BumbleBee notes

W blog.krakz.fr/articles/bumblebee/

March 29, 2023

BumbleBee is categorized as a Loader, the malware is used by Initial Access Brokers to
gain access in targeted companies. This article aims to summarizing the different TTPs
observed in campaigns distributing BumbleBee and provides a script to extract its
configuration.

TL;DR BumbleBee #

The loader delivers diverse payloads (e.g: Cobalt Strike, ransomware, etc), the operators of
BumbleBee have been named EXOTIC LILY by the TAG in a report published in March
2022. Google TAG article mentionned BumbleBee Loader (e.g: The user-agent set to bumblebee, hence
dubbed BUMBLEBEE. https://blog.google/threat-analysis-group/exposing-initial-access-broker-ties-conti/
Moreover, similarities with other loaders in terms of operation have been noticed notably with
IcedID and Emotet. Code similarty (hook installation) with Trickbot have been observed and
explained in the post The chronicles of Bumblebee: The Hook, the Bee, and the Trickbot
connection. The malware is well documented by now (March 2023) as evidenced by the
number of reports on malpedia.

BumbleBee capabilities #

The malware has a custom unpacking mechanism, it manipulates hooks to setup its
execution chain, the loader uses multiple environment detection techniques because of the
complete integration of the project al-khaser al-khaser is a PoC “malware” application with good
intentions that aims to stress your anti-malware system. It performs a bunch of common malware tricks
with the goal of seeing if you stay under the radar. . It communicates with its command and control
over HTTP. Since August 2022 the malware embeds a list of IP addresses in its
configuration, some of them are legitimate IP addresses, this technique is also used by other
malware such as Emotet and Trickbot.

1/7

https://blog.krakz.fr/articles/bumblebee/
https://blog.google/threat-analysis-group/exposing-initial-access-broker-ties-conti/
https://elis531989.medium.com/the-chronicles-of-bumblebee-the-hook-the-bee-and-the-trickbot-connection-686379311056
https://malpedia.caad.fkie.fraunhofer.de/details/win.bumblebee
https://github.com/LordNoteworthy/al-khaser

BumbleBee command and control IP addresses, port and the bot (or botnet) identifier are
stored in the .data section, obfuscated with the RC4 encryption algorithm. A script to extract
and deobfuscate them is provided at the end of this post.

Campaigns file format #

First malspam campaign which delivered BumbleBee contains a web link to a protected ZIP
archive.

1. The archive contains an ISO file;
2. The ISO contains a LNK file and a DLL file;
3. The LNK executes rund1132.exe to invoke the embedded DLL;

File sharing
|wmww service

=-0-B-8

Malspam LNK BumbleBee

%4—

Next Payload C2

Figure 1: BumbleBee infection chain with ISO file

This model of campaign was used for months. During the summer of 2022, actors updated
the disk image format from I1SO to VHD. Content of disk image (VHD) changed too, the DLL
is no more stored as a file, but it is embed obfuscated in a PowerShell script. The script is
executed by the LNK with the execution policy set to bypass. The BumbleBee’s DLL is
stored in the PowerShell script in obfuscated strings (e.g:
$elem30=$elem30.$casda.Invoke(0,"H")). After strings replacement, the base64 encoded
variable is decoded, decrompressed (ungzip) and invoked (e.g: scriptPath | iex).

2/7

-~ File sharing
| 3:3 service

5 w-0-B-E

Malspam PowerShell
5515
Next Payload C2 BumbleBee

Figure 2: BumbleBee infection chain with VHD file

NB: File sharing service used to deliver BumbleBee change regulary e.g.: WeTransfer,
Onedrive, Smash, etc. Details of a campaign using onedrive file sharing website are written
in the article: Bumblebee DocuSign Campaign.

Examples IOCs:

e ISO: SHA-256:
8695f493612942d322e2936106f78144f91602c7acace080e48c97e97b888377

e VHD: SHA-256:
e9a1ce3417838013412f81425ef74a37608754586722e00cacb333ba88eb9aa7

Configuration extractor #

As introduced above, the configuration is stored encrypted with the RC4 algorithm. RC4:
Rivest Cipher 4, also known as ARC4: https://en.wikipedia.org/wiki/RC4 The key is in cleartext in the
binary and its length is repeatedly (for BumbleBee case) fixed to 10 characters.

Here is the two functions that implement RC4 algorithm in BumbleBee:

3/7

https://0xtoxin-labs.gitbook.io/malware-analysis/malware-analysis/bumblebee-docusign-campaign
https://bazaar.abuse.ch/sample/8695f4936f2942d322e2936106f78144f91602c7acace080e48c97e97b888377/
https://bazaar.abuse.ch/sample/e9a1ce3417838013412f81425ef74a37608754586722e00cacb333ba88eb9aa7
https://en.wikipedia.org/wiki/RC4

S/ RC4: Pseude-random gemeratin algorithe I
: ntE2 fasteall ACS FRGA[unsigned —

| i 2 _ fa | { igned _ i & blob,

int 43 /F [rsp

unsigned __imt8 wi; S/ [
unsigned __ints we; JJ
unsigned __imt& w¥; /f |
unsigned __imt& w8; f/

if { (sbou[zsB] & 1) 1= @)

Figure 3: BumbleBee implemenation of PRGA of RC4 algorithm

1 [¢f mea: key scheduling algeritha (KSA)
2 | BYTE *__fastcall RC4_KSA(_BYTE *Sbax, inte4 arg_key, imt a3}
{ .
< _BYTE esult; S ra
unsigmed int wag S/ |
unsigned int w5; f/
unsigred _ intB we; /f
a 3 A +1
unsigred int 55 /7
"Show = 8
13 [1] = &;
13 far { L = 8; 1 < axied; +1 }
[1e2] =4;
if =8)
1 i i
1 1L = SBaij
[258] = @;
1
else
af
2 = @
= @
< = B;
2 while ¢ Bled)
2 {
if Bz
= 8
z #» *(BYTE *)(+ va) + sbax[vs + 2];
= a[vE + 2]3
[v5 + 2] = sbax[vé + 21;
[v& + 2] = v73
L LR
¥
ssult = shax;
[252] = 1;
H
return T3

Figure 4: BumbleBee implementation of KSA of RC4 algorithm

The key is stored at the end of the blob of data containing the encrypted list of IP addresses.
After analysing few samples of BumbleBee, it appears that the blob of data containing the IP
addresses is always 4105 bytes long (p/us one null byte) which is a pattern to look for in the
DLL for a C2 extractor.

47

000F
ololo] S
0O0F
Q00F

:E7EQ 00000000 00000000 OO0 0000 OOOO OO OO OO OO0
:EBOO 00000000 00000000 OOOOOO0O0 OOOOEOOO 70BOOF 80O
:E820 FFFFFFFF 00000000 00000000 00000000 FFFFFFFF
:EB40 01000000 00000000 OO0 OO DOOOOOOO FEFFFFFF

066000 00
01000000
000000 00
FFFFFFFF

POOF:F860|3AA2A840 D6F255D3 2F414140 6080BF7B C87CBB77 710C4BF6

000F

ANNE

:E880 0D7657A3 3AC18C39 D6823ECT7 4F4C52B4 2581B3EE

LEQAN AN E2NAIE NOFNCACE AD AQNEAA EAECTICDA EA OO AEER

e9alce3417838013412fB1425ef74a37608754586722e00cach333bagBeb9aa7.vhd-stage2 €@

vour:
000F:
000F:
QOO0F:
QO0F:
QOO0F:

F7AU 11 IBZBOU 4F 15 /048 FOYS YT 66 /7 733CAZ JU43OGU TA
F7C0 2767AAF3 B16A92B8 64 8EFE0S8 74C1463C 546F 184C
F7E0 490B6165 56 9AD7 12 5C3183CD 9477 82ED 8919BF 31
F800 DEE6FBD3 43D43AC1 A7824CF7 46573256 76 SEDDB2
F820 ABEOFF1C A37050AF 4BFAAE31 96D96DSE 6113B110
F840 068490 2E F64A2F38 1173C74A FD3CD4E4 66 CAGOED

POOF : F860]68 794855 4C486475 42550000 00000000 00600000

000F
000F

:FB80 00000000 0OOOOO0OO OOOOOOOO DOOOEOOO OO OOLO0O
:FBAD 00000000 OOOOO00OO OOOOOOOO OOBOEOOO 3CA6A26E

lcczc7c1

7294 E-ND

GLZATEEL
10D4 AAB8
A429C444
9ACCCDEL
ACFAEC6B
477D 0A30
00000000
00000000
E7C16CFD

Figure 5: Location of the blob and the RC4 key

00000000 000006000
BOBOOF 80 01000000
00000000 00000000 FHVY............ Yy .o
00000000 00000000vaunn.. PYYYYYV.
JEOGE14B 527FE321 : ¢ @0oUd/AAG" . {E|»wq.KE~. 4KR.&!
C761EC56 5C9B8B1DO® .v.£:A.90. COLR .21 ACACaiV\.+D

NENEEE AT E2112212 - TA YU i3 1dA micdill Cans D

SEUDAYTL 4UELZ4 ZA . . +]JU.VRO. . . WS<(pL.Z."pa=uCurils™
E261B704 27395E2F 'g26+j. d.p.tAF<To.L.02 &a-.'9".
BB5393DC 360E97DA I.aeV.x.\1.I.w.1..;1x)AD»S.U6..
EE402E 16 40C182D4 b200CO:As . L+Fw2vv.Y2 114i@. .@A.
6DCOOCE3 3B14182E «ay.£pP KU®1.Um.a.x.~0ikmE.&; . .
2FF7AFE1 9AE7 9607 §1/8 . 5CIy<0afE" .G}.0/+ 4.c.
00000000 000000 ee
00000000 00000000
19716F71 55B1854F

0
0

The script below attempts to loop over data until a blob matches the blob size, then it
extracts the RC4 key (the last 10 bytes of the blob) to finally decrypt the data.

from cryptography.hazmat.primitives.ciphers import Cipher
from cryptography.hazmat.primitives.ciphers.algorithms import ARC4

def decrypt_rc4(key: bytes, ciphertext: bytes) -> bytes:

"""pecrypt RC4 encrypt data,

algorithm =
cipher =
decryptor =
cleartext =

ARCA4(key)

cipher.decryptor()

return cleartext

def

Cipher(algorithm, mode=None)

decryptor.update(ciphertext)

get_bumblebee_c2(data: bytes) -> bytes:

“pip install cryptography """

Command and Control are stored at the end of the .data section,
the configuration of the obfuscated C2 and its associated RC4
are stored in the same blob with a fixed lenght of

4105 plus one null byte (4106).

I\ xac\xd2\xfe=; \x87\x94\xebP\x8e@\x08}\x00/AI\xd4\x86\xaf\xd2\x14-
\X16\x89A\xa9uT\x00\xbduC\xb7\x9e~\x19\xac\x9f\xb4\x0f\xae>\xcc

\Xx96S]\xb56\x93C\x9d*p\xed\xc9\x04: 0ew\xc3*X :a\xe@T\x8e\x93>\xf9

\XxF8\xe2\x17Q\x15b, 8\xa8 [\xf5N\x93\xffMM]\x8d\xec\xde\x13\x95z\xc3

<redatacted>

AXxd4\x00\xalxZ:\x1e\x90\x00X\xea\xca\x0c\ '\xee\xffOR5tw\XcOI\x86R" !
AXxF8\xa3\x87\xc8\x16Mo_5\x82_\x81\x9f<RC4 key composed by 10

bytes>

(:2 = bl”l

for blob in map(lambda x: Xx.strip(b"\x00"),

4)): .

if len(blob) 4106:

data.split(b"\xe0" *

5/7

key = blob[-10:]

ciphertext = blob[:-10]

c2 = decrypt_rc4(key, ciphertext)

c2 = c2.replace(b"\x00", b"")

print(f"BumbleBee Command and Control IoCs: {c2}")

return c2

if __name__ == "_ _main__":
import sys

with open(sys.argv[1], "rb") as f:
get_bumblebee_c2(f.read())

6/7

Code Snippet 1: BumbleBee C2 extractor
PS: Tested with the package cryptography with the version: 3. 4. 8.

Go head and re-use, adapt the script for your needs!

Resources #

7/7

