
1/12

Karlo Zanki

Red flags flew over software supply chain-compromised
3CX update

reversinglabs.com/blog/red-flags-fly-over-supply-chain-compromised-3cx-update

Threat Research
| March 30, 2023

Blog Author
Karlo Zanki, Reverse Engineer at ReversingLabs. Read More...

https://www.reversinglabs.com/blog/red-flags-fly-over-supply-chain-compromised-3cx-update
https://www.reversinglabs.com/blog/tag/threat-research
https://www.reversinglabs.com/blog/author/karlo-zanki


2/12

ReversingLabs is analyzing a supply chain compromise of the firm 3CX Ltd., a maker of
enterprise voice over IP (VOIP) solutions. Beginning on March 22nd, 2023, compromised
versions of the 3CXDesktopApp, a desktop client version of the company’s VoIP software,
were found to contain malicious code. 

While more time and effort will be needed to fully reconstruct and study this incident, our
analysis of the malicious files used in the attack points strongly to a compromise of 3CX’s
software build pipeline, resulting in modifications that inserted malicious code to the
3CXDesktopApp software package. 

There are many possible explanations for how such a thing could happen. However, our
analysts focused on investigating the two most likely scenarios: a compromise of the 3CX
development pipeline that resulted in malicious code being added during the build, or the
possibility of a malicious dependency being served by a package repository. The former is
represented by the SolarWinds incident while the latter theory is closer to the supply chain
attacks commonly found in open source repositories like npm and PyPI.

ReversingLabs analysis shows that attackers appended RC4 encrypted shellcode into the
signature appendix of d3dcompiler.dll, a standard library used with OpenJS Electron
applications such as 3CXDesktopApp. Another standard Electron application module, ffmpeg
was modified with code to extract and run the malicious content from the d3dcompiler file. 

Evidence of those changes are clearly visible when comparing images of “clean” versions of
the 3CXDesktopApp with subsequent, tampered versions. The ReversingLabs Software
Supply Chain Security platform identified signatures in the appended code pointing to
SigFlip, a tool for modifying the authenticode-signed Portable Executable (PE) files without

https://www.reversinglabs.com/blog/sunburst-the-next-level-of-stealth
https://www.reversinglabs.com/blog/iconburst-npm-software-supply-chain-attack-grabs-data-from-apps-websites
https://www.reversinglabs.com/blog/beware-impostor-http-libraries-lurk-on-pypi
https://www.reversinglabs.com/products/software-supply-chain-security
https://github.com/med0x2e/SigFlip


3/12

breaking the existing signature. Subsequently, our threat research platform linked malicious
code added to ffmpeg library to code found in SigLoader, another malicious tool used by an
advanced persistent threat group in multiple campaigns.

As was the case with the compromise of SolarWinds’ Orion software, the manner in which
the malicious code was added to the 3CXDesktopApp is of little value to 3CX customers who
downloaded malicious code onto internal systems. However, it should be of intense interest
to organizations engaged in software development, as it points to the need for increased
scrutiny of compiled software images to detect malicious code, unexplained modifications or
other discrepancies that may be a critical, early indicator of a supply chain compromise.

SEE RELATED:

Analysis: The 3CX attack was targeted — but the plan was broader
Webinar: Deconstructing the 3CX Software Supply Chain Attack
Deminar: Analyzing the 3CX Software Package 

Introduction

3CX is a VoIP IPBX software development company. The 3CX Phone System is used by
more than 600,000 companies worldwide and counts more than 12 million daily users,
including firms in the automotive, manufacturing, healthcare, aviation and other industries.

Beginning around March 22, 2023 customers of voice over IP (VoIP) vendor 3CX started
peppering the company’s support groups with complaints about an update to the company’s
3CXDesktopApp client running afoul of endpoint detection and response products, which
were flagging the update as malicious. 

The troubles with the 3CXDesktopApp simmered quietly for days, with customers wondering
about “false positives,” until, on Wednesday, reports from a string of endpoint security firms
including CrowdStrike and SentinelOne confirmed what many suspected: that the warnings
from endpoint protection software were not in error, and that the 3CXDesktopApp had been
compromised. By Thursday morning, 3CX’s CEO, Nick Galea, made it official. 

“As many of you have noticed the 3CX DesktopApp has a malware (sp) in it,” Galea wrote in
a post to a 3CX support page. “It affects the Windows Electron client for customers running
update 7. It was reported to us yesterday night and we are working on an update to the
DesktopApp which we will release in the coming hours.” Galea advised uninstalling the
malicious app and promised more information on the incident. 

For customers affected by the incident, the 3CX compromise is serious. CrowdStrike and
others have attributed the incident to a threat actor dubbed “LABYRINTH CHOLLIMA,”
believed to be associated with the government of North Korea and known for targeting

https://www.reversinglabs.com/blog/sunburst-the-next-level-of-stealth
https://www.reversinglabs.com/blog/3cx-supply-chain-attack-targeted
https://www.reversinglabs.com/webinar/deconstructing-3cx-red-flags-misses-and-failures-to-address-the-software-supply-chain-threat
https://www.reversinglabs.com/software-package-deconstruction-series/3cx
https://www.3cx.com/community/threads/threat-alerts-from-sentinelone-for-desktop-update-initiated-from-desktop-client.119806/#post-557997
https://www.crowdstrike.com/blog/crowdstrike-detects-and-prevents-active-intrusion-campaign-targeting-3cxdesktopapp-customers/
https://www.sentinelone.com/blog/smoothoperator-ongoing-campaign-trojanizes-3cx-software-in-software-supply-chain-attack/
https://www.3cx.com/community/threads/3cx-desktopapp-security-alert.119951/


4/12

military and political entities. Many of the customers that downloaded the malicious update
did not see malicious code activated in their environment. However, Crowdstrike wrote that it
has observed malicious activity including hands-on-keyboard actions in a number of
3CXDesktopApp customer environments.

Much will be written about the “what” and the “who” of the attack (what APT group is
responsible). We would like to focus on the “how.” That is, how was it that malicious actors
placed information stealing code within a signed 3CXDesktopApp software update?

Our analysis of the malicious update points either to a compromise of the 3CX development
pipeline that resulted in malicious code being added during the build, or the possibility of a
malicious dependency being served by a package repository. The attack on 3CX — though
sophisticated — had clear indicators that could have tipped off 3CX to the breach before
customer systems were affected. 

Detecting the 3CX compromise with differential analysis

The ReversingLabs Software Supply Chain Security (SSCS) platform analyzes software
packages prior to release or at any stage during development. As a final step in the build
process, the ReversingLabs platform has unique visibility into the state of a produced
software artifact. That gives it the ability to detect the multitude of software supply chain
attack possibilities. Scanning binaries, without the presumption of having the source
available, can surface software supply chain compromises within the developer’s source
code, their build environment, or the dependencies used to assemble the final software
package.

A required capability for detecting supply chain compromises is the ability to track the
evolution of software packagesthrough differential analysis of their contents. This includes
the raw metadata properties of each software component in the release, as well as their
respective behaviors. Odd or inexplicable changes between builds should be considered a
cause to investigate a possible compromise. This becomes even more important when
software packages include components that are pre-compiled at offsite locations and,
therefore, not subject to review prior to deployment.

A required capability for detecting supply chain compromises is the ability to track the
evolution of software packages through differential analysis of their contents.

Changes introduced in 18.12 had red flags

In the case of the 3CXDesktopApp: 3CX distributed macOS DMG and MSI installer
packages containing the compromised update. ReversingLabs has also identified a NuGet
package containing the version 18.12.416 of the 3CXDesktopApp among the compromised
artifacts we analyzed.

https://www.reddit.com/r/crowdstrike/comments/125r3uu/20230329_situational_awareness_crowdstrike/


5/12

When we look at the MSI packages distributed by 3CX through our solution, and make a diff
between v18.11.1213 (the last known good version) and v18.12.407 (the first known
compromised version), a number of red flags pop up that are cause for a deeper
investigation.



For example: ReversingLabs Software Supply Chain Security policy SQ20116 detects that a
Microsoft digitally signed-binary has been modified post-signing without breaking the
signature integrity. This is not something that would normally happen during the build
process and it is not something that could happen inadvertently. Developers would have had
to make a conscious choice to implement a change like this, and that would never happen
for a software component they own. 

However, doing so is a great technique for ferrying malicious code onto a system under the
cover of a digitally signed (and therefore “legitimate”) binary. Freely available, off the shelf
tools like SigFlip and SigLoader help facilitate these kinds of operations. For that reason, the
ReversingLabs supply chain security solution makes the following recommendation when it
encounters a digitally signed binary that has been modified post-signing:

https://blog.reversinglabs.com/hubfs/Blog/Red-flags-flew-over-software-supply-chain-3CX.png
https://github.com/med0x2e/SigFlip


6/12

Investigate: Take a closer look at these kinds of files, because malware commonly tries to go
unnoticed by hiding within these validation gaps.

This warning popped up in our analysis of 3CXDesktopApp in association with d3dcompiler,
a standard library used with OpenJS Electron applications such as 3CXDesktopApp. Adding
to the alarm in our analysis of the 3CXDesktopApp was the behavior of another standard
Electron file, ffmpeg, which we saw referencing the d3dcompiler, the tampered file.



Other indicators of malicious intent were hard to come by as the malware hides itself as a
statically linked function with ffmpeg library. But even without observing the malware execute,
there’s enough suspicious goings-on just in the diff between the two 3CXDesktopApp
updates to warrant a deeper investigation.

Digging into the suspicious changes

The choice of these two DLLs -- ffmpeg and d3dcompiler_47 - by the threat actors behind
this attack was no accident. The target in question, 3CXDesktopApp is built on the Electron
open source framework.  Both of the libraries in question usually ship with the Electron
runtime and, therefore, are unlikely to raise suspicion within customer environments.
Additionally, d3dcompiler_47, the tampered-with file, is signed with a certificate issued to

https://blog.reversinglabs.com/hubfs/Blog/Red-flags-flew-over-software-supply-chain-SQ.png
https://blog.reversinglabs.com/hubfs/Blog/Red-flags-flew-over-software-supply-chain-ffmpeg.png
https://www.electronjs.org/


7/12

Microsoft Corporation and Windows digital signature details report no issues related to the
signature. For endpoint protection applications, a signed binary using a legitimate certificate
from a reputable firm like Microsoft is likely to get the “green light".

Figure 1: Windows digital signature details for d3dcompiler_47

The “smoking gun,” in this case, was a combination of RC4 encrypted shellcode into the
signature appendix of d3dcompiler and a reference to the d3dcompiler library that was added
to the ffmpeg library.

There was no sensible explanation for these changes, as there were no functional changes
to d3dcompiler_47 to warrant such a change. That pointed in the direction of malicious
functionality being added within the ffmpeg library. And, indeed, detailed analysis shows that
malicious code was added to that DLL. It is invoked shortly after the call to its entry point to
extract the RC4 encrypted malicious content from the signature appendix of d3dcompiler.

https://blog.reversinglabs.com/hubfs/Blog/Red-flags-flew-over-software-supply-chain-cert.png


8/12

When we looked more closely, we saw that the beginning of the RC4 encrypted content was
marked by a signature: 0xFE 0xED 0xFA 0xCE 0xFE 0xED 0xFA 0xCE. That specific
sequence of bytes is what we term a “magic signature” — a value that the  program seeks
and interprets in a specific way. In this case, the sequence is known to be associated with
the SigLoader tool.

When SigLoader encounters this signature, it knows that a malicious shellcode payload
follows immediately after the sequence, which it will extract and decrypt. And, indeed, rest of
the appended data after that initial signature contains the encrypted shellcode which is
decrypted using the RC4 key: 3jB(2bsG#@c7

Appending data to a signed executable and using the specific magic byte signature are
strong signs that the loader payloads were created using SigFlip — a tool designed “for
patching authenticode signed PE files without invalidating or breaking the existing signature.”
Finally, the code responsible for loading the encrypted data that was added to the ffmpeg
library is identical to code found in the SigLoader tool. This is a known technique used by
APT#10 in multiple campaigns or intrusion sets. 

In this incident, the decrypted payload is a shellcode containing another embedded DLL file
that downloads URLs pointing to C2 infrastructure from a Github repository hosting harmless
icon files. The URLs pointing to C2 infrastructure are encrypted with AES, Base64 encoded
and appended to the ends of the legitimate icon files.

https://github.com/med0x2e/SigFlip
https://github.com/med0x2e/SigFlip/blob/main/Native/SigLoader/SigLoader/SigLoader.cpp
https://blog.reversinglabs.com/hubfs/Blog/Showing-the-similarity-of-loader-code-found-in-ffmpeg.png


9/12



Figure 2: Showing the similarity of loader code found in ffmpeg (above) and the SigLoader
tool (below). 

Metadata clues point to 3CX compromise  

The exact circumstances and early stages of the 3CX breach aren’t known. However, our
examination of the metadata from the compromised packages provides important insights
into the incident and suggest that there were clues that 3CX may have picked up on that
something was amiss with its latest desktop client update.

https://blog.reversinglabs.com/hubfs/Blog/Showing-the-similarity-of-loader-code-found-in-ffmpeg.png


10/12

Based on data from our threat research platform, we can say with confidence that most
Electron applications found in the ReversingLabs Cloud have identical PE compilation
timestamps for the files in the application. That is because the compile times are
predetermined and set by the build system, resulting in compilation stamps that are identical.
There is simply no other way to explain how so many files would be built in the exact same
second.

In the case of compromised 3CXDesktopApp Electron applications, however, these
compilation timestamps differed. The first timestamp, which is found on the majority of the
DLLs within the compromised installer package, is 2022-11-30T15:56:23Z. That correlates
with the build version of the Electron used by the 3CX development team - Electron v19.1.9.

The second timestamp we discovered only applied to the ffmpeg file. It was 2022-11-
12T04:12:14Z and is associated with the build version of the Electron used by malware
authors. Furthermore, two of the malicious ffmpeg variants were digitally signed with a
legitimate certificate issued to the 3CX company. 

What can we conclude from this? Based on this information we estimate that the supply
chain incident was caused by the compromise of the repository from which the Electron
application binaries were fetched during the build process.As part of the attack, legitimate
versions of ffmpeg and d3dcompiler libraries in the compromised repository were likely
replaced with malicious versions compiled by the attackers after modifying publicly available
ffmpeg source code. 

[ReversingLabs researchers] estimate that the supply chain incident was caused by
the compromise of the repository from which the Electron application binaries were
fetched during the build process.

Unlike legitimate ffmpeg files, the Program Database (PDB) data is stripped from the
malicious files in order to remove any data that could reveal the real build time or link them to
attackers' development environment.

Once that substitution happened, the rest of the attack was easy sailing. 3CX’s build process
was likely designed to automatically sign the latest available components — third-party or
otherwise — and include them into the software release package. That means the malicious
ffmpeg library, once fetched from the (compromised) repository, was signed without the need
for the attackers to steal the digital signing certificates.

There is no data to indicate whether the compromised repository was deployed locally in
3CX or if it was hosted elsewhere. Based on public statements from the company, we can
infer that the malicious ffmpeg and d3dcompiler were hosted somewhere on GitHub.
ReversingLabs has, so far, been unable to confirm this with the telemetry data we currently



11/12

have available to us. From what we have seen, there is no evidence that a malicious
repository is, or was, hosted on GitHub. And there is no evidence that other developers may
be at risk from using the same malicious code like 3CX did.

Conclusion

As the saying goes, “It is not ‘if’ you will be hacked, but ‘when.’” That’s true even for
sophisticated operations like software supply chain attacks. Recent history has shown us
that malicious actors are growing more and more interested in the access provided by
development pipelines, open source and third party code and more. Development
organizations can’t keep from being targeted. However, there are ways that they can reduce
the impact of any malicious campaign against them. Doing that requires them to be attuned
to the techniques and methods that malicious actors use. 

In the case of the compromise of the VOIP provider 3CX, there is a lot that is still unknown
about how the attack was carried out, or who its intended targets were. However,
ReversingLabs analysis of the modifications made to the company’s 3CXDesktopApp
suggest that there were telltale signs of tampering with the company’s desktop client
software prior to its release. Had these signs been noticed during development, it should
have triggered a closer analysis of the software release and, possibly, discovery of the
breach and malicious code additions. 

As we have shown, evidence of changes to the 3CXDesktopApp are clearly visible in a
comparison of “clean” and tampered versions of the client software — changes that point to
the use of SigFlip and SigLoader, known suspicious/malicious off the shelf tools that are in
the tool belt of advanced persistent threat (APT) actors. 

As with the compromise of SolarWinds Orion codebase, this incident underscores the need
for development organizations to look beyond the risks posed by software vulnerabilities and
insecure code.Threats such as malicious open source modules, tampering with software
dependencies and attacks on internally developed modules and builds are growing. When
successful, these attacks not only threaten the security and reputation of the affected
software firm, but those of all its customers as well. Detecting such threats during
development and before software ships is key to preventing the next 3CX-style incident. 

Indicators of Compromise (IOC) list

filename sha1

3cxdesktopapp-18.12.407.msi bea77d1e59cf18dce22ad9a2fad52948fd7a9efa

3cxdesktopapp-18.12.416.msi bfecb8ce89a312d2ef4afc64a63847ae11c6f69e



12/12

3CXDesktopApp-18.12.416-full.nupkg f7f1b34c2770d83e2250e19c8425a4bec56617fd

3CXDesktopApp_v18.12.407.0.exe 6285ffb5f98d35cd98e78d48b63a05af6e4e4dea

3CXDesktopApp_v18.12.416.0.exe 8433a94aedb6380ac8d4610af643fb0e5220c5cb

ffmpeg.dll bf939c9c261d27ee7bb92325cc588624fca75429

ffmpeg.dll 188754814b37927badc988b45b7c7f7d6b4c8dd3

ffmpeg.dll ff3dd457c0d00d00d396fdf6ebe7c254fed2a91e

d3dcompiler_47_v10.0.20348.1.dll 20d554a80d759c50d6537dd7097fed84dd258b3e

decrypted shellcode 8b81f6012fd748f0fed53eeef72164435ad618ac

samcli.dll (embedded in shellcode) 3b88cda62cdd918b62ef5aa8c5a73a46f176d18b

3CXDesktopApp-18.11.1213.dmg 19f4036f5cd91c5fc411afc4359e32f90caddaac

3CXDesktopApp-18.12.416.dmg 3dc840d32ce86cebf657b17cef62814646ba8e98

libffmpeg.dylib (universal) b2a89eebb5be61939f5458a024c929b169b4dc85

libffmpeg.dylib (universal) 769383fc65d1386dd141c960c9970114547da0c2

libffmpeg.dylib (x86-64) 354251ca9476549c391fbd5b87e81a21a95949f4

libffmpeg.dylib (x86-64) 5b0582632975d230c8f73c768b9ef39669fefa60

Learn how application security is evolving to tackle supply chain security. Plus: Explore
ReversingLabs Software Supply Chain Security and its new secrets capabilities — and get
started with a free trial today.

https://www.reversinglabs.com/the-evolution-of-application-security
https://www.reversinglabs.com/products/software-supply-chain-security
https://www.reversinglabs.com/detect-prioritize-manage-exposed-secrets-in-software
https://www.reversinglabs.com/software-supply-chain-security-free-trial

