
1/6

REF2924: how to maintain persistence as an
(advanced?) threat

elastic.co/security-labs/ref2924-howto-maintain-persistence-as-an-advanced-threat

Subscribe

Preamble

In recent months, there has been a noticeable shift in the nature of the incidents being
tracked under REF2924. Initially, the attacker employed custom, purpose-built malware. As
the attack evolved, we observed the same group resorting to the use of open source tools or
publicly available source code as a basis for developing new capabilities.

Key takeaways

https://www.elastic.co/security-labs/ref2924-howto-maintain-persistence-as-an-advanced-threat
https://www.elastic.co/security-labs
https://www.elastic.co/security-labs/rss/feed.xml

2/6

The attacker has shifted from using custom malware to open source tools or publicly
available source code to develop new capabilities.

The attacker has also deployed open source tools like TFirewall and AdFind in
the victim's environment.
In order to maintain persistence the attacker has deployed multiple different tools
and techniques.

.NET Webshell

On February 16th, 2023 Elastic Security Labs observed the Microsoft .NET compiler (
csc.exe) being used to compile a DLL file,. The output was identified by Elastic Defend as a
malicious file. Analysts who may have observed dynamic runtime compilation of .NET web
shells should note that this was performed by the operator, not automatically by the system.

The resulting output file was named App_Web_lgntop.aspx.ec688436.pkx46see.dll
(a50ca8df4181918fe0636272f31e19815f1b97cce6d871e15e03b0ee0e3da17b) and was the
subject of malware analysis.

Analysis

The web shell requires a small amount of pre-configuration to ensure it listens for the correct
URI. In this case the path will be " ~/auth/Current/themes/resources/lgntop.aspx".

This path is expected on Microsoft Exchange Outlook Web Access (OWA) sites, so it was
likely selected to blend in with the OWA service that is running on the target server. Once a
web request is received it is processed by the following method.

https://www.elastic.co/security-labs/assets/images/ref2924-howto-maintain-persistence-as-an-advanced-threat/image2.jpg

3/6

This method checks if a specific HTTP header named XFF is present in the request headers.
If it is present and its value, after passing through an MD5 hash function and a substring
function, matches the string " 19267E61029B4546", then the method proceeds to execute the
rest of the code. The string is likely used as an authentication key to prevent others from
using the webshell.

Within the if statement, the method reads the binary data from the request body using the
BinaryRead method and stores it in a byte array. It then creates a string containing the fully
qualified name of a .NET type that the code wants to load and gets a reference to that type
using the Type.GetType method. The byte array in the image is the ASCII code
representation of the text “ System.Reflection.Assembly ”. This way of presenting the code
is done in order to avoid string-based detection. The System.Reflection.Assembly class
provides methods and properties to load, examine, and manipulate assemblies at runtime.

The code obtains a reference to a method named Load in the loaded type and invokes it
using the Invoke method. The Load method takes a byte array as a parameter, which the
code decrypts using a Decrypt method (not shown in this publication). The result of the Load
method invocation is stored in an object variable.

The code then gets a reference to another method named CreateInstance in the loaded
type and invokes it using the Invoke method. The CreateInstance method takes a string as
a parameter, which the code constructs from a byte array containing the ASCII codes for the
string U. The result of the CreateInstance method invocation is stored in an object variable.

Finally, the code calls the Equals method on the object, passing in the current object.
Because Equals will call GetType on the object, this approach is a way to indirectly call
functions covertly.

The Encrypt and Decrypt functions include a hard-coded key.

Sources

The key " e45e329feb5d925b" is the result of taking the first half of the MD5 hash of the
string "rebeyond". The string “rebeyond” refers to the developer of the Behinder web shell
framework. This refers to the developer of the Behinder webshell framework. This key is also
the default value when you generate a shell template using the Behinder or derivative
Godzilla webshell frameworks.

Persistence module

https://github.com/rebeyond/Behinder
https://github.com/BeichenDream/Godzilla

4/6

On February 13, 2023, we observed a new persistent malware called kavUpdate.exe written
in .NET with an exceptionally small footprint (about 6Kb compiled). We believe this software
was developed specifically for this environment by the threat. Elastic Security Labs observed
this binary persisting via a Scheduled Task, though other mechanisms would likely be
compatible.

Analysis

This code is designed with the sole purpose of executing a set of predefined commands. The
malware checks the current day and hour, and if it is Monday or Thursday at 5am, it will
execute a series of commands:

1. Delete the user 'norshasa'
2. Add the user 'norshasa' with the password 'P@ssw0rd123...'
3. Activate the user 'norshasa'
4. Add the user 'norshasa' to the Domain Admins group
5. Add the user 'norshasa' to the Remote Desktop Users group
6. Create a full backup of NTDS in the C:\ProgramData\temp folder
7. On the same days of the week, one hour later at 6am, delete the user 'norshasa.'

Open source tools

On January 2nd, 2023 the threat deployed TFirewall in the victim's environment. TFirewall is
a testing tool designed to evaluate whether hosts can establish a SOCKS5 proxy within an
intranet environment while allowing for outbound network communication through specific
ports. Developed using Golang, TFirewall is comprised of a client and server component and
is compatible with multiple operating systems.

Along with TFirewall, we observed that the attacker used the free tool AdFind. AdFind is a
command line utility for querying Active Directory and other directory services. AdFind can
be run on Windows 7 or newer and requires no special security permissions beyond the
ability to launch executables. It’s written in C++ and compiled with Visual Studio 2022. The
source code is not available.

The binary is quickly identifiable based on its hash
(114b37df703d46a44de0bc96afab8b8590e59a3c389558dd531298e5dd275acb). During
execution, we recognized the use of AdFind-specific command line flags and parameters:

mailto:P@ssw0rd123
https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/cc732530(v=ws.11)
https://www.elastic.co/security-labs/assets/images/ref2924-howto-maintain-persistence-as-an-advanced-threat/image2.jpg
https://www.elastic.co/security-labs/assets/images/ref2924-howto-maintain-persistence-as-an-advanced-threat/image1.png
https://www.elastic.co/security-labs/assets/images/ref2924-howto-maintain-persistence-as-an-advanced-threat/image2.jpg

5/6

On March 6th, 2023 we observed a process named nat.exe. Initially, the file was only
identified as generically malicious. However, if we take a closer look at the command line
parameters that are used during execution, we have a hint for which tool the attacker is
using.

Based on these arguments, we can safely conclude it's a packed version of the Impacket tool
secretsdump. Impacket contains a collection of Python classes for working with network
protocols. Impacket is commonly used to carry out a variety of tasks related to network
security and penetration testing, though it may also be abused by threat actors.

Using the same approach (examining the command line parameters), we identified the use
of the tool called NTDSDumpEx which exhibited the same command line arguments
employed by this tool:

NTDSDumpEx is capable of extracting data from the Active Directory NTDS.dit database in its
offline state, meaning the database does not have to be running. It can extract information
such as user accounts, group memberships, access control lists, and other directory objects.

Background

Throughout the attack we witnessed a combination of TTPs that provide a recognizable
fingerprint. For example, the way the attacker exported mailboxes is described in detail in
this blog post. We also see a strong resemblance in the way credentials from LSASS are
being exported, as described here. The majority of the commands and tools deployed by the
attacker are well described on the same GitHub users’ tips repository.

We also note that the technique used to deploy NAPLISTENER is described here and the
deployment method for malicious IIS modules like DOORME can be found in this blog post.
And lastly, a post on Godzilla and Behinder web shells in exchange servers closely reflects

https://github.com/fortra/impacket/blob/master/examples/secretsdump.py
https://github.com/zcgonvh/NTDSDumpEx
https://3gstudent.github.io/%E6%B8%97%E9%80%8F%E5%9F%BA%E7%A1%80-%E4%BB%8EExchange%E6%9C%8D%E5%8A%A1%E5%99%A8%E4%B8%8A%E6%90%9C%E7%B4%A2%E5%92%8C%E5%AF%BC%E5%87%BA%E9%82%AE%E4%BB%B6
https://3gstudent.github.io/%E6%B8%97%E9%80%8F%E5%9F%BA%E7%A1%80-%E4%BB%8Elsass.exe%E8%BF%9B%E7%A8%8B%E5%AF%BC%E5%87%BA%E5%87%AD%E6%8D%AE
https://github.com/3gstudent/Pentest-and-Development-Tips
https://3gstudent.github.io/%E5%88%A9%E7%94%A8IIS%E7%9A%84%E7%AB%AF%E5%8F%A3%E5%85%B1%E4%BA%AB%E5%8A%9F%E8%83%BD%E7%BB%95%E8%BF%87%E9%98%B2%E7%81%AB%E5%A2%99
https://3gstudent.github.io/%E5%88%A9%E7%94%A8IIS%E7%9A%84%E6%A8%A1%E5%9D%97%E5%8A%9F%E8%83%BD%E7%BB%95%E8%BF%87%E9%98%B2%E7%81%AB%E5%A2%99
https://3gstudent.github.io/%E6%B8%97%E9%80%8F%E5%9F%BA%E7%A1%80-Exchange%E4%B8%80%E5%8F%A5%E8%AF%9D%E5%90%8E%E9%97%A8%E7%9A%84%E6%89%A9%E5%B1%95

6/6

how these capabilities were implemented within targeted environments.

During malware analysis of the SIESTAGRAPH, NAPLISTENER, and SOMNIRECORD
families, we also identified open source repositories that minimally served as the inspiration
for these payloads and which have been described in other publications from Elastic Security
Labs.

We conclude that the attackers are at the very least regular consumers of blogs and open
source repositories, both of which have contributed to the rapid pace of this threat’s
activities.

Detection logic

The following prebuilt protections are available from Elastic: - AdFind Command Activity

YARA

Elastic Security has created YARA rules to identify this activity. Below are YARA rules to
identify the Behinder web shell.

rule Windows_Trojan_Behinder { meta: author = "Elastic Security" creation_date
= "2023-03-02" last_modified = "2023-03-02" description = "Web shell found in

REF2924, related to Behinder or Godzilla" os = "Windows" arch = "x86"

category_type = "Trojan" family = "Behinder" threat_name =
"Windows.Trojan.Behinder" License = “Elastic License v2” reference_sample =

"a50ca8df4181918fe0636272f31e19815f1b97cce6d871e15e03b0ee0e3da17b" strings:
$load = { 53 79 73 74 65 6D 2E 52 65 66 6C 65 63 74 69 6F 6E 2E 41 73 73 65 6D

62 6C 79 } $key = "e45e329feb5d925b" ascii wide condition: all of them }

https://www.elastic.co/guide/en/security/current/adfind-command-activity.html

