
1/9

March 25, 2023

[QuickNote] Decrypting the C2 configuration of
Warzone RAT

kienmanowar.wordpress.com/2023/03/25/quicknote-decrypting-the-c2-configuration-of-warzone-rat/




1. Introduction

Warzone RAT is a type of malware that is capable of infiltrating a victim’s computer and
giving attackers remote access and control over the system. The malware has gained
notoriety for its advanced capabilities and ability to evade detection, making it a serious
threat to computer security.

Warzone RAT is typically spread through phishing emails or other social engineering
techniques, where attackers trick victims into downloading and installing the malware on their
systems. Once the malware is installed, it can perform a variety of malicious actions,
including stealing passwords, taking screenshots, and logging keystrokes. It can also
download and execute additional malware, giving attackers even more control over the
victim’s system.

One of the key features of Warzone RAT is its ability to encrypt its configuration data, making
it difficult for security experts to analyze and understand how the malware operates.
Currently, there are two variants of the malware in circulation, each using a different method
to decode its configuration. The first variant uses standard RC4 encryption, while the second
variant uses a modified version of RC4. This modification makes it even more challenging to
decrypt and analyze the malware’s configuration data.

2. Analysis

Sample1: 00930cccd81e184577b1ffeebf08ee6a32dd0ef416435f551c64d2bcb61d46cf (use
standard RC4)

https://kienmanowar.wordpress.com/2023/03/25/quicknote-decrypting-the-c2-configuration-of-warzone-rat/
https://www.unpac.me/results/c837149f-a28a-4519-9e08-0082438bcbd7#/


2/9

Sample2: 61f8bf26e80b6d6a7126d6732b072223dfc94203bb7ae07f493aad93de5fa342 (use
modified RC4)

In Warzone RAT, the configuration info is stored in the .bss PE section of the malware’s
code. The .bss section is typically used for storing uninitialized data. The format of the
configuration is as follows: [Key length] [RC4 key] [Encrypted data]. Below is an
illustration of the configuration stored in the .bss section in both samples.

https://kienmanowar.files.wordpress.com/2023/03/2023-03-25_15-39-17.png
https://www.unpac.me/results/667fd0c7-69d6-49b9-a5ab-76616eabfd23#/
https://kienmanowar.files.wordpress.com/2023/03/2023-03-25_15-42-49.png


3/9

The steps to perform the process of retrieving information and copying data from the .bss
section to memory are the same in both samples. The pseudo-code is shown below:

https://kienmanowar.files.wordpress.com/2023/03/2023-03-25_16-24-16.png
https://kienmanowar.files.wordpress.com/2023/03/2023-03-25_16-45-13.png


4/9

The pseudo code in function wzr_decrypt_config in both samples is the same, which
involves extracting the RC4 Key and Encrypted data, and then using RC4 to decrypt the
configuration. The difference lies in function wzr_perform_rc4.

The function wzr_perform_rc4 in sample 1 uses standard RC4 to decrypt the configuration.
Its pseudocode is shown below:

https://kienmanowar.files.wordpress.com/2023/03/2023-03-25_17-04-25.png
https://kienmanowar.files.wordpress.com/2023/03/2023-03-25_17-23-27.png


5/9

Thus, we can easily use CyberChef to perform configuration decoding or write a Python
script to automate for similar samples.

The pseudocode for function wzr_perform_rc4 in sample 2 as shown below. Prior to
decryption, it allocates an array of 250 bytes, filled with zero values. Then, it copies the
extracted rc4_key into this array. Finally, it calls the wzr_rc4_crypt function, which uses
the modified RC4 algorithm to decrypt the configuration.

The complete pseudocode of the wzr_rc4_crypt function is as follows:

https://kienmanowar.files.wordpress.com/2023/03/2023-03-25_17-38-24.png
https://kienmanowar.files.wordpress.com/2023/03/2023-03-25_17-46-53.png
https://kienmanowar.files.wordpress.com/2023/03/2023-03-25_17-54-34.png


6/9

void __thiscall wzr_rc4_crypt(wzr_rc4_data *rc4_info, _BYTE *data)

{

 idx = 0;

 if ( rc4_info->rc4Sbox )

 {

   if ( rc4_info->rc4_key_250b )

   {

     rc4_info->counter2 = 0;

     LOBYTE(i) = 0;

     rc4_info->counter1 = 0;


     do

     {

       rc4_info->rc4Sbox[i] = rc4_info->counter1;

       i = rc4_info->counter1 + 1;

       rc4_info->counter1 = i;

     }

     while ( i < 256 );

 
     rc4_info->counter1 = 0;

     for ( i = 0; i < 256; rc4_info->counter1 = i )

     {

       rc4Sbox = rc4_info->rc4Sbox;

       rc4_info->counter2 += rc4Sbox[i] + rc4_info->rc4_key_250b[i % 250];

       rc4Sbox[i] ^= rc4Sbox[rc4_info->counter2];

       // swap values

       rc4_info->rc4Sbox[LOBYTE(rc4_info->counter2)] ^= rc4_info-
>rc4Sbox[LOBYTE(rc4_info->counter1)];

       rc4_info->rc4Sbox[LOBYTE(rc4_info->counter1)] ^= rc4_info-
>rc4Sbox[LOBYTE(rc4_info->counter2)];

       i = rc4_info->counter1 + 1;

     }

     rc4_info->counter1 = 0;

     rc4_info->counter2 = 0;

     // Decrypt data

     if ( rc4_info->data_length )

     {

       j = 0;

       do

       {

         rc4_info->counter1 = j + 1;

         rc4Sbox = rc4_info->rc4Sbox;

         k = (j + 1);

         rc4Sbox_value1 = rc4Sbox[k];

         rc4_info->counter2 += rc4Sbox_value1;

         rc4Sbox_value1_ = rc4Sbox_value1;

         rc4Sbox_value2 = rc4Sbox[rc4_info->counter2];

         rc4Sbox[k] = rc4Sbox_value2;

         rc4_info->rc4Sbox[LOBYTE(rc4_info->counter2)] = rc4Sbox_value1;

         rc4Sbox_ = rc4_info->rc4Sbox;

         data[idx] ^= rc4Sbox_[(rc4_info->counter2 + rc4Sbox_value2)] ^ 
(rc4Sbox_[(rc4Sbox_value2 + rc4Sbox_value1_)]




7/9

                                                                       + 
rc4Sbox_[(rc4Sbox_[((0x20 * rc4_info->counter2) ^ (rc4_info->counter1 >> 3))]

                                                                                 + 
rc4Sbox_[((0x20 * rc4_info->counter1) ^ (rc4_info->counter2 >> 3))]) ^ 0xAA]);

         j = ++rc4_info->counter1;

         ++idx;

       }

       while ( idx < rc4_info->data_length );

     }

   }

 }

}


With the pseudocode above, we can rewrite the decoding code in Python as follows. This is
the code I wrote, and you can write it in your own way as long as it performs the task
correctly.



8/9

# Refs: https://stackoverflow.com/questions/9433541/movsx-in-python

def SIGNEXT(x, b):

   m = (1 << (b -1))

   x = x & ((1 << b) -1)

   return ((x ^ m) - m)


# This routine is responsible for decrypting the stored C2.

def rc4_customized_decryptor(data, key):

   idx = 0

   counter1 = 0

   counter2 = 0

   

   # Initialize RC4 S-box

   rc4Sbox = list(range(256))

   

   # Modify RC4 S-box

   for i in range(256):

       counter2 += (rc4Sbox[i] + key[i%250])

       counter2 = counter2 & 0x000000FF

       rc4Sbox[i] ^= rc4Sbox[counter2]

       rc4Sbox[counter2 & 0xFF] ^= rc4Sbox[counter1 & 0xFF]

       rc4Sbox[counter1 & 0xFF] ^= rc4Sbox[counter2 & 0xFF]

       counter1 = i+1        

   

   # Decrypt data

   counter1 = 0

   counter2 = 0

   j = 0

   decrypted = []

   while(idx < len(data)):

       counter1 = j + 1

       k = (j+1)

       rc4Sbox_value1 = rc4Sbox[k]

       counter2 += (SIGNEXT(rc4Sbox_value1, 8) & 0xFFFFFFFF)

       rc4Sbox_value1_ = (SIGNEXT(rc4Sbox_value1, 8) & 0xFFFFFFFF)

       rc4Sbox_value2 = rc4Sbox[counter2 & 0x000000FF]

       rc4Sbox[k] = rc4Sbox_value2

       rc4Sbox[(counter2 & 0x000000FF)] = rc4Sbox_value1

       tmp1 = rc4Sbox[((0x20 * counter1) ^ (counter2 >> 3)) & 0x000000FF]

       tmp2 = rc4Sbox[((0x20 * counter2) ^ (counter1 >> 3)) & 0x000000FF]

       tmp3 = rc4Sbox[((tmp1 + tmp2) & 0x000000FF) ^ 0xAA]

       tmp4 = rc4Sbox[(rc4Sbox_value2 + rc4Sbox_value1_) & 0x000000FF]

       tmp5 = (tmp3 + tmp4) & 0x000000FF

       tmp6 = rc4Sbox[(counter2 + rc4Sbox_value2) & 0x000000FF]

       decrypted.append(data[idx] ^ (tmp5 ^ tmp6))

       

       counter1 += 1

       j = counter1

       idx += 1

   

   return bytes(decrypted)




9/9

Below are the results of using a Python script to extract the configuration of Warzone RAT
from the samples used in the article.

3. End

The article would like to conclude here. I hope that it provides useful information for you
during the process of analyzing the Warzone RAT malware. To protect against Warzone RAT
and other types of malware, users should take precautions such as being cautious when
opening email attachments, using strong passwords, and keeping their software up to date. It
is also important to use antivirus software and to keep it updated regularly. By taking these
steps, users can help to protect themselves against the threat of Warzone RAT and other
types of malware.

4. Refs

https://research.openanalysis.net/warzone/malware/config/2021/05/31/warzone_rat_config.ht
ml

https://exploitreversing.files.wordpress.com/2022/11/mas_6-1.pdf

https://kienmanowar.files.wordpress.com/2023/03/2023-03-25_18-54-30.png
https://kienmanowar.files.wordpress.com/2023/03/2023-03-25_18-54-40.png
https://research.openanalysis.net/warzone/malware/config/2021/05/31/warzone_rat_config.html
https://exploitreversing.files.wordpress.com/2022/11/mas_6-1.pdf

