
1/20

April 3, 2023

Rorschach – A New Sophisticated and Fast Ransomware
research.checkpoint.com/2023/rorschach-a-new-sophisticated-and-fast-ransomware/

Research by: Jiri Vinopal, Dennis Yarizadeh and Gil Gekker

Key Findings:

Check Point Research (CPR) and Check Point Incident Response Team (CPIRT)
encountered a previously unnamed ransomware strain, we dubbed Rorschach,
deployed against a US-based company.
Rorschach ransomware appears to be unique, sharing no overlaps that could easily
attribute it to any known ransomware strain. In addition, it does not bear any kind of
branding which is a common practice among ransomware groups.
The ransomware is partly autonomous, carrying out tasks that are usually manually
performed during enterprise-wide ransomware deployment, such as creating a domain
group policy (GPO). In the past, similar functionality was linked to LockBit 2.0.
The ransomware is highly customizable and contains technically unique features, such
as the use of direct syscalls, rarely observed in ransomware. Moreover, due to different
implementation methods, Rorschach is one of the fastest ransomware observed, by
the speed of encryption.
The ransomware was deployed using DLL side-loading of a Cortex XDR Dump Service
Tool, a signed commercial security product, a loading method which is not commonly
used to load ransomware. The vulnerability was properly reported to Palo Alto
Networks.

Introduction

While responding to a ransomware case against a US-based company, the CPIRT recently
came across a unique ransomware strain deployed using a signed component of a
commercial security product. Unlike other ransomware cases, the threat actor did not hide
behind any alias and appears to have no affiliation to any of the known ransomware groups.
Those two facts, rarities in the ransomware ecosystem, piqued CPR interest and prompted
us to thoroughly analyze the newly discovered malware.

Throughout its analysis, the new ransomware exhibited unique features. A behavioral
analysis of the new ransomware suggests it is partly autonomous, spreading itself
automatically when executed on a Domain Controller (DC), while it clears the event logs of
the affected machines. In addition, it’s extremely flexible, operating not only based on a built-
in configuration but also on numerous optional arguments which allow it to change its

https://research.checkpoint.com/2023/rorschach-a-new-sophisticated-and-fast-ransomware/
https://www.bleepingcomputer.com/news/security/lockbit-ransomware-now-encrypts-windows-domains-using-group-policies/

2/20

behavior according to the operator’s needs. While it seems to have taken inspiration from
some of the most infamous ransomware families, it also contains unique functionalities,
rarely seen among ransomware, such as the use of direct syscalls.

The ransomware note sent out to the victim was formatted similarly to Yanluowang
ransomware notes, although other variants dropped a note that more closely resembled
DarkSide ransomware notes (causing some to mistakenly refer to it as DarkSide). Each
person who examined the ransomware saw something a little bit different, prompting us to
name it after the famous psychological test – Rorschach Ransomware.

Execution Flow

As observed in the wild, Rorschach execution uses these three files:

cy.exe – Cortex XDR Dump Service Tool version 7.3.0.16740, abused to side-load
winutils.dll

winutils.dll – Packed Rorschach loader and injector, used to decrypt and inject the
ransomware.
config.ini – Encrypted Rorschach ransomware which contains all the logic and
configuration.

Upon execution of cy.exe, due to DLL side-loading, the loader/injector winutils.dll is
loaded into memory and runs in the context of cy.exe. The main Rorschach payload
config.ini is subsequently loaded into memory as well, decrypted and injected into
notepad.exe, where the ransomware logic begins.

Figure 1 – Rorschach’s High Level Execution Flow on both endpoints and on Domain
Controllers.

https://asec.ahnlab.com/en/47174/

3/20

Security Solution Evasion

Rorschach spawns processes in an uncommon way, running them in SUSPEND mode and
giving out falsified arguments to harden analysis and remediation efforts. The falsified
argument, which consists of a repeating string of the digit 1 based on the length of the real
argument, rewritten in memory and replaced with the real argument, resulting in a unique
execution:

Figure 2 – Rorschach’s process tree spawns processes with falsified arguments.

The ransomware uses this technique to run the following operations:

Attempt to stop a predefined list of services, using net.exe stop.
Delete shadow volumes and backups to harden recovery, using legitimate Windows
tools such as vssadmin.exe, bcdedit.exe, wmic.exe, and wbadmin.exe
Run wevutil.exe to clear the following Windows event logs: Application, Security,
System and Windows Powershell.
Disable the Windows firewall, using netsh.exe

Self-propagation

When executed on a Windows Domain Controller (DC), the ransomware automatically
creates a Group Policy, spreading itself to other machines within the domain. Similar
functionality was linked in the past to LockBit 2.0, although the Rorschach Ransomware
GPO deployment is carried out differently, as described below:

https://www.bleepingcomputer.com/news/security/lockbit-ransomware-now-encrypts-windows-domains-using-group-policies/

4/20

1. Rorschach copies its files into the scripts folder of the DC, and deletes them from the
original location.

2. Rorschach then creates a group policy (see Appendix C) that copies itself into the
%Public% folder of all workstations in the domain.

3. The ransomware creates another group policy in an attempt to kill a list of predefined
list of processes. This is done by creating a schedule task invoking taskkill.exe.

4. Finally, Rorschach creates another group policy that registers a scheduled task which
runs immediately and upon user logon, to run Rorschach’s main executable with the
relevant arguments.

Our colleagues in AhnLab published a more thorough behavioral analysis of another
Rorschach variant which provides further details into the operations.

Ransomware Analysis

In addition to the ransomware’s uncommon behavior described above, the Rorschach binary
itself contains additional interesting features, differentiating it further from other ransomware.

Binary and Anti-Analysis Protection

The actual sample is protected carefully, and requires quite a lot of work to access. First, the
initial loader/injector winutils.dll is protected with UPX-style packing. However, this is
changed in such a way that it isn’t readily unpacked using standard solutions and requires
manual unpacking. After unpacking, the sample loads and decrypts config.ini, which
contains the ransomware logic.

After Rorschach is injected into notepad.exe, it’s still protected by VMProtect. This results in
a crucial portion of the code being virtualized in addition to lacking an IAT table. Only after
defeating both of these safeguards is it possible to properly analyze the ransomware logic.

Security Solution Evasion

Although Rorschach is used solely for encrypting an environment, it incorporates an unusual
technique to evade defense mechanisms. It makes direct system calls using the “syscall”
instruction. While previously observed in other strains of malware, it’s quite startling to see
this in ransomware.

The procedure involves utilizing the instruction itself, and it goes as follows:

1. The ransomware finds the relevant syscall numbers for NT APIs, mainly related to file
manipulation.

2. Rorschach then stores the numbers in a table for future use.
3. When needed, it calls a stub routine that uses the number directly with the syscall

instruction instead of using the NT API.

https://asec.ahnlab.com/en/47174/

5/20

In other words, the malware first creates a syscall table for NT APIs used for file encryption:

Figure 3 – Creation of syscall table for certain NT APIs.

The end of the table is a section with the relevant syscall numbers:

Figure 4 – Section containing the syscall table.

The example below shows how the syscall numbers are used:

6/20

Figure 5 – Example use of direct syscall.

This obfuscated process is not required for the ransomware encryption logic, which suggests
it was developed to bypass security solutions monitoring direct API calls.

Command Line Arguments

In addition to the hardcoded configuration, the ransomware comes with multiple built-in
options, probably for the operators comfort. All of them are hidden, obfuscated, and not
accessible without reverse-engineering the ransomware. This table contains some of the
arguments that we discovered:

Argument Example
Parameter

Description

–run =1234 Password needed to run the sample, possibly built on
demand.

–nomutex =1 Do not create a mutex, therefore do not insure that only a
single instance is running.

–log =1 Create log files.

–nodel =0 Do not self-delete on execution.

–path =“C:” Encrypt only the following path.

–noshare =1 Do not encrypt shares.

–pt =”C:.dll” Explicitly state the loader DLL.

–cg =”C:.ini” Explicitly state the configuration file that stores the malware.

–we =”C:.exe” Explicitly state the main executable.

–diskpart =1 Run diskpart.exe /s AppData_x.txt that removes read-
only volume attributes.

7/20

Argument Example
Parameter

Description

–nobk =1 Do not change the wallpaper of the infected machine.

–thread =4 Number of threads per CPU.

–at =2023/03/24
05:04:20

Activation time (trigger time).

–nomail =1 Do not create a ransom note.

This is only a partial list, with additional arguments suggesting networking capabilities, such
as listen, srv and hostfile.

Example of how some of these arguments are used:

cy.exe --run=1234 --nomutex=0 --log=1 --nodel=1 --path="C:\Myfolder" --full=1 --
diskpart=1 --nobk=0

Language Based Protection

Before encrypting the target system, the sample runs two system checks that can halt its
execution:

It uses GetSystemDefaultUILanguage and GetUserDefaultUILanguage to determine
what language the user is using.
It exits if the return value is commonly used in CIS countries:

{

 0x042b: "Armenian_Armenia",

 0x042c: "Azeri_Latin",

 0x043f: "Kazakh",

 0x082c: "Azeri_Cyrillic",

 0x419: "Russian",

 0x422: "Ukrainian",

 0x423: "Belarusian",

 0x428: "Tajik",

 0x437: "Georgian",

 0x440: "Kyrgyz_Cyrillic",

 0x442: "Turkmen",

 0x443: "Uzbek_Latin",

 0x819: "Russian_Moldava",

 0x843: "Uzbek_Cyrillic"

}

Encryption Process

8/20

The Rorschach ransomware employs a highly effective and fast hybrid-cryptography
scheme, which blends the curve25519 and eSTREAM cipher hc-128 algorithms for
encryption purposes. This process only encrypts a specific portion of the original file content
instead of the entire file. The WinAPI CryptGenRandom is utilized to generate
cryptographically random bytes used as a per-victim private key. The shared secret is
calculated through curve25519, using both the generated private key and a hardcoded public
key. Finally, the computed SHA512 hash of the shared secret is used to construct the KEY
and IV for the eSTREAM cipher hc-128.

Figure 6 – The Rorschach hybrid-cryptography scheme.

Analysis of Rorschach’s encryption routine suggests not only the fast encryption scheme
mentioned previously but also a highly effective implementation of thread scheduling via I/O
completion ports. In addition, it appears that compiler optimization is prioritized for speed,
with much of the code being inlined. All of these factors make us believe that we may be
dealing with one of the fastest ransomware out there.

To verify our hypothesis, we conducted five separate encryption speed tests in a controlled
environment (with 6 CPUs, 8192MB RAM, SSD, and 220000 files to be encrypted), limited to
local drive encryption only. To provide a meaningful comparison with other known fast
ransomware, we compared Rorschach with the notorious LockBit v.3.

The result of the speed tests:

Ransomware Average approximate time of encryption

LockBit v.3 7 minutes

http://cr.yp.to/ecdh.html
https://www.ecrypt.eu.org/stream/e2-hc128.html
https://www.bleepingcomputer.com/news/security/ten-notorious-ransomware-strains-put-to-the-encryption-speed-test/

9/20

Ransomware Average approximate time of encryption

Rorschach 4 minutes, 30 seconds

It turned out that we have a new speed demon in town. What’s even more noteworthy is that
the Rorschach ransomware is highly customizable. By adjusting the number of encryption
threads via the command line argument --thread, it can achieve even faster times.

Technical Similarity to Other Ransomware

When we compared Rorschach to other well-known ransomware families, we noticed that
Rorschach uses a variety of time-honored methods together with some novel ideas in the
ransomware industry. The name itself, “Rorschach”, is quite self-explanatory; with deep
reverse engineering of the code and its logic, we found certain similarities with some of the
more technically advanced and established ransomware groups.

We discussed Rorschach’s hybrid-cryptography scheme in detail above, but we suspect that
this routine was borrowed from the leaked source code of Babuk ransomware. See the
following code snippets as examples:

Figure 7 – Hybrid-cryptography scheme of Rorschach vs. Babuk.

Rorschach’s inspiration from Babuk is evident in various routines, including those
responsible for stopping processes and services. In fact, the code used to stop services
through the service control manager appears to have been directly copied from Babuk’s
source code:

https://github.com/vxunderground/MalwareSourceCode/blob/main/Win32/Ransomware/Ransomware.Multi.Babuk.c.rar

10/20

Figure 8 – Stopping predefined list of services – Rorschach vs. Babuk.

It is also worth noting that the list of services to be stopped in Rorschach’s configuration is
identical to that in the leaked Babuk source code. However, the list of processes to be
stopped differs slightly, as Rorschach omits notepad.exe, which is used as a target for code
injection.

Rorahsach takes inspiration from another ransomware strain: LockBit. First, the list of
languages used to halt the malware is exactly the same list that was used in LockBit v2.0
(although the list is commonly used by many Russian speaking groups, and not just LockBit).
However, the I/O Completion Ports method of thread scheduling is another component
where Rorschach took some inspiration from LockBit. The final renaming of the encrypted
machine files in Rorschach is implemented via NtSetInformationFile using
FileInformationClass FileRenameInformation, just like in LockBit v2.0.

Figure 9 – Renaming of encrypted file using NtSetInformationFile.

As noted before, Rorschach’s code is protected and obfuscated in a way that is unusual for
ransomware, and is compiled with compiler optimization to favor speed and code inlining as
much as possible. This makes finding similarities with other well-known ransomware families

11/20

a real brain-buster. But we can still say that Rorschach took the best from the ransomware
families with the highest reputation, and then added some unique features of its own.

Ransom Notes

As we noted, Rorschach does not exhibit any clear-cut overlaps with any of the known
ransomware groups but does appear to draw inspiration from some of them.

We mentioned previously that Ahnlab reported a similar attack earlier this year. While it was
carried out through different means, the ransomware described in the report triggers an
almost identical execution flow. However, the resulting ransom note was completely different.
The note was actually very similar to those issued by DarkSide, which probably led to this
new ransomware being named “DarkSide,” despite the group being inactive since May 2021.

The Rorschach variant we analyzed leaves a different ransom note based on the structure
used by Yanlowang, another ransomware group:

Figure 10 – Ransom note from Rorschach.

Conclusion

Our analysis of Rorschach reveals the emergence of a new ransomware strain in the
crimeware landscape. Its developers implemented new anti-analysis and defense evasion
techniques to avoid detection and make it more difficult for security software and researchers
to analyze and mitigate its effects. Additionally, Rorschach appears to have taken some of
the ‘best’ features from some of the leading ransomwares leaked online, and integrated them
all together. In addition to Rorschach’s self-propagating capabilities, this raises the bar for
ransom attacks. The operators and developers of the Rorschach ransomware remain
unknown. They do not use branding, which is relatively rare in ransomware operations.

https://www.nytimes.com/2021/05/14/business/darkside-pipeline-hack.html

12/20

Our findings underscore the importance of maintaining strong cybersecurity measures to
prevent ransomware attacks, as well as the need for continuous monitoring and analysis of
new ransomware samples to stay ahead of evolving threats. As these attacks continue to
grow in frequency and sophistication, it is essential for organizations to remain vigilant and
proactive in their efforts to safeguard against these threats.

Harmony Endpoint provides runtime protection against ransomware with instant automated
remediation, even in offline mode.

When running on a machine infected with the Rorschach ransomware, Harmony Endpoint
Anti-ransomware detected the encryption process in different folders, including modifications
made to Harmony Endpoint ‘honeypot’ files. It ran a ranking algorithm that provided a verdict
identifying the process as a ransomware.

Samples/IOCs

Files

Name Hash Comments

cy.exe 2237ec542cdcd3eb656e86e43b461cd1 PA Cortex Dump Service Tool
(benign file)

winutils.dll 4a03423c77fe2c8d979caca58a64ad6c Loader and injector into
notepad.exe

config.ini 6bd96d06cd7c4b084fe9346e55a81cf9 Encrypted ransomware payload

Appendix A – Services and processes terminated through GPO by
Rorschach

The following services are stopped through a GPO issued by Rorschach, probably to prevent
conflicting write orders to Database files (and thus preventing encryption):

https://www.checkpoint.com/harmony/advanced-endpoint-protection/

13/20

SQLPBDMS

SQLPBENGINE

MSSQLFDLauncher

SQLSERVERAGENT

MSSQLServerOLAPService

SSASTELEMETRY

SQLBrowser

SQL Server Distributed Replay Client

SQL Server Distributed Replay Controller

MsDtsServer150

SSISTELEMETRY150

SSISScaleOutMaster150

SSISScaleOutWorker150

MSSQLLaunchpad

SQLWriter

SQLTELEMETRY

MSSQLSERVER

The following processes are killed using a group policy (scheduled task) issued by
Rorschach executing C:\windows\system32\taskkill.exe. Some are likely terminated to
prevent write conflicts, and some are security solutions:

wxServer.exe

wxServerView.exe

sqlmangr.exe

RAgui.exe

supervise.exe

Culture.exe

Defwatch.exe

httpd.exe

sync-taskbar

sync-worker

wsa_service.exe

synctime.exe

vxmon.exe

sqlbrowser.exe

tomcat6.exe

Sqlservr.exe

Appendix B – Hardcoded Rorschach configuration

The following is a list of services, hardcoded in its configuration, to be stopped via the
service control manager:

14/20

AcronisAgent

AcrSch2Svc

backup

BackupExecAgentAccelerator

BackupExecAgentBrowser

BackupExecDiveciMediaService

BackupExecJobEngine

BackupExecManagementService

BackupExecRPCService

BackupExecVSSProvider

CAARCUpdateSvc

CASAD2DWebSvc

ccEvtMgr

ccSetMgr

DefWatch

GxBlr

GxCIMgr

GxCVD

GxFWD

GxVss

Intuit.QuickBooks.FCS

memtas

mepocs

PDVFSService

QBCFMonitorService

QBFCService

QBIDPService

RTVscan

SavRoam

sophos

sql

stc_raw_agent

svc$

veeam

VeeamDeploymentService

VeeamNFSSvc

VeeamTransportSvc

VSNAPVSS

vss

YooBackup

YooIT

zhudongfangyu

The following is a hardcoded list of directories and files to be omitted from encryption:

15/20

.

..

#recycle

$Recycle.Bin

1_config.ini

Ahnlab

All Users

AppData

AUTOEXEC.BAT

autoexec.bat

autorun.inf

begin.txt

Boot

boot.ini

bootfont.bin

bootmgfw.efi

bootmgr

bootmgr.efi

bootsect.bak

config.ini

desktop.ini

finish.txt

Google

iconcache.db

Internet Explorer

Mozilla

Mozilla Firefox

NETLOGON

ntldr

ntuser.dat

NTUSER.DAT

ntuser.dat.log

ntuser.dat.LOG1

ntuser.dat.LOG2

ntuser.ini

Opera

Opera Software

Policies

Program Files

Program Files (x86)

ProgramData

scripts

SYSVOL

thumbs.db

Tor Browser

Windows

WINDOWS

Windows.old

16/20

The following is a list of process names that during Rorschach’s execution these names are
compared to those running on the machine and killed if matched. This is done through a
combination of CreateToolhelp32Snapshot, Process32FirstW, Process32NextW,
OpenProcess, and TerminateProcess. There is some overlap and redundancy to the list of
services killed via the service control manager.

AcronisAgent

AcrSch2Svc

agntsvc.exe

BackExecRPCService

backup

BackupExecAgentAccelerator

BackupExecDiveciMediaService

BackupExecJobEngine

bedbg

CAARCUpdateSvc

ccEvtMgr

Culserver

dbeng50.exe

dbeng8

dbsnmp.exe

dbsrv12.exe

DefWatch

encsvc.exe

excel.exe

firefox.exe

infopath.exe

Intuit.QuickBooks.FCS

isqlplussvc.exe

memtas

mepocs

msaccess.exe

MSExchange

msftesql-Exchange

msmdsrv

mspub.exe

MSSQL

mydesktopqos.exe

mydesktopservice.exe

ocautoupds.exe

ocomm.exe

ocssd.exe

onenote.exe

oracle.exe

outlook.exe

PDVFSService

powerpnt.exe

QBCFMonitorService

QBFCService

QBIDPService

17/20

SavRoam
sophos
sqbcoreservice.exe
sql.exe
sqladhlp
SQLADHLP
sqlagent
SQLAgent
SQLAgent$SHAREPOINT
SQLBrowser
SQLWriter
steam.exe
synctime.exe
tbirdconfig.exe
thebat.exe
thunderbird.exe
tomcat6
veeam
VeeamDeploymentService
VeeamNFSSvc
VeeamTransportSvc
visio.exe
vmware-converter
vmware-usbarbitator64
WinSAT.exe
winword.exe
wordpad.exe
wrapper.exe
WSBExchange
xfssvccon.exe
YooBackup

Appendix C – Group Policies executed by Rorschach

Transferring its own files to each workstation:

18/20

<Files clsid="{215B2E53-57CE-475c-80FE-9EEC14635851}">

 <File clsid="{50BE44C8-567A-4ed1-B1D0-9234FE1F38AF}" name="0305_winutils.dll"
status="0305_winutils.dll" image="2" changed="2023-03-05 08:51:22" uid="{3F490769-
A341-4220-90A3-51964B4A0C12}" bypassErrors="1">

 <Properties action="U"
fromPath="**REDACTED**\sysvol**REDACTED**.local\scripts\winutils.dll"
targetPath="%Public%\winutils.dll" readOnly="0" archive="1" hidden="0" suppress="0"
/>
 </File>

 <File clsid="{50BE44C8-567A-4ed1-B1D0-9234FE1F38AF}" name="0305_config.ini"
status="0305_config.ini" image="2" changed="2023-03-05 08:51:22" uid="{F513F283-3C66-
4C71-9B9B-4CE9BBFCEEF1}" bypassErrors="1">

 <Properties action="U"
fromPath="**REDACTED**.local\sysvol**REDACTED**.local\scripts\config.ini"
targetPath="%Public%\config.ini" readOnly="0" archive="1" hidden="0" suppress="0" />

 </File>

 <File clsid="{50BE44C8-567A-4ed1-B1D0-9234FE1F38AF}" name="0305_cy.exe"
status="0305_cy.exe" image="2" changed="2023-03-05 08:51:22" uid="{0A16D469-2648-
4849-99C8-95D1B777D59A}" bypassErrors="1">

 <Properties action="U"
fromPath="**REDACTED**.local\sysvol**REDACTED**.local\scripts\cy.exe"
targetPath="%Public%\cy.exe" readOnly="0" archive="1" hidden="0" suppress="0" />
 </File>

</Files>

Executing a scheduled task to run the attack:

19/20

<TaskV2 clsid="{D8896631-B747-47a7-84A6-C155337F3BC8}" name="2_0305_cy.exe" image="2"
changed="**REDACTED**" uid="{3772E17D-6354-4DF1-A73B-8868AC352B23}">

 <Properties action="U" name="2_0305_cy.exe" runAs="%LogonDomain%\%LogonUser%"
logonType="InteractiveToken">

 <Task version="1.2">

 <RegistrationInfo>

 <Author>**REDACTED**\Administrador</Author>

 <Description></Description>

 </RegistrationInfo>

 <Principals>

 <Principal id="Author">

 <UserId>%LogonDomain%\%LogonUser%</UserId>

 <LogonType>InteractiveToken</LogonType>

 <RunLevel>HighestAvailable</RunLevel>

 </Principal>

 </Principals>

 <Settings>

 <IdleSettings>

 <Duration>PT10M</Duration>

 <WaitTimeout>PT1H</WaitTimeout>

 <StopOnIdleEnd>false</StopOnIdleEnd>

 <RestartOnIdle>false</RestartOnIdle>

 </IdleSettings>

 <MultipleInstancesPolicy>IgnoreNew</MultipleInstancesPolicy>

 <DisallowStartIfOnBatteries>false</DisallowStartIfOnBatteries>

 <StopIfGoingOnBatteries>false</StopIfGoingOnBatteries>

 <AllowHardTerminate>true</AllowHardTerminate>

 <AllowStartOnDemand>true</AllowStartOnDemand>

 <Enabled>true</Enabled>

 <Hidden>false</Hidden>

 <ExecutionTimeLimit>P3D</ExecutionTimeLimit>

 <Priority>7</Priority>

 </Settings>

 <Triggers>

 <RegistrationTrigger>

 <Enabled>true</Enabled>

 </RegistrationTrigger>

 <LogonTrigger>

 <Enabled>true</Enabled>

 </LogonTrigger>

 </Triggers>

 <Actions Context="Author">

 <Exec>

 <Command>%Public%\cy.exe</Command>

 <Arguments>--run=**REDACTED**</Arguments>

 </Exec>

 </Actions>

 </Task>

 </Properties>

</TaskV2>

20/20

GO UP
BACK TO ALL POSTS

https://research.checkpoint.com/latest-publications/

