
Strings. (str, i, 1),
Strings. (str2, i, 1),

Strings. (str3, i, 1), . .
Strings.Mid(stra, i, 1), string is added to a

Strings Mid(strs, i, 1), buffer, then _the second_
Strings.Mid(strs, 1, 1), char, then third. Etc _untll
Strings.Mid(str7, i, 1), the end of each string
Strings.Mid(str8, i, 1), has been reached
Strings. (str9, i, 1),
Strings. (strie, i, 1),
Strings. (stri11, i, 1),
Strings. (str12, i, 1),

The first char from each

Decoding Logic Utilised by the Dcrat Loader - Viewed with Dnspy
After the buffer had been filled, it was base64 decoded and loaded into memory as an
additional module.

1, 1),
i, 1)

Conversions.ToString(NewLateBinding.LateGet(NewLateBinding.LateGet(AppDomain. .Load(.FromBase64String(text2)), null,
"EntryPoint", new object[@], null, null, null), null, "Invoke", new object[2], null, null, null));
b
>

Example of Decoded Contents being loaded into Memory
In order to confirm the theory on how the strings were decoded, | took the first character from
the first 5 strings and base64 decoded the result.

13/27

Output

text = "TAT1TAAAAAAAAAAAAAAQAAAAAAAUAAAA
{

str = "\{AMngBAAACAAAAAQAFAAFAAQABAAIAAQ

str2 = "qA@ZEAAAAASABAUAAAGAAAAYMAAAAAAS
.

str3 = "QAhGLgACAABGAAAAAFAAFAAQAFAAAAAA
\

str4 = "AAVUAAAAAAZAAArAAEAAAAAAAOAAAAMA

str5 = "AAGUQABFAAXUAAAAFAAFAARAFAALAAAA

Brief Overview of the Additional obfuscation used

TVQQAA

mec B = 1

Output

MZ "]
base64

BOm:o:

First character from each string
is added to the file. Then 2nd,3rd
etc

Example of this decodes using

This confirmed my theory on how the malware was decoding the next stage.

In order to extract the next module, | copied out the strings and put them into a Python script.

14/27

import base64

#List containing all strings from the malware

textArray = ["TAT1IAAAAAAAAAAAAANAQAAAAAAAUAAAACSDADE8DCcGsSHWHOAAAAAQBEFCGOGARAAEAARALBIL
output = ""

#Iterate through strings, grab 1lst char from each, then 2nd, 3rd etc

for 1 in range(0,len(textArray([0])):

for text in textArray:
try:
output += text[i]
except:
continue

#Base64 Decode the results
outbin = base64.b6ddecode (output)

fWrite output to a file

f = open("output.bin", "wb")
f.write (outbin)

f.close()

Python Script to Decode the Dcrat Encoded Strings
Running this script created a third file. Which for simplicity's sake was named output.bin

The file was recognized as a 32-bit .NET file. So the decoding was successful.

Detect It Easy v3.01 B - X

File name
C:\Users\Milhouse\Desktop\dcrat2\output.bin

File type Entry point Base address MIME
PE32 004503fe > Disasm 00400000 Memory map ’T
as!

[. TR
e Import || Resources || NET | [swngs |
Sections TimeDateStamp SizeOfImage Resources
’7 T Entropy
>

0003 2022-07-24 22:13:08 00056000 Version

Hex
Scan Endianness Mode Architecture Type

Detect It Easy(DiE) LE 32 1386 GUI

library NET(v4.0.30319)[-]
compiler VB.NET(-)[-]
linker Microsoft Linker(8.0)[GUI32]

Options
Signatures |:| Deep scan About
> Log 349 msec Exit

Initial Analysis of Third .NET File using Detect-it-easy

Stage 3 - Analysis

Now | had obtained a stage 3 file - which again was a 32-bit .net executable.

15/27

This time - no references to confuserEx

Detect It Easy v3.01 - O X

File name

C:\Users\Milhouse\Desktop\dcrat2\output.bin

File type Entry point Base address MIME

PE32 004503fe > Disasm 00400000 Memory map .
as|
PE Import Resources .NET Strings

Sections TimeDateStamp SizeOfImage Resources

. Entropy
0003 > 2022-07-24 22:13:08 00056000 Version

Hex
Scan Endianness Mode Architecture Type

Detect It Easy(DiE) LE 32 1386 GUI

library .NET(v4.0.30319)[-]
compiler VB.NET(-)[-]

linker Microsoft Linker(8.0)[GUI32]

Options

Signatures |:| Deep scan About
> Log 349 msec Exit

Initial Analysis of Third .NET File using Detect-it-easy

The entropy was reasonably normal - and did not contain any large flat sections that may
indicate a hidden payload.

16/27

Entropy — a X

Type Total Status Offset
Reload
PE32 5.75978 not packed 00000000 000400

Entropy Bytes
Regions

Offset Size Entropy Status
PE Header 00000000 00000200 2.74986 not packed
Section(0)[".text'] 00000200 0004600 5.77587 not packed
Section(1)['.rsrc’] 0004800 00000400 2.64323 not packed
Section(2)[".reloc'] 0004ec00 00000200 0.06398 not packed

50,000 100,000 150,000 200,000 250,000 300,000 350,000

=

Close

The lack of confuserEx and relatively normal entropy - was an indication that this may be the
final payload.

Moving on to Dnspy, the file is recognized as IvTdur2zx
Despite the lack of confuserEx, the namespaces and class names look terrible.

17/27

™=

MKHIRUYImfusWIZrDa

= PE
D =-B Type References

D =-B References

P {} -

P {} 135

> {} 13

P {} 15k

P {} 164

P {} 172

> {} 17

P {} 1Dz

P {} 1A

P {} 1H1

1iE

Dnspy view of Obfuscated Functions in Final Payload
| then went to the Entry-point to see what was going on

[STAThread]

{
wWTq();
;

The first few functions were mostly junk - but there were some interesting strings referenced
throughout the code.

For example - references to a .bat script being written to disk

text =
contents

/period:5 /da

Dnspy Overview of Strings in The .NET File
Since the strings were largely plaintext and not-obfuscated - At this point | used detect-it-
easy to look for more interesting strings contained within the file.

This revealed a reference to DCrat - as well as some potential targeted applications (discord,
steam, etc)

00041560 0000001f U | \discord\Local Storage\leveldb\
000415a0 00000014 SOFTWARE\Valve\Steam
000415ca 0000000d AutolLoginUser

000415e6 00000016
00041614 0000000b
00041652 00000011
0004167e 0000000c
000416e1 00000224
00041b2¢ 000000e8
00041d7a 0000000a
00041d90 0000000a
00041da6 00000015
00041dd6 0000000d
00041e04 0000000d
00041e34 00000014

/config/loginusers.vdf

AccountName

/steamapps/common

rdscreensize

H4sIAAAAAAAEAFXSTVPCMBAG4B/khYL4cfCglUgipCRtlrY3UT7SBoEBLfDrDfbNjB4y7D0O72d00eXhQCyeHs 1WS5TqwyyjZpeT50i/W24hNJ/...
H4sIAAAAAAAEAA3OuwqDMBQAOFIRcg2)mCwtLj7QRbNYCrbolKT1WgWxFCq4SL69PVOwsix5kTIgMUsF2QkLvFWcKRfdRwGz9wa8ety Th6EpE...
DCRat-Log#

dd.MM.yyyy

Saving information...

Work results:

Saving log...

C C Cccccccccccocc

Done! Elapsed time:

00041e68 0000001c U Processing stealer plugins [

00041eb0 0000001f U Processing other information...

0004100 00000029 U [SystemInfromation] Saving information...

00041161 000001cc U ICBfX18gICAgICAgICAgIF8gICAgICBfX18gICAgICAgICAgICAgXyAgICAgICAgXyAgIFfXyAgICBfIFIfX19flIAOKIHwgICBCIF9fIF8gXyBffCB8X18gIC...

Overview of some plaintext strings contained in the malwar.e
At that point, you could probably assume the file was DCrat and an info stealer - but | wanted
to continue my analysis until I'd found the C2.

In the above screenshot - | noticed there were some interesting strings that looked like
base64 encoding + gzip (the H4sIAA* is a base64 encoded gzip header).

So | attempted to analyze these using CyberChef.
The first resulted in what appeared to be a base64 encoded + reversed string.

This was strongly hinted by the presence of == at the start.

19/27

https://gchq.github.io/CyberChef/?ref=embee-research.ghost.io

Recipe BB E Input + O3] e =
. B Q1 H4sTAAAAAAAEAFXSTVPCMBAGAB/KhYL4cFCglUgipCRt1rY3UT7SBoEBLFDrDfbNiBAy7D072d00eXhQCyeHsINsT
rom Base quyyjZpeT50i/W24hNI/5yxmu95urAN+ziztV52YuS4XtbH7uxFFra7mzPcX79z0bnRbPqFic2L c8izm+FTex7rz
Alphabet /bnuMbbgld+j1WiR1HKhbXx6LSpuIGUZT60FUPT
A-Za-20-9+/= - /38/FAP9111zPfal9vplgmVPp4LKTrIDZIFT366a7bY90ixIG6IsISI1UOWA28Zy62cM2YAUBD3 fMey+9
/He/x7gLVzDPXgHW/gKbuBbuM9bL+Ea+TVRUOT3yEV4C+41i94j6e
/eu7TNXCRH20XAGr5F38Rx 581 fTD+FF&TdwhhvAt3AKI 1G/C/+3cuh5vY)34491 hFNTH4 M
Remove non-alphabet chars DStrict mode DY B8 Tr Raw Bytes & LF
Output BO@E::
Gunzip O n

==QfINHbhZm0iQUQiwSZzxWYmpjIPNVQiwSZzxWYmpJITFkIsISfiwFdzFmRgOCI1IXZkx2bGNnc1INXVIICX6ICXoRXY
wh2YyFWZzJCX7J10ickRDNVQiwSM6IiUVFKISAjOiM1QCICLYojIUNVTTICL10jIUNIUIwSZzXWYmpjIHIERIWSZZXWY
mpjINRFRMICLi14GWRN3RSJIVZ0O50VZzI3Qv1jbgp3VtgVRUVVTFI1QEIi0igVRUVVTiwiIiojIHFEViwiI9JICX1ICX6ICX
SICXSICXtICX6ICXpICXSICXKICX6ICX3ICXSICXqQICX6ICX1iICXSICX+ICX6ICXWICXSICX7ICX6ICX5ICXSICXgICX
6ICXkICXSICX8ICX6ICXZICXSICXSICX6ICXNICXSICXUICX6ICX2ICXSICXATCX6ICX9ICXSICX8ICX6ICXWICXSICX
hICX6ICXYICXSICX+ICX6ICXTICXSICXmICX6ICXUICXSICXeJCX6ICXVICXSICX0ICX6ICXHICXSICXFICX6ICX4ICX
SICXFICX6ICXIICXSICXpICX6ICXSICXSICXgICX6ICXqICX7J10iQ1UDBIISISFiwFfiwlOiwviWiwFLiwFQiwlOiwFR
iwFLiwlfiwlOiwVeiwFLiwlPiwlOiwlbiwFLiwFJiwlOiwlWiwFLiwVIiwlOiwldiwFLiwVLiwlOiwlViwFLiwVKiwlO
iwlMiwFLiwVliwlOiwlaiwFLiwFPiwlO0iw1QiwFLiwlIiwlOiwVaiwFLiwlKiwlOiwVOiwFLiwFKiwlOiwVSiwFLiwFL
iwlOiwVNiwFLiwlXiwlOiwFbiwFLiwFIiwlOiwVMiwFLiwlXiwlOiwFMiwFLiw10iwlOiwVUiwFLiwlJiwlOiwlUiwFL
iwFYiwlOiwlSiwFLiwlLiwlOiwFTiwleioj IUJlQTJyd

Cyberchef - Base64 + Gzip + Additional Obfuscation

After applying a character reverse + base64 decode. | was able to obtain a strange
dictionary as well as a mutex of Wzjn9oCrswWNteRRGsQXn + some basic config.

This was cool but still no C2.

Recipe Ol Input + D2 w =
HASTAAAAAAAEAFXSTVPCMBAGAB/khYL4cfCg1UgipCRt1rY3UT7SBOEBLFDrDFbNjBAy7D072d@0eXhQCyeHs1IW5T
EIom|Has=El E quyyjZpeT50i/W24hNI/5yxmu95urAN+ziztV52Yu54XtbH7uxFfra7mzPjcX75z0bnRbPqFic2Lc8izm+FTex7rz
Alphabet /bnuMbbg1d+j1WiR1HKhbx6LSpuIGUZT60fuPI
A-Za-20-9+/= - /30/FAP911IzPfal9vplqmVPp4aLKTroDZ9FT366a7bY901xIG6IsISI1UOWA28Zy62CcM2YAUBD3FMey+9
/He/x7gLVzDPXgHW/gKbuBbuM9bL+Ea+TVvRUoT3yEv4C+4i94j6e
/8u7 TNXCRH20X0GP5F 38Rx 568 FTN+FF&tdwhbvAt 3AKI 1G/C /+3cub5vY1134491 hENTHA v
Remove non-alphabet chars D Strict mode D ey 5@ Tr Raw Bytes ¢ LF
Output BO@::
Gunzip O n
LTS8 R N A N S S W W W W W 1 S W A S W AN W S - S S S S AT S S S AR S
AR G- AT S S S AT S S AT WA S B AT AT W G S S A S s AR N AN B AR A U A
Reverse O T A I I V0L, V00V, VA A, DV OV, \ YA
VIR, PRI AL, VTRV AL, VTAT AL, TV VTGV (VT U A
By VTATELTRLT, LSV, VXTI, L7007, L2 T B, L P60 L\, LT\, YA
Character

A AN R R A A S S N o S WA R SR S AR S AR A S AL

\"%\"}","TAG" :"", "MUTEX" : "DCR_MUTEX-

From Base64 O n Wzjn9oCrsWNteRRGsQXn","LDTM":false, "DBG":false,"SST":5,"SMST":2,"BCS":0,"AUR":1, "ASCFG":"
{\"searchpath\":\"%UsersFolder% - Fast\"}","AS":false,"ASO":false,"AD":false}

Alphabet

A-Za-z0-9+/=

Remove non-alphabet chars D Strict mode

Cyberchef - Decoding the "base64" strings
| then tried to decode the second base64 blob shown by detect-it-easy.
But the result was largely junk.

20/27

Recipe Sl] Input + O3 8 =

H4sTAAAAAAAEAA30uwqDMBQAOF9Rcg2ImCwtLj7QRbNYCrbolKT1WgWXFCq4SL69PVOWsix5kTIgMUSF2QkLVFWCKRFd
RwGz9wa8ety1lh6EpEn/ih6ZvaQQHbVd50j18qcLZcunnxWCoepA8YG5a2]e5YANGXFCLMNZtWt26bVYDYH8NSYPzSwem
S1FjByRyaETINLQ/SOhkXC008/0/tQ2zbvwBZp3Z46QAAAA-]

From Base64 S n

Alphabet
A-Za-z0-9+/=
mec 232 = 1 Tr Raw Bytes ¢ LF
Remove non-alphabet chars D Strict mode
Output B0 mE::

==; F#HA%(6 (< -#wi# (% m-4&) -WpH$ (" UM$ Gew” d*_@;!g)|~&n._-)$~ m.3&X$s&Hdh). ! >@c_&Ha#>%

Gunzi S n
2 (~gK(s(~|t$Fekdr-68GS<FTWEhHCSAXP*A_ . SNW$_, <d dW$#, ~d_-Gb_8&X | #*~. 6AHd_hm(6(SM(~e

Cyberchef - Failed Decoding of Additional "base64" strings
Attempting to reverse + base64 decode returned no results.

Recipe B8 Input + 028 =

H4sTAAAAAAAEAA30uwqDMBQAOFIRcg2ImCwtLj7QRbNYCrbolKTIWgWXFCq4SL69PVIWs ix5kTIgMUSF2QkLVFWCKRFd
RwGz9wa8ety1lh6EpEn/ih6ZvaQQHbVd50j18qcLZcunnxWCoepA8YG5a2]e5YANgXFCLMNZtWt26bVYDYH8NSyPzSwem
S1FjByRyaETONLQ/SOhkXC0@8/0/tQ2zbvwBZp3Z46QAAAA=

From Base64 (N1

Alphabet
A-Za-z0-9+/=

msc 232 = 1 Tr Raw Bytes ¢ LF

Remove non-alphabet chars D Strict mode
Output B0O@::

@ Q n xA2e%G Y000 uc@=w\ VLT 60" "0 e | UsNi_y§eUn*A"¥n&A |

Reverse O n
By
Character
From Base64 S n
Alphabet

A-Za-z0-9+/=

Remove non-alphabet chars D Strict mode

Cyberchef - Additional failures when decoding strings
At this point - | decided to search for the base64 encoded string to see where it was
referenced in the .net code.

P Start ,O

100% ~

Search

H4sIAAAAAAAEAA30quDMBQAOFSRCgZJmatLj7QRbNYCrboIKT1WgWxFCq45L69PV9wsix5kTJgMUsFZQkLvFWcKRdewGZQWaBetj @Options Search For:| & Number/String [All Files

Using Dnspy to search for string cross references (x-refs)
This revealed an interesting function showing multiple additional functions acting on the
base64 encoded data.

In total, there are 4 functions (M2r.957 , M2r.1i6B, M2r.1vX, M2r.i59) which are acting on
the encoded data.

21/27

oid 2s6(Dictionary<st g, object

.Uls();

ng> dictionary = .159(.1 i6B BiC
WqDMBQAOF9Rcg2ImCwtLj7QRbNYCrbolk X S 9 5kTIgMUsF2QkLVFWcKRFdRWG 8etylh6EpEn

vcmS1Fj ETINLQ/SOhkXCo®)27 6QAAAA="), A_1
<st ng>>()))). <Dictionary<s g ng>>();
ew vc3().805(100, 10000));
dictionary["T"] == "1";

.q2G(dictionary["DCL"], fal

Viewing Additional layers of string obfuscation using Dnspy
The first function M2r.957 is a wrapper around another function M2r . 276 which performed
the base64 and Gzip decoding.

[1 buffer = . (A_0);
@string;
(MemoryStream memoryStream = MemoryStream(buffer))

(MemoryStream memoryStream2 = MemoryStream())

(GZipStream gzipStream = GZipStream(memoryStream, CompressionMode.
{
gzipStream.CopyTo(memoryStream2) ;
>
@string = Encoding. .GetString(memoryStream2.ToArray());

3
@string;

b3
Delving Deeper into an "obfuscation" function.
The next function M2r . 168 took the previously obtained string and then performed a Replace
operation based on a Dictionary

Recipe ol Input + 0O =

H4sTAAAAAAAEAA30uwgDMBQAGFIRcg2ImCwtLj7QRbNYCrbolKT1IWgWXFCq4SL69PVOWsix5kTIgMUSF2QkLVFWCKRTd
RwGz9wa8ety1lh6EpEn/ih6ZvaQQHbVd50j18qcLZcunnxWCoepA8YG5a2]e5YANGXFCLMNZtWt26bVYDYH8NSYPzSwem
S1FjByRyaETONLQ/SOhkXC0@8/0/tQ2zbvwBZp3Z46QAAAA=]

From Base64

Alphabet
A-Za-z0-9+/=
mec 232 = 1 Tr Raw Bytes ¢4 LF
Remove non-alphabet chars D Strict mode
Output 3] r|:| [I

==; F#A%(6(<-#w# (% m-4&)-WpH$ (" UM$ Gew” d*_@;'!g)|~&n._-)$~ m.38X$s&Hdh™). ! >@c_&Ha#>%

Gunzi
¥ (~gk(s(~|t$Fekd”-68GS<FTWthHC$AXP*A_. SNW$_, <d dW$#, ~d_-Gb_&X | #*~.6AHd_hm(6(SM(" ~e

Cyberchef View of Obfuscated String

Interesting to note - is that the value is replaced with the Key and not the other way
around as you might expect.

22/27

A_@, Dictionary<
/ A_@. 5 1+4)
A_0.Trim();

< s > keyValuePair A1)

A_0.Replace(keyValuePair. » keyValuePair.)

A_O;

Dnspy - Overview of Dictionary based String Replace
Based on the previous code, the input dictionary was something to do with a value of ScRT

(Dictionary< 5 > A_@, Dictionary«<

.Uls uls = LUls();

uls. =A_9;

Dictionary< B > dictionary = . (. ((. (.
(""H4sTIAAAAAAAEAA3OuwgDMBQABFI9Rcg2 ImCwtLj7QRbNYCrbolKT1WghixFCq4SLE69PVOws ix5kTIgMUsF2Qk LvFWcKRFdRwGZzOwa8ety1h6EpEn/
1R6Z202008bVd50j18qcLZcunnxWCoepA8YG5a2]e5YANGXFCLMNZ tWt 26bVYDYH8NSyPzSwemS 1FjByRyaETINLQ/SOhkXCo08/0/tQ2zbvwBZp3Z46QAAAA="), AJ].
["SCRT"]. <Dictionary< B >>())))- <Dictionary< N >>();

mreaa. (vc3().805(100, 10000));

Analysing additional string obfuscation using Dnspy

Suspiciously - there was an ScRT that looked like a dictionary in the first base64 string that
was decoded.

Output B I_D M

T BT, A VT (L VPN VL, AL L, VT VeV, LG V60, V20 TN
ATV ELTE LA LT N TZE T LB, V0N T I VT e, LD N, YA

\"IATF, TPCRT LGN E LA, VTRAT I)N VI VA, AV e A, VTGN T (VT VAT T
A R e R R e A e SN LA C A R LA IR AL A
N A e e e A N e S e N AN AN AR ANE

\"%B\" ", "TAG" : "™, "MUTEX" : "DCR_MUTEX-

Wzjn9oCrsWNteRRGsQXn", "LDTM" : false, "DBG" : false, "SST":5,"SMST":2,"BCS":@, "AUR" :1, "ASCFG":"
{\"searchpath\":\"%UsersFolder% - Fast\"}“,"AS":false,“ASO":false,“AD":falseH

Cyberchef - locating the dictionary used for decoding
So | obtained that dictionary and prettied it up using Cyberchef to remove all of the \
escapes.

S A A R e A N A A S RN A A AR AU C A AREARE

23/27

Recipe BB E Input +0O=2 0§ =

© 11 LUSCRTEFLVTLLTATAT, V"IN AL, VRV AL, VLV, 0L ALV, TV A T\
VATV, VTV VPO LR LT, VIOV LT, VTRV ATV
VTV, VWAL L PZT LT VP00 L LAV, VDV VRN, VYA
VIR, PPERT™ V1720 L, LRV V)L, VIV VL, VL, VGV (V7 VUV A
VTTA7 V7B, VSV VT, XL, VPO, VTS TR, VBNV, VLT, VL
N AN N A e e A AR AR A AR AR

mec 525 = 1 Tr Raw Bytes ¢ LF

Unescape string

Output B0O@E::

Cleaning up escape characters with Cyberchef
| then created a partial Python script based on the information | had so far. (I'll post a link at
the end of this post)

import base64,gzip

|[#Create Dictionary obtained from previous decoding
Al = {"SCRT":{"L":".", "J"s" ", "R ", Q" T, O e, e L AT S T (Y, O R T T, O, Y e, 2), Y e, e, g
|#Store string from

encoded = "H4sIAR A30uwgDMBQAOF9Rcg2ImCwtLj 7QRbNYCrbolKT1Wc
encoded = str(gzip.decompress (base64.b64ddecode (encoded)))

|#Obtain the SCRT Dictionary
/dictionary = A1["SCRT"]
4#Use the dictionary to perform a search/replace
#Making sure to replace the Value with the Key
i|# and not the other way around
for i in dictionary:

encoded = encoded.replace(dictionary[i],i)

Python Script used to decode the string
Executing this result and printing the result - | was able to obtain a cleaner-looking string
than before.

Here's a before and after

Output BIOMmE:

==; F#HA%(6 (< -#w#(% m-48&)-WpH$(UM$ Gew™ d* @;!g)|~&n. -)$" m.3&X$s&Hdh™). !>@c_&Ha#>%
(~gk(s(~|t$Fekd”-6&GS<FTWthHc$dXP*A . >NW$, <d~dW$#,~d_-Gb_&X|#*~.6AHd_hm(6(SM(~e

Before applying additional text-replacement

RESTART: C:\Users\Milhouse\Desktop\dcrat2\decodeZ.py
b'==QfiAjJI6ICViwiIjlmVAR2VWpHZIJUMZ1Gewl1d90DQvg2Y1RnLOV2Z21JIJmL3RXZsRHdhJ2LvoDcOR
HaiojTygkIsIyYtZFekdl VERGSCFTWthHcZdXPIAOLONWZOSCd1IdWZ15yd0OVGbORXY1i9yL6AHAOhmTI 6T
SMIJdye'

>>>

After applying additonal text-replacement
It was probably safe to assume this string was reversed + base64 encoded, but | decided to
check the remaining two decoding functions just to make sure.

M2r.1vX was indeed responsible for reversing the string.

24/27

(A_o)

[1 array = A_B.TOChar‘.ﬂ'\Praf}"r();

Array. (array);
(array);

Dnspy - Analysis of additional obfuscation (string reverse)
M2r.159 was indeed responsible for base64 decoding the result.

flag =
result;
(flag)

result =

result Encoding. .GetString(

result;

Dnspy - Analysis of additional obfuscation (base64 encoding)
So | then added these steps to my Python script.

base64,gzip

3| #Create Dictionary obtained from previous decoding

1AL = ("SCRT": ("L, g , g B S N P L L e PR S I L P PSR P LT S P N P A
5|#Store string from from encoding
5/encoded = "H4sIAAAARAAEAA30uwgDMBQAOF9Rcg2JImCwtLj7QRONYCrbolKT1WgWXFCq4SL69PVIWSix5SkTIgMUsF2QKLVEFWCKREdARWGZz9waB8etylh6EpEn/ih6zvaQQHbvdSojl8gcLzcul

7lencoded = str(gzip.decompress (base64.b64decode (encoded)))

) #0btain the SCRT Dictionary
) dictionary = AL["SCRT"]
l|#Use the dictionary to perform a search/replace
2|#Making sure to replace the Value with the Key
3l# and not the other way around
i dictionary:
encoded = encoded.replace (dictionary[i], i)
print ("First round of Decoding: \n" + encoded + "\n")
j #Reverse the string
Jlencoded = encoded[-1:0:-1]
#base64 decode again
’lencoded = base64.b64decode (encoded)
3#print the result
print("Second round of decoding: \ 1|" + str(encoded))

Updated Python Script for decoding Dcrat

And executed to reveal the results - successful C2!
http://battletw[.]beget[.]tech/

25/27

s

RESTART: C:\Users\Milhouse\Desktop\dcrat2\decode?2.py

First round of Decoding:
b'==Qf1iAjT6TICViwiTjImVAR2VWpHZTJUMZ1Gewl 1d20DQvg2YIRnTL.OV2Z1ImL3RXZsRHAhJ2TL.voDcOR

HaiojIygkIsIyYtZFekdlVERGSCFTWthHcZdXPIAOLONWZ05Cd1dWZ15yd0OVGbORXY19yL6AHAOhmI6T
SMIdye'

Second round of decoding:
b'{"H1":"http://battletw.beget.tech/@==wYpxmY1BHdzVWdxVmc", "H2" : "http://battletw

.beget.tech/@==wYpxmY1BHdzVWdxVmc", "T":"0"}"
>>> |

Ln: 10 Col: 4

Successfully obtaining the decoded C2 using python.
(The URL's contained some base64 reversed/encoded strings and were not very interesting)

Recipe BT input

==wYpxmY1BHdzVWdxVmc
il

Reverse S ==wamelBHszdeVmc|

By

Character oo 41 F 2
Output

From Base64 O n
requestpublicrequestpublic

Alphabet -

A-Za-zB-9+/=

Remove non-alphabet chars D Strict mode

This C2 domain had only 2/85 hits on VirusTotal

@
2 @ 2 security vendors flagged this domain as malicious
/85

battletw.beget.tech

beget.tech

media sharing spyware and malware web hosting

Community Score

DETECTION DETAILS RELATIONS COMMUNITY

At this point, | had obtained the C2 and decided to stop my analysis.

In a real environment - it would be best to block immediately this domain in your security
solutions. Additionally, you could review the previous string dumps for process-based

26/27

indicators that could be used for hunting signs of successful execution.
Additionally - you could try and derive some Sigma rules from the string dumps. Or
potentially use the C2 URL structure to hunt through proxy logs.

Links:

Copies of the decoding scripts - https://github.com/embee-
research/Decoders/tree/main/2023-April-dcrat

Link to the original malware -
https://bazaar.abuse.ch/sample/fd687a05b13c4{87f139d043c4d9d936b73762d616204bfb09
0124fd163c316e/

27/27

https://github.com/SigmaHQ/sigma?ref=embee-research.ghost.io
https://github.com/embee-research/Decoders/tree/main/2023-April-dcrat?ref=embee-research.ghost.io
https://bazaar.abuse.ch/sample/fd687a05b13c4f87f139d043c4d9d936b73762d616204bfb090124fd163c316e/?ref=embee-research.ghost.io

