
1/13

Bypassing Qakbot Anti-Analysis
lab52.io/blog/bypassing-qakbot-anti-analysis-tactics/

QakBot is a banking trojan that has been evolving since its first version was discovered in
2008. According to the 2022 report published by CISA, it was one of the most active variants
in 2021, and during 2022 and so far in 2023 it has remained quite active. Taking a brief look
at the latests news of QakBot it has been updating its tactics constantly, for example, using a
Windows zero-day to avoid displaying the MoTW or the most recent one, using OneNote
files to drop QakBot.

In this case we are particularly interested in the anti-analysis techniques used by QakBot
during the early stages of its execution. These techniques can make malware analysis
harder if they are not known, so learning to identify and bypass them is essential to get to
see the malware’s operation at its full potential. Furthermore, there are techniques that can
replicate / adopt different types of malware, so knowking them opens the door to the study of
different samples.

This article is structured according to the verifications carried out using the following sample,
focusing of those aspects that are most remarkable.

md5 58e1c32eeb0130da19625e55ee48cf1e

sha1 00ae1c5066f67e5e71285de99bea8d8b67085743

sha256 f5ff6dbf5206cc2db098b41f5af14303f6dc43e36c5ec02604a50d5cfecf4790

The following image summarizes the checks performed by QakBot before executing its
payload. This article is structured following this chain of checks, which corresponds to the
anti-analysis techniques used by the sample.

https://lab52.io/blog/bypassing-qakbot-anti-analysis-tactics/
https://www.splunk.com/en_us/blog/security/cisa-top-malware-summary.html
https://www.bleepingcomputer.com/news/security/new-attacks-use-windows-security-bypass-zero-day-to-drop-malware/
https://www.bleepingcomputer.com/news/security/how-to-prevent-microsoft-onenote-files-from-infecting-windows-with-malware/

2/13

Anti-analyis checks performed

by Qakbot

Windows Defender

At the beginning of the program execution, QakBot will perform a first inevitable check since
this sample is intended for Windows systems: to verify if Windows Defender is active.
QakBot will perform this check by searching for representative files.

llustration 1 Call to the first

check function
Inside the function we can observe a mov to the EAX register and then a call to a function
used recurrently during the whole execution of the program. This function has been renamed
to mw_decode since its objective is to decode text strings, taking the EAX register as
parameter and performing the XOR operation.

3/13

Illustration 2 Call to mw_decode

Illustration 3 mw_decode

content
After performing all iterations of the loop, the decrypted string is visible when looking at the
address of the ECX register. During all the checks performed by QakBot, this behavior can
be seen.

In this case, the string refers to Windows Defender, since it is part of the empty files created
by this utility.

4/13

Illustration 4 Decrypted string related to

Windows Defender: C:\INTERNAL_empty

From here, taking the value C:\INTERNAL_empty as a parameter, it makes a call to the
function GetFileAttributesA of the Windows API. Then, checks if this file already exists in the
system.

This check is made to know if Windows Defender is present in the system, since the file
C:\INTERNAL_empty is part of the files that Windows Defender creates.

Illustration 5 Call to GetFileAttributesA with representative string
In case, after making the API call, it detects that the Windows Defender-related file is present
in the system, the sample execution will be stopped. Otherwise, QakBot will continue with its
execution, to continue with the checks.

Representative processes in execution

5/13

The next check is on the system processes. The main objective is to evaluate if there is any
security application that can be used to detect or to anlyse malware, such as antivirus
applications or applications used by reserarchers, or in sandboxes. In order to do so, Qakbot
analyses the list of process and compares it with known representative names of processes.

The first thing Qakbot will do is to load several hexadecimal values.

Illustration 6 Loading values in hexadecimal

As mentioned before, mw_decode will continue to be used to decode the strings used by
the malware, so the hexadecimal value 0x621, seen before at the start of the function, is
saved in the EAX register.

Illustration 7 Call to mw_decode with value 0x621

entered as a parameter
After calling the function in charge of decrypting the strings, it will start a loop to obtain all the
processes names for which it will check their existence in the system.

For example, the following image shows a list of processes subject to check with the names:
avgcsrvx.exe, avgsvcx.exe and avgcsrva.exe. These are representative processes of AVG
Free Antivirus.

https://www.avg.com/es-es/homepage#pc

6/13

Illustration 8 Some names of processes that will be checked
Once it has the strings to check, to obtain the first running process in the system it proceeds
with calls to the CreateToolhelp32Snapshot and Process32First functions.

Illustration 9 Calls to

CreatToolhelp32Snapshot and Process32First
Qakbot then checks if the processes names obtained above match any currently active
process in the system.

7/13

Illustration 10 Iteration to compare processes names
It will perform this operation with all the processes, if any of them is equal to the ones it has
defined, it will terminate the execution. In particular, the following processes names have
been found to be subject to analysis. They are ordered with relation to the type of application
in the following table.

Type Name of process

Antivirus Avgcsrvx.exe Avgsvcx.exe Avgcsrva.exe ccSvcHst.exe MsMpEng.exe
mcshield.exe Avp.exe kavtray.exe Egui.exe ekrn.exe Bdagent.exe
Vsserv.exe vsservppl.exe AvastSvc.exe coreServiceShell.exe
PccNTMon.exe NTRTScan.exe SAVAdminService.exe SavService.exe
fshoster32.exe WRSA.exe Vkise.exe Isesrv.exe cmdagent.exe
ByteFence.exe MBAMService.exe mbamgui.exe fmon.exe Dwengine.exe
Dwarkdaemon.exe dwwatcher.exe bds-vision-agent-nai.exe bds-vision-
apis.exe bds-vision-agent-app.exe

Malware
Analysis

Fiddler.exe lordpe.exe regshot.exe Autoruns.exe Dsniff.exe
HashMyFiles.exe ProcessHacker.exe Procmon.exe Procmon64.exe
Netmon.exe pr0c3xp.exe ProcessHacker.exe CFF Explorer.exe
dumpcap.exe Wireshark.exe idaq.exe Idaq64.exe ResourceHacker.exe
MultiAnalysis_v1.0.294.exe x32dbg.exe Tcpview.exe OLLYDBG.EXE
windbg.exe samp1e.exe sample.exe runsample.exe

Virtualization
Environments

VBoxTray.exe vmtoolsd.exe vm3dservice.exe VGAuthService.exe
TPAutoConnect.exe vmacthlp.exe VBoxTray.exe VboxService.exe

As anticipated, this point groups together checks involving both user protection and analysis
tools. It is to be expected that successive versions of QakBot will update the previous list.

If QakBot does not find any process with the above names, it continues its execution with the
next check.

Modules

8/13

If it passes the above check, it will make use of the Module32First and Module32Next APIs
to get all the modules for each of the processes in the system.

Illustration 11 Use of Module32First
If any of the system modules contain the string ivm-inject.dll or SbieDll.dll it will terminate
its execution.

Illustration 12 String ivm-inject.dll

Illustration 13 String SbieDll.dll

9/13

The names of the DLLs have been identified as part of the Sandboxie program, used to run
programs in isolated environments. If any program uses these modules, it could be an
indication that this analysis tool is on the system, and QakBot would stop its execution.

It is worth noting, for example, that the Sandboxie-Plus version could incorporate utilities to
hide the presence of SbieDll.dll.

Characteristic names given to the sample

Analysts have some habits that QakBot will check. In this case, it will check if in the name of
the binary itself (the malware) is present any of the characteristic strings that could be used
by analysts to rename the sample, before its execution, such as “sample”, “mlwr_sm”,
“artifact.exe”. Again, these strings will be observed after the execution of mw_decode.

Illustration 14

String sample
If any of these strings are found as part of the filename, it will stop the execution of the
program. In addition, this check is not case-sensitive, i.e. it does not distinguish between
upper and lower case.

It is curious, for example, that it does not also check that the name of the binary may
correspond to a sha256 pattern, since samples downloaded from platforms such as
VirusTotal or other systems retain in their name the hash of the binary, which the analyst may
or may not rename.

Anti-VM Techniques

QakBot performs specific checks to determine if it is running in a virtual environment. These
checks are described below.

VMware version

The malware will evaluate whether it is running within a VMWare virtual machine. To do that,
QakBot will make use of a special VMWare I/O port. In particular, the verification at this point
focuses on the port used by the official VMWare tools to perform the communications.

VMWare uses I/O port 0x5658 to communicate internally with the deployed virtual machines,
so the first step executed by QakBot is to save in the DX register the value corresponding to

https://sandboxie-plus.com/sandboxie/
https://github.com/sandboxie-plus/Sandboxie

10/13

the I/O port. After this step, the value 0x564D5868 is stored in EAX. This value corresponds
to the string ‘VMXh‘, which is the VMWare magic number.

Finally, the internal VMWare command is specified. In this case 0x0A is used, which
corresponds to the command to obtain information from VMWare.

Illustration 15 Check

code: VMware
After performing the “in” instruction, the EBX and ECX registers will be modified.

In the EBX register the magic number of Vmware will be written, while in the ECX register
the value corresponding to VMWare products will be stored. The following values are known:

– 01h = Express

– 02h = ESX Server

– 03h = GSX Server

– 04h = Workstation

RAM memory size

If the previous check is passed, QakBot proceeds to obtain the size of the memory allocated
to the system. This check is performed, like the previous check, using the I/O port, but in this
case it uses the value 0x14 as the command. The resulting value will be stored in the EAX
register, to later perform a move to EBP. It is important to note that, if the previous check
does not detect that it is running in a VM and passes to this check, here it makes again use
of the I/O port, which would be a contradiction.

11/13

Illustration 16 Check

code: PC memory
QakBot will decide if it is inside a VM at this point by comparing the value stored in the EBP
register, which contains the size of the machine’s RAM, against the value 0x2000, which is
equivalent to 8192 in decimal. It means that, if the machine has less than 8 Gbytes of RAM,
QakBot will decide that it is in a virtual machine.

Illustration 17

RAM size check
Note that QakBot only performs this check if it has previously detected that it is not running in
a virtual machine using the VMWare I/O port. However, it is curious that the malware uses
the VMWare I/O port again during this check, as it should not be able to obtain a valid RAM
value when it is not running in a VMWare environment.

CPU Characteristics

For the last check QakBot will make use of the cpuid instruction. This instruction returns
different values based on the value stored in EAX. In this case an EAX xor operation is
performed on EAX, which results in a 0 always.

12/13

Illustration 18 cpuid

instruction
When cpuid has a 0 as EAX value, it returns the CPU manufacturer, which is precisely the
target pursued by the malware in this step. Then, it performs three memcpy operations to
reorder the resulting string.

Illustration 19 memcpy instructions

After the operations the final string will correspond to the CPU manufacturer of the system.

Once it has obtained this data, it moves the value 1 to EAX to call cpuid again. When cpuid

is called with EAX value 1, this operation returns the processor information.

Illustration 20 Processor

information request
The information received in ECX after the execution of the cpuid instruction will always end
with a value of 0 in the case of a physical machine, but in the case of a virtual machine it will
be 1.

It should be noted at this point that for both VMware and VirtualBox system execution a
value of 3 is received, so that for both platforms it would be possible to bypass this check.

13/13

Illustration 21

Return value for VMware

Conclusions

This analysis has focused on the anti-analysis capabilities employed by QakBot in order to
help overcome these obstacles before starting the analysis. The anti-analysis techniques
detailed here can be used by different malware, so it is very important to be aware of them.
However, it is important to note that this analysis is based on a specific sample of QakBot
malware, and there are various other families of malware that employ different anti-analysis
techniques that have not been covered in this report. These techniques may be explored in
future posts.

Regarding the analysis performed, it is also interesting to highlight the checks made by
Qakbot to detect if it is under a virtualized environment, as these checks only applyies to
VMWare software when using VMWare’s own I/O port, and searching by its unique magic
number.

References

VMware Backdoor I/O Port

CPUID instruction reference

Windows Defender DB dump and VDLL’s

https://sites.google.com/site/chitchatvmback/backdoor
https://c9x.me/x86/html/file_module_x86_id_45.html
https://www.kernelmode.info/forum/viewtopiccf27.html?f=13&t=5496

