South Korean Android Banking Menace — FakeCalls

research.checkpoint.com/2023/south-korean-android-banking-menace-fakecalls/

March 14, 2023

cp<r>

CHECK POINT RESEARCH

Research by: Bohdan Melnykov, Raman Ladutska

When malware actors want to enter the business, they can choose markets where their profit
is almost guaranteed to be worth the effort — according to past results. The malware does not
need to be high profile, just careful selection of the audience and the right market can be
enough.

This “stay-low-aim-high” approach is what the Check Point Research team saw in our
recent Android malware research. We encountered an Android Trojan named FakeCalls, a
malware that can masquerade as one of more than 20 financial applications and imitate
phone conversations with bank or financial service employees — this attack is called voice
phishing. FakeCalls malware targeted the South Korean market and possesses the
functionality of a Swiss army knife, of being able not only to conduct its primary aim but also
to extract private data from the victim’s device.

Voice phishing attacks have a long history in the South Korean market. According to

the report published on the South Korean government website, financial losses due to voice
phishing constituted approximately 600 million USD in 2020, with the number

of victims reaching as many as 170,000 people in the period from 2016 to 2020.

1/22

https://research.checkpoint.com/2023/south-korean-android-banking-menace-fakecalls/
https://www.data.go.kr/data/15063815/fileData.do
https://it.chosun.com/site/data/html_dir/2020/09/28/2020092802480.html

We discovered more than 2500 samples of the FakeCalls malware that used a variety of
combinations of mimicked financial organizations and implemented anti-analysis (also
called evasions) techniques. The malware developers paid special attention to the
protection of their malware, using several unique evasions that we had not previously seen in
the wild.

In our report, we describe all of the encountered anti-analysis techniques and show how to
mitigate them, dive into the key details of the malware functionality and explain how to stay
protected from this and similar threats.

Voice phishing

Before we get to the technical details, let’s discuss how voice phishing works in the example
of FakeCalls malware.

The idea behind voice phishing is to trick the victim into thinking that there is a real bank
employee on the other side of the call. As the victim thinks that the application in use is an
internet-banking application (or payment system application) of a real financial institution,
there is no reason to be suspicious of an offer to apply for a loan with a lower interest rate —
which is fake, of course. At this step, the malware actors can lay the necessary groundwork
to understand how to approach the victim in the best way possible.

At the point where conversation actually happens, the phone number belonging to the
malware operators, unknown to the victim, is replaced by a real bank number. Therefore, the
victim is under the impression that the conversation is made with a real bank and its real
employee. Once the trust is established, the victim is tricked into “confirming” the credit card
details in the hope of qualifying for the (fake) loan.

This is the principal scheme of the attack:

2/22

e

Malware operators
can make necessary
preparations

W

Malware app imitating Fake loan offer inside with
e-banking app lower interest rate

Phone number of Victim “confirms” the «R 4 £
criminals replaced with credit card data hoping to , eward for
a real bank number get a loan malware operators

Image 1 — The key steps of a voice phishing attack.

Targeted financial institutions are selected from amongst the largest and most prominent
ones in the banking sector: strong repay capacity ratings as evaluated by the South Korean
government and major world agencies, with billions of South Korean Won (KWR) revenue
(equal to millions of the United States dollar (USD). Mimicking applications from such
companies increases the chances of attracting suitable victims.

When victims install the FakeCalls malware, they have no reason to suspect that some
hidden catches are present in the “trustworthy” internet-banking application from a solid
organization.

At step 2 of voice phishing attack, instead of a phone conversation with a malware operator,
a pre-recorded audio-track can be played imitating instructions from the bank. Several
different tracks are embedded into different malware samples corresponding to different
financial organizations.

One way or another, malware operators get the private financial data of the victim which
means that the aim of attack is achieved successfully.

Technical details

In this section we describe the anti-analysis techniques as well as the process of dropping
the final payload and the details of FakeCalls’ network communication.

Anti-analysis techniques

3/22

There are three unique anti-analysis techniques encountered in different malware samples
that we did not observe previously in the wild. We took the following malware sample and
analyzed all three evasions we encountered inside:

18823780d2822307e€995528bd7a34a1735e66bd2fe22404e02053ch92b0a56¢ch

If you try loading such a sample into analysis tools, they fail, as shown on this JEB Pro
example:

Image 2 — FakeCalls failed to load in JEB Pro.

Let’s dissect and mitigate each of the anti-analysis techniques one by one, to finally be able
to load and analyze the malicious payload.

Multi-Disk

The first evasion is called “Multi-Disk.” We clearly understand that APK cannot be split into
multi-disk archives, so we check this information in the APK by analyzing the ZIP header
data.

The necessary entry is the central directory file header. The end of this
record EOCD contains information about disk count.

Offset Bytes Description

0 4 End of central directory signature = 0x06054b50

4 2 Number of this disk (or Oxffff for ZIP64)

6 2 Disk where central directory starts (or Oxffff for ZIP64)

8 2 Number of central directory records on this disk (or Oxffff for ZIP64)

4/22

https://docs.fileformat.com/compression/zip/#end-of-central-directory-record

Offset Bytes Description

10 2 Total number of central directory records (or Oxffff for ZIP64)

12 4 Size of central directory (bytes) (or Oxffffffff for ZIP64)

16 4 Offset of start of central directory, relative to start of archive (or Oxffffffff
for ZIP64)

20 2 Comment length (n)

22 n Comment

EOCD marks the end of ZIP so the needed byte sequence can be found at the end of the
file:

f8523780d2822307e995528bd7a34al1735e66bd2fe22404e02053ch92b0a56ch* x

.1.META-INF/KDB.
SFPK 3

TA-INF/MANIFEST.
MWFPK...®.f-.3.r.
..BI.L ..

Image 3 — Selected sequence at the end of the file.
The processed struct looks like this:

* struct ZIPENDLOCATOR endlLocator

uint elDi
ushort elCommentLength

Image 4 — Values of the structure fields.

Based on the very large values in the disk number fields, we understand that malware
developers edited these fields and entries. This means that the disk numbers should be set
to 0, and the disk entries to the value equal to the directory entries: 1075.

AndroidManifest

5/22

The second evasion goes by the name “AndroidManifest.” The AndroidManifest file must
start with specific magic numbers (0x00080003 or 0x00080001) but our file starts from
0x00080000.

AndroidManifest.xml x

pﬂ 00 08 0O 58 28 00 00 01

28 00 l-j: 0 00 54 E; IZZ 00 00 ;1[: 0 :EI IE: :EI .EH:E:- 5E 00 00 I-IZ :EI ._ o
Image 5 — Magic number at the beginning of the AndroidManifest file.

Besides the magic number, the file contains other things that break the decoding process.

00 00
00 00

00 0
00 00
3 00 00
04 00 O
05 00 0
droidManifest.bt
Name
CHUNK stringChunk

fset 376
uint scStylePoolOffset 4269912320
Image 6 — Values of the fields in the STRINGCHUNK structure.

int s

The value of the scStylePoolOffset field points from the actual AndroidManifest file. Based
on the scStyleCount field, we see that file shouldn’t contain “styles”, and the value of this
field should be 0x00000000. The next thing we look at is scStringCount. The value here
looks normal, except for the moment when string analysis occurs. The image below informs
us that the offset of the last string is pointing out of the file.

6/22

(%]
o
on
fd

DC 11
7C 12
0A 13
DC 13
03 00 7
6C/ 00 61 O 2 00 65 00

00 00 00 0 6E 00 61 00 6D

%]
-
on
fd

|- R Y
=

[
oo

) b
uint scStringOffsets[87] 7602181
struct STRING_ITEM stritem[0] theme
Image 7 —Wrong last string offset in the array.

We see that the string “theme” is wrongly interpreted as an offset value in the last element of
the array, number 87. This means that the value of the scStringCount should be less by 1,
i.e., set to 86.

Files

The third and the final evasion is called simply “Files.” This technique is related to the files
inside the APK.

Name
+ ™7 assets
~ P ageivghhbKc7nQ13jfHIbP
= P tPxZFzmZjDbUFSuA4tXd8Df4pGVFOQbgS01QCZW30V3DmEwWIZPNQpLA1)DKOOROECS0q209EH4NMKNStkKRkcw2tkOh90XojWzbrgftkRiivy1r7wgqZe
~ 7 zBgdGg2HOPVPeBKLAMIGGEANGELTkN|Bki795nL 9COREXQUAGWVAUYFVH3ILXjwWHXFEFmRMMgZ 3XA00MAMZ2GowOLBbQUIsr62LlyS5PJCNOMJhdSO4HI4)js4WQGMSHM2
= ™7 pPnoskTelxbcuos
& sVUbOcb
™ ajmisjfgllcf7DMTsHZHLgblquBOENEXNLTVelfRIBXScc1KmYBBqT2D2loyzoWYSTYvH20gBhOKEgioDxXQmcgEUD447SruP98ucFdvkuOiUROVE
] bbkxqdh7DwbryxMIfStqSLk2riByvyXQ5s04FKTNWTzmho
= 7 bhgurkkjlAQtzQoDfjTgje006Q8
+ 7 wvdesjhjzo
= ™7 tisK0uSOuqATn
» P HuyBp2
= ™7 ByRYxmM0JeLC)zI1E0Q0QOU7cOEIZUSOWO3jLXNigkVIOgPLO44MKOUYPVWHS Ab0x8Q)HypSnHhG 3IgWI3n60gdiQfF 0bgAQi6 2 3KgeKOmycGZShP
~ 7 vDng0q414C4z0hhCy TTolfZNrOS
+ B M2kylbVKDc7)9cmMQoGréeBIyAZqbKZwi3T7csGoPwHIV
= P kpj3machefiBlovmF)3nK
= P fkuk

1 15zff8olQxZNWphYzMgG

™7 bingzcholB6fCnOOVWEShmHBtbDI9S2ItDEAWTMiHp3)qdk9wxxvGBXKv7 NkjvKyX0TSdBcux3Qsivvza
7 bstpyldijjlXxbCvpmBonreFhg

™7 cagiahxoKfuQsC2FxULGICMhIDK

™7 ckhpdijb

7/22

Image 8 — Files inside the APK.

Developers added a large number of files inside nested directories to the asset folder. As a
result, the length of the file name and path is over 300 characters.

E5/ D1 98

4B 03 04

DA B2 00 O

65 74 73 5

49 30 32 6 - L 48 & 6F 78 37 I02nPPspTJHGvox7
71 76 BA 6 6F 2F 65 6 34 gvjdP1Ylo/suZemn4d
37 62 63 50 37 B¢ L 4 2 2] 7bcP7iiKUjE9/rot

Template Results - ZIP.bt o

nprawmj0jWPICUTQRZbyew1P2KOWP

rid2nPPspT]H

ort frExtraFieldLength

Image 9 — Length of the file name (selected in the screnshot).

These files break the logic of tools that cannot remap file locations and may fail during APK
decompilation. However, after all the previous fixes, such files can be manually removed
from the APK as they are not required anymore.

In the end, the resulting APK file can be processed inside typical analysis tools.

8/22

femp/fixed.apk - JEB Pro
File Edit MNavigation Action Android Native Debugger Window Help

= |/ a e

"1, Project Explorer # Bytecode/Disassemb

Bytecode/Hierarchy
t

» 1 android

& roundview

) & Color
€ BuildConfig

% Level: INFO

Image 10 — FakeCalls successfully loaded in JEB Pro.

Inside the malware

FakeCalls payload is not launched at once. Instead, the dropper is used as an intermediate
step.

Dropping process

The malware registers BroadcastReciever for the application installation events. This
receiver launches the dropped APK later in the process.

9/22

AppInstallReceiver

AppInstallReceiver() {
= : e

(context@,
(intento. {5
s = intent@. ().
(MainActivity.
(MainActivity.
s1 = MainActivity.
MainActivity.
MainActivity. . (¥

(intent@.
intent®.

(intent®.
intent®.

(

intent®) {

{5
()) & (MainActivity.
, 0). {);
(MainActivity. HE
» S1);

(s))) {

Image 11 — Function with the BroadcastReciever register functionality.

Then malware shows a button to click to start the payload installation.

Image 12 — Button saying “Click Install Setup” in Korean.

The APK is located inside the asset folder and is copied during the process of loading the
view components.

11/22

ApkDownloadAsyncTask

AsyncResponse

ApkDownloadAsyncTask(context®, AsyncResponse asyncResponsef) {
ncTask. . (};

inputStreamé =

stringBuildere =
stringBuilder®. (.
stringBuilder®. | }i
ile (stringBuilder®.

(1 {

stringBuilder®. (s5);
filel = (stringBuildera. ()
(filel. ()
LA . + stringBuilder®.
filel.

Image 13 — Code responsible for copying the APK.

When the payload is successfully dropped, the malware launches the application with the
configuration that it gets during the runtime.

12/22

+ 5);

intente = . (}. (MainActivity.

) 1

bundled =

, SharedPreferencesUtils.
) }i

(bundled);

(intente®, v);

exceptiong) {

\ + exception®.

Image 14 — Setting up the parameters when launching the application.

Live stream capture

FakeCalls malware also has a possibility to capture live audio and video streams from the
device’s camera to C&C servers with the help of open source library:
https://github.com/pedroSG94/rtmp-rtsp-stream-client-java

The command processing method has a command called “stream”:

13/22

https://github.com/pedroSG94/rtmp-rtsp-stream-client-java

(s. (
NodeManager. (]SONObjecta.

(5. (
Logger.a(

(1A
NodeManager.h(jSONObject®.

r

VideoService.

Image 15 — Option in the code enabling capture of live streams.

The corresponding method starts an audio or video service, or stops them, depending on the
“state” variable value received from the C&C server.

14/22

5;
Logger. + V);
(v=3){
NodeManager.a. (NodeManager.z, AudioService.
NodeManager.=. (NodeManager.a, VideoService.
AppStart.d =
AppStart.i = 1;

(AppStart.
Logger.a(

}

AppStart.d = 3;
NodeManager.z. (NodeManager.a, AudioService.
NodeManager.=. (NodeManager.a, VideoService.

(v=20){
(d1.b(AppStart.
AppStart.d = 3;
7. ():

(v==1){

NodeManager.a. (NodeManager.a, AudioService.

(v=2){
NodeManager.z. (NodeManager.a, VideoService.

AppStart.d = 0;
g5 = ;

}

NodeManager.
AppStart.i1 = 1;

Image 16 — Code to capture live streams.

Upon the creation of video service, the RtspCameraZ2 object is initialized by setting the
authorization details and audio/video configuration (bitrate, fps, noise cancellation, etc.).

) {

VideoService. RtspCamera2 |

('VideoService.
VideoService.
VideoService.
VideoService.

Image 17 — Initialization of RtspCamera2 object.

Then the malware selects the front camera and starts streaming to C&C server which will be
stopped after 5 minutes.

Image 18 — Code lunching live streaming to C&C server.

FakeCalls may receive a command from C&C server to switch the camera during the live
streaming.

Network communication

The malware developers implemented several ways to keep their real Command-and-
Control (C&C) servers hidden: reading the data via dead drop resolvers in Google Drive or
using an arbitrary Web server. Dead Drop Resolver is a technique when malicious content is
stored on legitimate web services. Inside malicious domains and IP addresses are hidden to
disguise the communication with real C&C servers. We have identified more than 100 unique
IP addresses by processing the data from dead drop resolvers.

Google Drive

16/22

The first variant is reading the configuration via Google Drive: the malware contains an
encrypted string with a link to Google Drive where the file is stored.

Image 19 — Link to Google Drive inside the FakeCalls malware.

The name of the file is encrypted with AES.

01
Document document® = Jsoup. (URL.
(documente 1=) {
(object@: document®.
s = ((Element)object@).

(s)) {

arr s = s. e H
== || arr s.

s1 = AESUtils. (f
(s1)) {

[1 arr s1 = sl.
(arr s1 =) {

v
(v =0; ;o ++v) {
(v >= arr sl.) {

}

52 = arr sl[v];
(! c (s2)) {
[1 arr s2 = s2, ()
(arr s2 1= &% arr s2. . (arr s2[0]1))) {
URL. (arr s2[1]);
JVBaseActivity.

}
}

SwwUS2W1+9mjbH195Q5RykGMTPQMIOB+L9R+qJgHemxHe JZPUDBEIqujmOSUKbUIVEAetwdhnjlzvxlACuTuZIm5jFn7SEA fuZt6nABApbBs69xFbXRBpPSVISApIOM3KjIV... - O

A fwwUS2W1+9mjbH19sQ " X +

&« C & drive.google.com ©@ % A » O @ incognito

Y MwUSZW1+9mjbH19sQ5RykGM7POMIOB+L9R +glgHemxHe JZPUOBt2qujmOsLl ... 2QP3YPATCZXLtxOOdEQYShs A XmHNRIUTPMS SVEXfDmelotiThGmQBBpig== &, H Signin

No preview available

&, Download

Image 20 — The code to get the encrypted file name from Google Drive.

x

After reading the file name, FakeCalls decrypts it with a hardcoded AES key and gets the
real C&C configuration:

SERVER1_156.245.21.38-SERVER2_156.245.12.211-SERVER3_154.38.113.162-
SERVER4_154.197.48.72-SERVERS_154.197.48.125-SERVERG_154.197.48.195-
SERVERY7_206.119.82.78-SERVERS8_154.23.182.63-SERVER9_154.197.48.93-
SERVER10_154.197.48.212-SERVERLK_127.0.0.1

Fetch from alternative

The other variant to communicate with C&C servers is when the malware has hardcoded an
encrypted link to a specific resolver that contains a document with an encrypted server
configuration.

We used the following sample for the analysis of this network communication method:
4a422047bc0a2ca692b33a80740ab64a5bbc325¢348d3d4eeal0f304d3c256e03

Image 21 — The code to perform a request to the arbitrary C&C resolution server.

$ curl https://www.daebak222.com/huhu/admin.txt

{
“a01”: “eWVIYWIrPjSmZmY_dXB0c3B6lyMjP3J-fA==",

“p05”": “Y2ViYWIrPj4gICl_lyAjPykpPyAIKSspliMjPn14Z3Q=",
“a07”: “eWVIYWIrPj4gKSM_ICc_JSM_ICkrJCEkJDS5ZHIkPnB1fHh_P2VpZQ=="

}

The first element is a new server address, the second one is the address of a stream server
used for live streams capture, and the last one is a link to a new dead drop resolver.

The malware decrypts all the data pieces and stores them for future use:

18/22

StringUtils {
(

[1 arr b .
(v =0; v<arrb. -
arr b[v] (y{arr b[v]

(arr b,

Image 22 — The code for decrypting the information received from the server.

Protections

Check Point’'s Harmony Mobile Prevents malware from infiltrating mobile devices by
detecting and blocking the download of malicious apps in real-time. Harmony Mobile’s
unique network security infrastructure — On-device Network Protection — allows you to stay
ahead of emerging threats by extending Check Point’s industry-leading network

security technologies to mobile devices.

Threat Emulation Protections

e Banking.Andorid.FakeCalls. TC.*
o FakeCalls.TC.*

Conclusion

In the FakeCalls malware case, the developers decided not to leave any aspect of their
operations to chance. They selected a profitable voice phishing market in South Korea
where past results proved to bring tremendous value for cybercrime operators, harvesting
approximately 600 million USD from unsuspecting victims in 2020. The coverage of 170,000
victims in the period of 5 years from 2016 to 2020 only added fuel to the mix.

But the story did not stop there. The malware developers took special care with the technical
aspects of their creation as well implementing several unique and effective anti-

analysis techniques. In addition, they devised mechanisms for disguised resolution of

the Command-and-Control servers behind the operations.

This case shows the utmost importance of researching malware that is active in just a single
country out of almost 200 in the world. The tricks and approaches used in this particular
malware can be re-used in other applications targeting other markets around the globe.
There is no physical distance in a digital sphere, the information spreads rapidly and we
must react quickly in an ever-changing malware landscape.

19/22

https://www.checkpoint.com/harmony/mobile-security/mobile/
https://www.checkpoint.com/quantum/maestro-hyperscale-network-security/

The Check Point Research team stays vigilant and ready to adapt to the upcoming

challenges.

I0OCs

Hashes

The list of hashes below is not excessive by any means:
0e26be5dbdc3656b09cc6d7d231b2285a7e52a4dc42c63021b57ee40b9694134
2b003f6638b56a56bc4f59058fc5b8e0cabf34b79b83145fe9d80a5653ee2c85
2fc09a2a0426e1fca7d9675c2f1734e36b3a13c260044ee70a7893419ab1bbe2
3038c7a9c170e974421c5389echb24f1e27{f9ba178e6f7f4929e5c54cac0c658
39c¢7f217e55809b762b998198f6ae1e30ed87f0838f8e01e3fd838a77831bd3d
497b9561e84e5bab365fd5283d45f6¢c76555€89c0b0dc57a91b338bf30ab1a54
49c460158f23d12200488612242d2b8f50fdad38d5edb006e8c3a90b8005172¢
4a422047bc0a2ca692b33a80740ab64a5bbc325¢c348d3d4eealf304d3c256e03
522b4b565f34309713497d5fa2bfb6aad403cf7547c1ba2c114fc59fa8252b472
65e875b1eed232e462cb654b110a895e2c87d420c9ef21a53683e27bcbefbect
76b94289ad36015d91e26ef1298fc04cabf7ad7be1fe2d07ecf8a12be20996f3
7d55250d76fcc3006a7cb727ba7521e0f17f8fd9311cf799442b1a737702a028
834e678c8bb755d6bd21a886a39fea19613fd80a3894e4d6ddff3652170a0464
97d20d26826a83de014b6711b87f18a98464e07b6ebc3a0480e4007d2f47e603
b7ee5e7a4b9937e5fd9eebed01eabc36b22c8c6931e63f934bbdb961346169b3
cbcffbf761b644f20486f7164a3b97a7c083dfcd774ed0ebbbcd6109fd6c47e1
cc4dcbafeb91ef2ad364cda511777b888ad4ba9a90ae49e9181494b2ff32d50ed
db9d55a7b05253fd7367c5fa25d07d6962c1a9b58a136f76¢c7ef236ad2aec94b

de743563f41553f47bb7073ac28ed4d79e1a4031b3da732497805aa8a29794 3f

20/22

f8823780d2822307e995528bd7a34a1735e66bd2fe22404e02053cb92b0a56¢b

Sample with all the evasion techniques described (also included Google Drive dead drop
resolvers):
f8823780d2822307€995528bd7a34a1735e66bd2fe22404e02053cb92b0a56¢ch

Sample with the arbitrary CnC resolution method:
4a422047bc0a2ca692b33a80740ab64a5bbc325¢c348d3d4eeal0f304d3c256e03

Sample with video stream functionality:
e8396aa5cccd30478e8fd0cf959ee996b6b727531bdece1ed63482b053¢c24004

URLs

The full list of dead drop resolvers:
https://drive.google.com/file/d/1L7 CMBivSNLIrCxmUpkXRZcyFgbgmcKy5/view?usp=sharing

https://drive.google.com/file/d/1HZg40qw7DGgl2HT6ZuGkKLkf5a0DnaBT/view?
usp=share_link

https://www.daebak222.com/huhu/admin.txt
https://182.16.42.18:5055/huhu/admin.txt
http://182.16.42.18:10102/Teamviewer/admin.txt
http://182.16.42.18:10102/HanaBank/admin/admin.txt
http://182.16.42.18:10102/HanaBank/admin.txt
http://192.168.99.186:5000/admin. txt
http://192.168.99.33:5055/admin.txt

http://192.168.99.191:5055/admin.txt

Sources

1. National Police Agency. Status of voice phishing
/I https://www.data.go.kr/data/15063815/fileData.do

2. Voice phishing damage of 1.7 trillion won over the past 5 years... 170,000 victims
/I https://it.chosun.com/site/data/html_dir/2020/09/28/2020092802480.html

3. End of Central Directory Record // https://docs.fileformat.com/compression/zip/#end-of-
central-directory-record

21/22

https://www.data.go.kr/data/15063815/fileData.do
https://it.chosun.com/site/data/html_dir/2020/09/28/2020092802480.html
https://docs.fileformat.com/compression/zip/#end-of-central-directory-record

4. rtmp-rtsp-stream-client-java library // https://github.com/pedroSG94/rtmp-rtsp-stream-

client-java

22/22

https://github.com/pedroSG94/rtmp-rtsp-stream-client-java

