Bypassing Qakbot Anti-Analysis

7 lab52.io/blog/bypassing-gakbot-anti-analysis-tactics/

QakBot is a banking trojan that has been evolving since its first version was discovered in
2008. According to the 2022 report published by CISA,_it was one of the most active variants
in 2021, and during 2022 and so far in 2023 it has remained quite active. Taking a brief look
at the latests news of QakBot it has been updating its tactics constantly, for example, using a
Windows zero-day to avoid displaying the MoTW or the most recent one, using OneNote
files to drop QakBot.

In this case we are particularly interested in the anti-analysis techniques used by QakBot
during the early stages of its execution. These techniques can make malware analysis
harder if they are not known, so learning to identify and bypass them is essential to get to
see the malware’s operation at its full potential. Furthermore, there are techniques that can
replicate / adopt different types of malware, so knowking them opens the door to the study of
different samples.

This article is structured according to the verifications carried out using the following sample,
focusing of those aspects that are most remarkable.

md5 58e1c32eeb0130da19625e55ee48cf1e

sha1 00ae1c5066f67e5e71285de99bea8d8b67085743

sha256 f5ff6dbf5206cc2db098b41f5af14303f6dc4 3e36c5ec02604a50d5cfect4790

The following image summarizes the checks performed by QakBot before executing its
payload. This article is structured following this chain of checks, which corresponds to the
anti-analysis techniques used by the sample.

1/13

https://lab52.io/blog/bypassing-qakbot-anti-analysis-tactics/
https://www.splunk.com/en_us/blog/security/cisa-top-malware-summary.html
https://www.bleepingcomputer.com/news/security/new-attacks-use-windows-security-bypass-zero-day-to-drop-malware/
https://www.bleepingcomputer.com/news/security/how-to-prevent-microsoft-onenote-files-from-infecting-windows-with-malware/

File Names

Anti-analyis checks performed

Viiware Version

by Qakbot

Windows Defender

At the beginning of the program execution, QakBot will perform a first inevitable check since
this sample is intended for Windows systems: to verify if Windows Defender is active.
QakBot will perform this check by searching for representative files.

text:ee481A68 pop ebx
Ltext:@8481A6C push ebx
text : 808481460 mov hHeap, eax
llustration 1 Call to the first
Ltext:e8d48l1ATY pop eCx
TdextresdalAve test eax, eax

text:eedelavs js short loc_481A58

check function

Inside the function we can observe a mov to the EAX register and then a call to a function
used recurrently during the whole execution of the program. This function has been renamed
to mw_decode since its objective is to decode text strings, taking the EAX register as
parameter and performing the XOR operation.

2/13

Y

il s =
text: 486449 mov eax, 3IBEEh
.text:884864AE call mw_decode
Ltext: 88486463 push eax ; lpFileName
Ltext: 88486464 mov [ebptarg @], eax
Ltext: 88486487 call sub_ 487783
TdextrefdasdBC test Sax, eax
text: 8848648 pop eCx
.text:884064BF lea eax, [ebpt+arg_8]
.text:eed4864C2 jz short loc_4864CE
bl s =
Jtext:ee486630
Ltext: 88406636 loc 486636:
Ltext:@8486636 lea ecx, [eaxtedx]
Ltext: 88486639 lea ebx, [editecx]
Jtext:@e48663C and ebx, 3Fh
.text:8848663F mov bl, byte 418128[cbx]
Ltext:88406645 xor bl, [esi+edx]
.text: 88486648 inc edx
Ltext: 88486649 mov [ecx], b1l
.text: 88406648 cmp edx, [ebptvar 4]
-text:0048664E jb short I1ocy)=[debuge37:021FF7E0]

content

db 43h ;

db @

lllustration 2 Call to mw_decode

lllustration 3 mw_decode

After performing all iterations of the loop, the decrypted string is visible when looking at the
address of the ECX register. During all the checks performed by QakBot, this behavior can

be seen.

In this case, the string refers to Windows Defender, since it is part of the empty files created

by this utility.

3/13

QEDUEWID W /4 /UC QD i)
debug®36:@874F70F db 1Ah
EAX debugp36:0874F7E@ db 43h
debug®36:0874F7E1 db 3Ah
debug®36:0874F7E2 db 5Ch
debug®36:00874F7E3 db 5Ch
debug®36:0874F7E4 db 49h
debug®36:0874F7ES db 4Eh
debug®36:00874F7E6 db 54h
debug@36:0874F7E7 db 45h
debug®36:0874F7E8 db 52h
debug®36:00874F7E9 db 4Eh
debug®36:0874F7EA db 41h
debug®36:0074F7EE db 4Ch
debug®36:@874F7EC db 5Ch
debug®36:@874F7ED db 5Ch
debug®36:@874F7EE db 5Fh
debug®36:@874F7EF db 5Fh
debug@36:0874F7F@ db 65h
debug®36:0874F7F1 db 6Dh
debug®36:0874F7F2 db 78h
debug®36:0074F7F3 db 74h
debug®36:0874F7F4 db 79h

debug®36:8874F7F5 db a8
Aehnof3f - AATAFTEA dh ALRK

TTUTEFATALTET AATNATATA - dele e AT, o MO AT § e e

Windows Defender: C\INTERNAL\ empty

_

A2 m -

b

lllustration 4 Decrypted string related to

T 3 |

e hE M bae han han hae M e Me b s M bae M M e e s s BN

g

From here, taking the value C:\INTERNAL_empty as a parameter, it makes a call to the
function GetFileAttributesA of the Windows API. Then, checks if this file already exists in the
system.

This check is made to know if Windows Defender is present in the system, since the file
C:\INTERNAL_empty is part of the files that Windows Defender creates.

Ltext:@edavres

Ltext:eed4a77es

.text: 08407708 ; Attributes: bp-based frame
Jtextreedavves

Ltext:e407708 ; int _ cdecl mw_antivm checkFile(LPCSTR lpFileName)
Ltext: 08487708 mw_antivm_checkFile proc near
LLext:eeda7res

.text: 004077088 lpFileName= dword ptr 8
Jtextreedavves

Ltext: 28487788 push ebp

Ltext: 00467709 mov ebp, esp

.text: 88487788 push [ebp+lpFileName] ; 1lpFileName
Ltext: 08487 78E call ds:GetFileAttributesA

Ltext:ee487714 xor ecx, ecx [ebp+lpFileName |=[Stack[@@8814568] : @818FD3C]

Ltext: 00487716 cmp eax, BFFFFFFFFh dd offset aCInternalEmpty ; "C:\\AMINTERMALMMAN_ empty™
Ltext:88487719 setnz cl

STextee4a7v1C mov eax, ecx

Ltext:e848771E pop ebp

dext:@ed4d8771F retn
Ltext:ee840771F mw_antivm_checkFile endp
dext:eeda7v1F

lllustration 5 Call to GetFileAttributesA with representative string

In case, after making the API call, it detects that the Windows Defender-related file is present
in the system, the sample execution will be stopped. Otherwise, QakBot will continue with its
execution, to continue with the checks.

Representative processes in execution

4/13

The next check is on the system processes. The main objective is to evaluate if there is any
security application that can be used to detect or to anlyse malware, such as antivirus
applications or applications used by reserarchers, or in sandboxes. In order to do so, Qakbot
analyses the list of process and compares it with known representative names of processes.

The first thing Qakbot will do is to load several hexadecimal values.

Ltextieed4a5323
Ltext:eed4pas5325
Ltext:eed48s532F
Ltext:eedss5339
Ltext:eed4as33A
Jtext:ee485336
Ltextieed4ss533C
Jdext:iebda5342
Ltext:ee485343
Ltext:eed4ass44
text:eed4es34e
text:eed4as3ise
Ltext:eed4as35A
Jtext:eed4es368
Ltext:eed4s85361
text:ee485362
text:ee485364
Ltext:ee48536E
Ltext:eed4a85378
Ltext:eeds8537E
Ltext:eed4s8537F
text:eed4as3ise
Jtext:eed4es3a2
Ldextieed4a538C
text: 88485396
Ltextieedas539Cc

Xar
mov
mov
push
push
push
lea
stosd
stosd
Xar
mov
mov
lea
stosd
stosd
Xor
mov
maov
lea
stosd
stosd
xor
mov
mov
lea
stosd

eax, eax
[ebptvar_114], 1
[ebp+var_118], &21h
ebx

esi

edi

edi, [ebptvar_1@C]

eax, eax
[ebptvar_1e4], 2
[ebp+var_1e8], 2587h
edi, [ebpt+var_FC]

eax, eax
[ebptvar F4], 4
[ebptvar_F@], 2FF8h
edi, [ebpt+var_EC]

Eax, eax

[ebptvar E4], &
[ebptvar E@], 291Bh
edi, [ebptvar DC]

lllustration 6 Loading values in hexadecimal

As mentioned before, mw_decode will continue to be used to decode the strings used by
the malware, so the hexadecimal value 0x621, seen before at the start of the function, is
saved in the EAX register.

e =

Ltext:eadasan
ext:eedasan
text:eadasan
text:ee485405
Ltext:eadas4DA
text:eed485400
text:eed4a540F

loc_4854D2:

mov
call
mov

test

jz

mw_decode

eax, [edi-4]

[ebFeax-prERRE21
eax, edx

short loc 4854FB

entered as a parameter

lllustration 7 Call to mw_decode with value 0x621

After calling the function in charge of decrypting the strings, it will start a loop to obtain all the
processes names for which it will check their existence in the system.

For example, the following image shows a list of processes subject to check with the names:
avgcsrvx.exe, avgsvex.exe and avgcsrva.exe. These are representative processes of AVG

Free Antivirus.

5/13

https://www.avg.com/es-es/homepage#pc

tewt:eadasan2
.text:8840854D02 loc_ 4854D2:

. text: 884085402 mov eax, [edi-4]

. text: 864685405 call mw_decode

. text: 80405404 mov [ebptvar_8], eax

Ltext:ea4854DD test eax, eax

.text:@a48540F jz short loc_4@854FB|eax=debugB38:afvgcsruxExefvg

afAvgcsrvxExeAvg db 'avgcsrvx.exej;avgsvox.exe;avgosrva.exe' B

push edi

push e

push 3Bh ; ;"
mov esl, eax
call sub_4@2187
mav [edi+4], eax
add esp, @Ch

lllustration 8 Some names of processes that will be checked
Once it has the strings to check, to obtain the first running process in the system it proceeds
with calls to the CreateToolhelp32Snapshot and Process32First functions.

& | (5]
LTEXTUEEREArAS push] 3 chaZFrocesslihy
text:aeda4raA7 push 2 ; dwFlags
text:@a484FAD call CreateToolhelp32Snapshot
Ltext : 88484FAF mov edi, eax
dextreedadrFBlL or eax, BFFFFFFFFh
.text:8e484FB4 cmp edi, eax
.text:88484FBE jz loc_48583F
I
text:88484FBC mowv esi, 128h
text:8e484FCL push esi ; Sire .
Ltext:ea484FC2 lea eax, [esptlddhipe] lllustration 9 Calls to
Ltext:88484FC6 push a ; Val
Ltext:B8484FCE push eax ; woid *
Ltext:ee484FCe call memset
Ltext:8e484FCE add esp, @Ch
.text:88484FD1 lea eax, [esp+l48h+pe]
Ltext:8e484FD5 push eax ; lppe
text:8e484FDE push edi 3 hSnapshot
Ltext:8e484FD7 mov [espt+l48h+pe.dwsize], esi
.text:98404FDE call Process32First
LText:BB4B84FE]L test eax, eax
Ltext:B8484FE3 jnz short loc_4@84FF1

CreatToolhelp32Snapshot and Process32First
Qakbot then checks if the processes names obtained above match any currently active
process in the system.

6/13

i e 5

text:@84852D4
Ltext: 00405204 loc_4852D4:

.text: 88485204 mov eax, [esi+d]

Ltext:084852D7 mov eax, [eax+edi+a@Ch]

Ltext: 88485208 push dword ptr [eax+ebx®™4] ; lpString2

.text:8848520E push [ebp+lpStringl] ; 1pStringl

Ltext:@#84852E1 call ds:lstrompia dword ptr [eaxtebx*4]=[debug@38:8214F938]

.text:804852E7 test eax, eax dd offset aAvgcsrvxExe ; "avgcsrvx.exe”

.text:884852E9 mov eax, [esi+d] db 18h
.text:@84852EC jz short loc_4@52F7 J

Ltext:@84852EE inc ebx
Ltext:@84852EF cmp ebx, [eaxt+edi+s]
Ltext:@84852F3 jb short loc_ 485204

lllustration 10 Iteration to compare processes names

It will perform this operation with all the processes, if any of them is equal to the ones it has

defined, it will terminate the execution. In particular, the following processes names have

been found to be subject to analysis. They are ordered with relation to the type of application

in the following table.

Type

Name of process

Antivirus

Avgcsrvx.exe Avgsvcx.exe Avgcesrva.exe ccSveHst.exe MsMpEnNng.exe
mcshield.exe Avp.exe kavtray.exe Egui.exe ekrn.exe Bdagent.exe
Vsserv.exe vsservppl.exe AvastSvc.exe coreServiceShell.exe
PccNTMon.exe NTRTScan.exe SAVAdminService.exe SavService.exe
fshoster32.exe WRSA.exe Vkise.exe Isesrv.exe cmdagent.exe
ByteFence.exe MBAMService.exe mbamgui.exe fmon.exe Dwengine.exe
Dwarkdaemon.exe dwwatcher.exe bds-vision-agent-nai.exe bds-vision-
apis.exe bds-vision-agent-app.exe

Malware
Analysis

Fiddler.exe lordpe.exe regshot.exe Autoruns.exe Dsniff.exe
HashMyFiles.exe ProcessHacker.exe Procmon.exe Procmon64.exe
Netmon.exe prOc3xp.exe ProcessHacker.exe CFF Explorer.exe
dumpcap.exe Wireshark.exe idaq.exe Idaq64.exe ResourceHacker.exe
MultiAnalysis_v1.0.294.exe x32dbg.exe Tcpview.exe OLLYDBG.EXE
windbg.exe samp1e.exe sample.exe runsample.exe

Virtualization

VBoxTray.exe vmtoolsd.exe vm3dservice.exe VGAuthService.exe

Environments TPAutoConnect.exe vmacthlp.exe VBoxTray.exe VboxService.exe

As anticipated, this point groups together checks involving both user protection and analysis

tools. It is to be expected that successive versions of QakBot will update the previous list.

If QakBot does not find any process with the above names, it continues its execution with the

next check.

Modules

7/13

If it passes the above check, it will make use of the Module32First and Module32Next APIs
to get all the modules for each of the processes in the system.

Ltext:ee483014 call ds:GetCurrentProcessId

Ltext:8e483C1A push eax ; th32ProcessID

.text:88483C1E push 8 ; dwFlags

.text:88483C10 call CreateToolhelp32Snapshot

Ltext: 88483023 mov [ebpthObject], eax

Ltext:ee483C26 cmp [ebpthObject], @FFFFFFFFh

Ltext:ea483024 jz loc_ 483014
I
text:8e483C38 push 224h ; Size
.text:88483C35 push @ ; Val
.text:88483C37 lea eax, [ebp+me]
text:88483C30 push eax ; woid *
Ltext:@e483C3E call ds: imp memset
Ltext: 88483044 add esp, @Ch
Ltext: 88483047 mov [ebptme.dwSize], 224h
Ltext:8e483051 lea eax, [ebptme]
Ltext:8e483C57 push eax ; lpme
.text:88483C58 push [ebp+hObject] ; hSnapshot
Ltext:ea483C568 call Module32First
Tdextresda3Cel test eax, eax
text:ee483063 jz loc_ 483014

lllustration 11 Use of Module32First
If any of the system modules contain the string ivm-inject.dll or SbieDIl.dll it will terminate
its execution.

I

.text:88483C88 mov eax, [ebptvar_248]

.text:88483C8E mov eax, [ebp+eax™d+var_ 23C]

.text:88483C95 call mw_decode

text: 88483094 mov [ebptpszSrch], eax

text:ea483088 cmp [ebpt+pszSrch], @

Ltext:@a483CA7 jz short loc 483CES cax=debug38:alvmInjectDll

alvmInjectDll db 'ivm-inject.dll’,@

il et = |

lllustration 12 String ivm-inject.dll

Ll 1 =]
text:884683C88 mov eax, [ebptvar_248]
Ltewt:@8483C8E mov eax, [ebpteax*d4+var 23C
text: 884683094 mov [ebptpszSrch], eax
Ltext: 88483040 cmp [ebp+pszSrch], @
Ltext:88483CA7 jz short loc_483CES eax=debug@44:alvmInjectDll
alvmInjectDll db 'SbieDll.d1l',@,88Bh,BABh,BABh
[l = [I

lllustration 13 String SbieDII.dll

8/13

The names of the DLLs have been identified as part of the Sandboxie program, used to run
programs in isolated environments. If any program uses these modules, it could be an
indication that this analysis tool is on the system, and QakBot would stop its execution.

It is worth noting, for example, that the Sandboxie-Plus version could incorporate utilities to
hide the presence of SbieDlIl.dll.

Characteristic names given to the sample

Analysts have some habits that QakBot will check. In this case, it will check if in the name of
the binary itself (the malware) is present any of the characteristic strings that could be used

by analysts to rename the sample, before its execution, such as “sample”, “mlwr_sm”,
“artifact.exe”. Again, these strings will be observed after the execution of mw_decode.

s

Ltext: 86483084 mov eax, [ebptvar_ 11C]

Ltext: 88483084 mov eax, [ebpteax®*atvar 18]

.text: 8848308 call mw_decaode lllustration 14
.text:8e483093 mov [ebp+pszsrch], eax

.text:88483099 cmp [ebp+pszSrch], @

.text:8e483088 jz short loc_483DDE eax=debug@3g:aSample

asample db 'sample’,®

L |
String sample

If any of these strings are found as part of the filename, it will stop the execution of the
program. In addition, this check is not case-sensitive, i.e. it does not distinguish between
upper and lower case.

It is curious, for example, that it does not also check that the name of the binary may
correspond to a sha256 pattern, since samples downloaded from platforms such as
VirusTotal or other systems retain in their name the hash of the binary, which the analyst may
or may not rename.

Anti-VM Techniques

QakBot performs specific checks to determine if it is running in a virtual environment. These
checks are described below.

VMware version

The malware will evaluate whether it is running within a VMWare virtual machine. To do that,
QakBot will make use of a special VMWare /O port. In particular, the verification at this point
focuses on the port used by the official VMWare tools to perform the communications.

VMWare uses I/0O port 0x5658 to communicate internally with the deployed virtual machines,
so the first step executed by QakBot is to save in the DX register the value corresponding to

9/13

https://sandboxie-plus.com/sandboxie/
https://github.com/sandboxie-plus/Sandboxie

the I/O port. After this step, the value 0x564D5868 is stored in EAX. This value corresponds
to the string ‘VMXh', which is the VMWare magic number.

Finally, the internal VMWare command is specified. In this case 0x0A is used, which
corresponds to the command to obtain information from VMWare.

i e =

Jdext:eed4ss43l

text: 88483431 loc_ 483431

Ldext:ee483431 ;00 try { // _ except at loc_48345E

Ltext: 88483431 and [ebptms_exc.registration.Trylevel], @
Ltext: 88483435 push eax

Ltext: 88483436 push ebx

Ltext: 88483437 push ecx

.text: 88483438 push edx

.text: 88483439 mov dx, 5658h ; hypervisor port
Ltext: 98483430 mov ecx, 5B640586Bh ; WMware magic number
Ttext:ee483442 mov eax, ecx lllustration 15 Check
text: 88483444 mov ecx, Bah ; Get version command
Ltewt: 88483448 mov [ebptvar_1C], ebx

Ltext: 88483440 mov [ebptvar_28], ecx

.text:88483458 pop edx

Jdext:ee483451 pop ECX

text: 88483452 pop ebx

Jtext:8ed483453 pop eax

Ltext:ea483453 } // starts at 483431

Ltext: 38483454 or [ebptms_exc.registration.Trylevel], @FFFFFFFFh
Ltext:Be483458 jmp short loc_483472

1 1
code: VMware

After performing the “in” instruction, the EBX and ECX registers will be modified.

In the EBX register the magic number of Vmware will be written, while in the ECX register
the value corresponding to VMWare products will be stored. The following values are known:
— 01h = Express

— 02h = ESX Server

— 03h = GSX Server

— 04h = Workstation

RAM memory size

If the previous check is passed, QakBot proceeds to obtain the size of the memory allocated
to the system. This check is performed, like the previous check, using the I/O port, but in this
case it uses the value 0x14 as the command. The resulting value will be stored in the EAX
register, to later perform a move to EBP. It is important to note that, if the previous check
does not detect that it is running in a VM and passes to this check, here it makes again use
of the 1/0O port, which would be a contradiction.

10/13

] =

text:eeda34CA

dextieadez4ch
Ltext:ee4834CA and
.text:884834CE push
text:B84834CF push
text:ea483408 push
Ltext: 868483401 push
Ltext: 88483402 mov
et 168483406 mov

LText:eeda34DE mov

LLextieeda34E3 mov
Ltext:ee4834E6 pop
Lexti8ed4834ET7 pop
Lext:884834E8 pop
Lfexti884834E9 pop
Ltext:ead4834E9

Ctext i eedB34EA or
.text:B84834EE jmp

Ltewt:@a4834CA loc_ 4B34CA:
_try { // _ except at loc_4834F4

Jtext: 88483400 mov ecx, 1dh ; Get memcl-a zize command

} // starts at 4834CA

[ebp+ms_exc.registration.TrylLevel], @
eax

ebx

eCx

edx

dx, 5658h

ecx, S564D5BEEh

eax, ecx

; hypervisor port
3 VMware magic number

lllustration 16 Check

[ebpt+var_1C], eax
edx
ecx
ebx
eax

[ebp+ms_exc.registration.TrylLevel], @FFFFFFFFh
short loc_483581

code: PC memory

QakBot will decide if it is inside a VM at this point by comparing the value stored in the EBP
register, which contains the size of the machine’s RAM, against the value 0x2000, which is
equivalent to 8192 in decimal. It means that, if the machine has less than 8 Gbytes of RAM,
QakBot will decide that it is in a virtual machine.

Ll 1) 55

Ltext:ee4e3580 cmp
Ltext: 8483514 ja

[ebpt+var_1C], 2888h
short loc_4@8351B

[ebp+var_1C]=[Stack[@eeeadFC]:8813FD18]
dd 56405868h

lllustration 17

il e =

Ltext: 88483516
.text: 88483518 loc 48351B:

ov eax, [ebptvar 1]
mp short loc_48351D
RAM size check

LText:88d48351B xor eExX, eax

Note that QakBot only performs this check if it has previously detected that it is not running in
a virtual machine using the VMWare 1/O port. However, it is curious that the malware uses
the VMWare 1/O port again during this check, as it should not be able to obtain a valid RAM
value when it is not running in a VMWare environment.

CPU Characteristics

For the last check QakBot will make use of the cpuid instruction. This instruction returns
different values based on the value stored in EAX. In this case an EAX xor operation is
performed on EAX, which results in a 0 always.

il s =

Ltext:eed4as317
text: 88483317 loc_483317:
Ltext:eed483317 xor eax, eax lllustration 18 Cpuid
Ltext: 88483318 mov [ebptSrc], ebx
Ltext: 8848331 mov [ebptvar_4], ecx
.text:88483321 mov [ebptvar _C], edx
instruction

When cpuid has a 0 as EAX value, it returns the CPU manufacturer, which is precisely the
target pursued by the malware in this step. Then, it performs three memcpy operations to
reorder the resulting string.

o LEXL DRI DL L I LEUETYdl]y EUX

Ltext: 88483324 push 4 ; Size
Ltext: 88483326 lea eax, [ebptsrc]
.text:88483329 push eax 3 Src
.text:88483324 push [ebpt+arg_ 8] ; woid *
.text:88483320 call ds:memcpy

text: 88483333 add esp, BCh

Ltext: 88483336 push 4 ; Size
.text: 88483338 lea eax, [ebptvar (]

.text: 88483338 push eax ; Src
Ltext: 88483330 mov eax, [ebptarg_ 0]
Ltext:8848333F add eax, 4

.text:88483342 push Eax ; woid * : : :
text:08463343 call ds:memcpy lllustration 19 memcpy instructions
Ltext: 88483349 add esp, BCh

Ltext:8848334C push 4 ; Size
.text:@848334E lea eax, [ebptvar 4]

.text: 88483351 push eax ; Src
.text: 88483352 mov eax, [ebptarg_ 0]

Ltext: 88483355 add eax, 8

.text:88483358 push Eax ; woid *
.text:88483359 call ds:memcpy

.text:8848335F add esp, @Ch

Ltext: 88483362 mov eax, [ebptarg @]

.text: 88483365 mov byte ptr [eaxt+8Ch], @
A ARARTI I EMN srme ——— ————

After the operations the final string will correspond to the CPU manufacturer of the system.
Once it has obtained this data, it moves the value 1 to EAX to call cpuid again. When cpuid
is called with EAX value 1, this operation returns the processor information.

.text:804833A1 call sub_ 483384

Ltext: 88483346 pop =l

Lhext: 88483347 mov eax, 1 : eax = 1 = CPU infel| |//lustration 20 Processor
Ltewt: 284833AC cpuid

Ltext:BB4833AE mov [ebptvar 4], ecx

information request

The information received in ECX after the execution of the cpuid instruction will always end
with a value of 0 in the case of a physical machine, but in the case of a virtual machine it will
be 1.

It should be noted at this point that for both VMware and VirtualBox system execution a
value of 3 is received, so that for both platforms it would be possible to bypass this check.

12/13

[l e 55

Ltext:@84833C4 cmp [ebptvar 4], 1 .
.text:@84033C8 jnz short loc_4@33E8 lllustration 21
[ebptvar_4]=[Stack[eeeealas] :@al5FD38]
db 3
i e 5= I

Return value for VMware

Conclusions

This analysis has focused on the anti-analysis capabilities employed by QakBot in order to
help overcome these obstacles before starting the analysis. The anti-analysis techniques
detailed here can be used by different malware, so it is very important to be aware of them.
However, it is important to note that this analysis is based on a specific sample of QakBot
malware, and there are various other families of malware that employ different anti-analysis
techniques that have not been covered in this report. These techniques may be explored in
future posts.

Regarding the analysis performed, it is also interesting to highlight the checks made by
Qakbot to detect if it is under a virtualized environment, as these checks only applyies to
VMWare software when using VMWare’s own 1/O port, and searching by its unique magic
number.

References

VMware Backdoor I/O Port

CPUID instruction reference

Windows Defender DB dump and VDLL's

13/13

https://sites.google.com/site/chitchatvmback/backdoor
https://c9x.me/x86/html/file_module_x86_id_45.html
https://www.kernelmode.info/forum/viewtopiccf27.html?f=13&t=5496

