Using Memory Analysis to Detect EDR-Nullifying Malware

@ volexity.com/blog/2023/03/07/using-memory-analysis-to-detect-edr-nullifying-malware/

March 7, 2023

by Paul Rascagneres, Volexity Volcano Team

VOLEAITY // INTELLIGENCE

Using Memory Analysis to Detect
EDR-Nullifying Malware

e "AVBurner” uses BYOVD technique to
interact with kernel memory space

e Specific callbacks are patched for "
targeted security solutions

 Memory analysis can generically
detect tampering of kernel callbacks

In the ever-changing cybersecurity landscape, threat actors are forced to evolve and
continually modify the tactics, techniques, and procedures (TTPs) they employ to launch and
sustain attacks successfully. They are continually modifying their malware and command-
execution methods to evade detection. The attackers in these cases are attempting to get a
step ahead of security software at the most basic level.

However, some techniques take a different approach, aiming further up the stack and directly
taking on security software. The most brazen methods involve leveraging various tools that
directly terminate or shutdown security software. If successful, this method is effective at
giving an attacker free reign on a system. However, it comes at the potential cost of alerting
users or administrators that the software unexpectedly stopped reporting or was shut off.
What about a technique that potentially flies a bit more under the radar?

In November 2022, Trend Micro published a blog_post related a Chinese APT threat actor
they called “Earth Longzhi”, and that Volexity tracks as “SnakeCharmer”. One tool Trend
Micro described, dubbed “AVBurner”, used a technique to patch process-creation callbacks
in kernel memory to nullify security software running on a victim system. The end result: the
security software would appear to be running fine, but in reality, it was neutered and

1/12

https://www.volexity.com/blog/2023/03/07/using-memory-analysis-to-detect-edr-nullifying-malware/
https://www.volexity.com/wp-content/uploads/2023/03/Volexity-Memory-Analysis-AVBurner-Header-Graphic.png
https://www.trendmicro.com/en_us/research/22/k/hack-the-real-box-apt41-new-subgroup-earth-longzhi.html

rendered useless. When successful, this approach allows an attacker to carry on their
operations with little risk of being detected as a result of the security software. While there
are several documented cases of attackers patching these callbacks, this particular
technique leveraged by SnakeCharmer and others lends itself to specific methods of
detection by way of memory analysis.

Volexity conducted research and testing to determine ways this technique of attacking
endpoint detection and response (EDR) and antivirus (AV) software could reliably be
detected through memory analysis. This blog:

o Examines the technique used by AVBurner, building upon the Trend Micro blog.

e Provides a refresher on the internal mechanism of the Windows callbacks and how
AVBurner disables functionality of security products.

o Explains how memory analysis can identify manipulated EDR callbacks, such as those
employed by AVBurner, using either via Volatility 3 or Volexity Volcano.

Kernel Process Callbacks

In order to function, both EDR and AV solutions must effectively monitor process creation.
When a process is created, security products can block it from starting or inject a library into
it to monitor its behavior. To do so, most security products use a driver to register a kernel
callback, most commonly using the PsSetCreateProcessNotifyRoutine() API.

Figure 1 shows the pseudocode of this function.

Figure 1. PsSetCreateProcessNotifyRoutine() pseudocode

As can be seen, this function’s sole purpose is to execute another function,
PspSetCreateProcessNotifyRoutine(). This APl is not documented by Microsoft, but it can be
understood by examining its disassembly pseudocode.

2/12

https://github.com/volatilityfoundation/volatility3
https://www.volexity.com/products-overview/volcano/
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddk/nf-ntddk-pssetcreateprocessnotifyroutine

__inte4 _ fastcall PspSetCreatePro otifyRoutine(int64 al, unsigned int a2)

etCurrentThre
rnelApcDisabl

otifyRoutine + v3

InterlockedDecrement(ifyRoutineCount)

ExDereferenceCallBac < e tifyRoutine + v

, v11l};

Figure 2. PspSetCreateProcessNotifyRoutine() pseudocode

Figure 2 shows the pseudocode of this function when the second argument is true (i.e., when
a callback is to be removed).

e Lines 19 and 44 of this pseudocode show a loop that increments the v9 variable from
“0” to “0x40”. This variable is an index for the PspCreateProcessNotifyRoutine This
array is used as a first argument to the ExDerefenceCallBackBlock() function and
contains the callbacks. A maximum of “0x40” (64) callbacks can be defined.

e Lines 32 and 34 show two interesting variables:
PspCreateProcessNotifyRoutineExCount and PspCreateProcessNotifyRoutineCount. If
a callback is removed, one of these variables is decremented. The sum of these two
variables is the number of defined callbacks.

3/12

e The ExCompareExchangeCallBack() API shows a mask (“OxFFFFFFFF FFFFFFFO”)
must be applied to the address stored in the PspCreateProcessNotifyRoutine

WinDBG can be used to confirm these conclusions. Figure 3 shows the

PspCreateProcessNotifyRoutineExCount and PspCreateProcessNotifyRoutineCount values.

0: kd> db nt!PspCreateProcessNotifyRoutineExCount L1
fffff801°4ffafef8 06

0: kd> db nt!PspCreateProcessNotifyRoutineCount L1
fffffa01 " 4ffdfefc 07

Figure 3. The count of defined callbacks
In this example, there are 13 callbacks defined on this system.

Figure 4 shows the PspCreateProcessNotifyRoutine array (13 callbacks) and the called
functions for the first three callbacks.

0: kd> dps nt!PspCreateProcessNotifyRoutine

fEfff801 " 4fb43ba0 ffff8702°82063bcft

fEffFE01 " 4fb43bal fEfFBT7027822941b1

TEfff801 " 4fb43bb0 fEfF8702 8551 1cff

fEffFB01 " 4fb43bb8 fEEFET027 85603111

fEFEFB01 " 4fb43becl fEfFBT702 856ebdef

fEffF801 " 4fb43bec8 fEfFBT02°857f96FF

fEFEFE01 " 4fb43bd0 fEfFBT702 84cf69af

fEFfEFB01 " 4fb43bd8 ffff8702 84cfeTbf

fEFEFB01 " 4fb43beld fEfFBT7027845c88cf

fEffFB01 " 4fb43beld fEfFBT7027857fcBOE

fEFEFB01 " 4fb43bf0 fEffFfBT702 84cfalif

fEFEFB01 " 4fb43bf8 fEEFBT70278582c44f

fEfEFB01 " 4fb43c00 FfEfFfBT7027863a456f

fEEEE80174fb43c08 Q0000000 00000000

fEEFFB0174fb43c10 000000007 00000000

fEEEE80174fb43c18 Q0000000 00000000

0: kd> dps fff£f8702°82063bcf & O0xFFFFFFFFFFFFFFFO L2
fEE££8702782063bc0 00000000 00000020

fEE£8702782063bc8 fff££801°4£8£d2f8 nt!ViCreateProcessCallback
0: kd> dps ffff8702°822941bf & OXFFFFFFFFFFFFFFFO0 LZ

fEE£87027 8229410 00000000 00000020

fEE£87027 8229418 fff££f8047ad%45120 cng!CngCreateProcessNotifyRoutine
0: kd> dps ffff8702°855flcff & OxXFFFFFFFFFFFFFFF0 L2
fEE££87027855f1cf0 QO0000C0™ 00000020

fEFf87027855f1cf8 fffff804"ad67%a00 ksecdd!KsecCreateProcessNotifyRoutine

Figure 4. 13 defined callbacks and the definition of the first three

In this example, each time a process is created, nt!ViCreateProcessCallback(),
cng!CngCreateProcessNotifyRoutine(), ksecdd!KsecCreateProcessNotifyRoutine(), and the
10 others are called.

4/12

https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-download-tools

Armed with this knowledge, one can further analyze AVBurner and its approach to tampering
with these callbacks.

AVBurner Kernel Process Callback Bypass

Name(s) execute.exe

Size 158.0KB (161792 Bytes)

File Type Win64 EXE

MD5 494cc48a9856¢f5b46fb13bcd68c256f

SHA1 39727e755b2806fc2ed5204dae4572a14b2d43d1

SHA256 4b1b1a1293ccd2c0fd51075de9376ebb55ab64972da785153fcb0a4eb523a5eb

AVBurner is designed to disable callbacks from the kernel space. A userland application
cannot modify kernel memory, so the malware authors include a vulnerable driver,
RTCore64.sys, to read and write into this protected memory space. This driver has been
previously reported as being used for the same purpose by ransomware groups. The threat
actor in this case is not a ransomware attacker.

This technique of using an older, vulnerable driver to load malicious code was famously used
by Turla for the purposes of loading a malicious rootkit. A public GitHub repository, KDU,
owned by hFirefOx, documents a list of drivers that can be abused for this “Bring Your Own
Vulnerable Driver” (BYOVD) technique.

AVBurner follows the same logic outlined in the Kernel Process Callbacks section to identify
the callback array and disable specific callbacks. Specifically, it has the following workflow:

e Check the OS version, as this is required for the next step.

e Abuse RTCore64.sys to identify the PspCreateProcessNotifyRoutine array. The
identification of this array is based on a byte pattern, which differs according to the OS
version (hence the requirement for the previous step).

o Abuse RTCore64.sys to parse the array in order to get the list of currently defined
callbacks.

» For each registered callback address, gets the location of any SYS file in the directory
C:\Windows\ or its subdirectories. If the SYS file is not located in this directory it is
skipped.

e Checks the metadata of the SYS file to see if the file matches specific criteria. This is to
identify whether or not the callback must be removed.

5/12

https://www.picussecurity.com/resource/blog/blackbyte-ransomware-bypasses-edr-products-via-rtcore64.sys-abuse#:~:text=sys.-,RTCore64.,graphic%20cards%20on%20the%20system.
https://www.virusbulletin.com/virusbulletin/2014/05/anatomy-turla-exploits/
https://github.com/hfiref0x/KDU

o If the callback is identified as one that should be removed, AVBurner abuses
RTCore64.sys to replace the callback address with “Ox00000000°00000000” which
effectively disables the callback.

This specific sample of AVBurner targets any drivers with the string “360” in their metadata
description, meaning it was almost certainly configured to prevent security products by Qihoo
360 from functioning correctly. Figure 5 summarizes AVBurner’s workflow.

1. Get OS version

5. Check if the metadata
contains “360”

AVBurner.exe

4. Get driver metadata driverl.sys driver3.sys

USERLAND driver2.sys 360.sys

KERNEL 2. Get PspCreateProcessNotifyRoutine

PsSetCreateProcessNotifyRoutine ()

- . call
PspSetCreateProcessNotifyRoutine ()

mmmmmmmnd RTCore64.sys

PspCreateProcessNotifyRoutine

f — callbackl
- - - callback2
3. List the defined callbacks - callback2
» - callback? -»> 360.sys callback
- llback4
6. Patch the callback D

— callback5

Figure 5. AVBurner workflow

Since the Qihoo 360 security product cannot be downloaded and installed for free, for the
purposes of demonstration in this report Volexity patched AVBurner to target the free version
of Immunet, which embeds Cisco AMP. Note that the approach employed by AVBurner could
be used to target any security product using the same APIs, and the use of Cisco AMP in
this post is simply for illustrative purposes. Some products may have anti-tampering
mechanisms to prevent or detect this style of attack.

Figure 6 shows the callback array before and after AVBurner execution.

6/12

https://www.immunet.com/index
https://www.cisco.com/c/en_uk/products/security/advanced-malware-protection/index.html

0: kd> dps nt!PspCreateProcessNotifyRoutine
fEEE£801°
fffffa01"
fEfffa01°
fEffr801°
fEffE£801°
fEEE£801°
fEEE£801°
fEfffa01"
fEEFFB01°
fEEFFB01°
fEffE£801°
fEEE£801°
fEEE£801°
fEfffa01°
fEffEr801°
fEffr801°

Figure 6.

4fb43bal
4fb43bad
4fb43bb0
4fb43bbs
4fb43bc
4fb43bcd
4fb43bd0
4fb43bda
4fb43bel
4fb43bed
4fb43bE0
4fb43bE8
4fb43c00
4fb43c08
4fb43c10
4fb43cls

fEf£8702°
fEf£8702°
fffEa702°
fffEs702°
fEfE8702°
fEf£8702°
fEf£8702°
fffEa702°
fE££8702°
fE££8702°
fEfE8702°
fEf£8702°
fEf£8702°
00000000°
000000007
000000007

§2063bct
§22941bf
§55flcff
8560311€
§56ebdef
a457f96ff
gd4cfagaf
§dcfelbf
845c88ct
857fcB9f
84cfal’f
8582cd4f
g63a456f
00000000
00000000
00000000

0: kd> dps nt!PspCreateProcessNotifyRoutine
fEEEEBOL
fEEEEB01°
fEEEEB01”
FEEEE801°
FfEEEBOL
EfE£E8B0L
fEEEEBOL
fEEEEB01”
fEfEFEBOLT
EfE£E801°
FfEEEBOL
EfE£E8B0L
fEEEEBOL
fEEEEB01"
fEEEE8B01
ffE£E801°

4fb43bal
4fb43ba8
4fh43bb0
4fh43bb8
4fh43bcO
4fb43bc
4fb43bd0
4fh43bd8
4fh43bel
4fh43bed
4fh43b10
4fb43bf8
4fb43c00
4fb43c08
4fh43c10
4fh43cl8

ftffrav02
ffffav02
fEffavo2
fEfrev02
frfrav02
frfravo2
ftffrav02
fEffav02

frfrav02
frfravo2
ftffrav02
00000000
00000000
00000000

Callback array before AVBurner execution (left) and after (right)

Two callbacks are removed from the list and the address is replaced by

“Ox00000000°00000000”. Figure 7 shows the values before the AVBurner execution; as
expected, these callbacks are related to AMP.

0: kd> dps ff£ff8702°845c88cf & OXFFFFFFFFFFFFFFFO L2

fEE£f8702°845c88c0
8702 845c88c8

fEE£87027857£c890
fEE£8702° 857898

Figure 7. Callback before AVBurner execution

This post is limited to process creation monitoring, but AVBurner also supports manipulation

000000007 00000020

fffff804 " aeb34£d0
0: kd> dps ffff8702°857fc89f & OXFFFFFFFFFFFFFFFO L2

000000007 00000020

fEfff804 " aeb55d68

CiscoSAM+0x5d68

of additional callbacks, such as thread creation and image load callbacks.

Detecting Disappearing Callbacks with Volatility 3

"82063bct
"822941bf
‘855fleff
'8560311f€
‘g56e6def
‘g57f96ff
‘84cfe9af
‘84cfelbf
00000000 °
00000000°
‘84cfal8if
'9582c44f
‘863a456f
*00000000
00000000
00000000

00000000
00000000

CiscoAMPCEFWDriver+0x4£d0

Volatility 3 natively lists the currently registered callbacks with the windows.callbacks
command. Figure 8 shows the command’s output before and after the execution of
AVBurner; as expected, the two Cisco AMP callbacks disappear.

712

lab@lab$ python3 ~/Tools/volatility3/vol.py —F

Oxf8e1ufaefd2f8
Oxfe8eUadous12e
OxfEeUad679a00
OxfEeUaeliliB290
OxfB80Uae8db6f0
Oxf8B8Lad7a38cO
OxfB80Uaeadlfel
Bxf8BUaeaf3fal
OxFB80Uaeb3UfdO

ntoskrnll
cngl - N/A
ksecddl - N/A
tepipl - N/A
ioratel - N/A
CIl = N/A
immunetselfprotectl
immunetprotectl -

CiscoAMPCEFWDriverl

1687-Snapshot3.vmem windows.callbacks | grep PspCreateProcessNotifyRoutine
ViCreateProcessCallback N/A

N/A

OxfB80Uaeb55d68 CiscoSAM1 = N/A
0xfB8eUbe2b8850 dxgkrnll = N/A
OxfB8eUafa3fcd® wvm3dmpl - N/A

0xfB8eUbO%eaba® peauthl - N/A
lab@lab$ python3 ~/Tools/volatility3/vol.py —f 1607-Snapshotl.vmem windows.callbacks | grep PspCreateProcessNotifyRoutine

0xfBe14f8fd2f8 ntoskrnll ViCreateProcessCallback N/A
0xfB80UadoU5120 cngl = N/A
OxfB8eUad679a00 ksecddl - N/A
0xfB0Uaelu8290 tcpipl - N/A
0xf80Uae8db6f@ ioratel - N/A
Oxf80Uad7a30ch® CI1 = N/A
0xfB0UaeadUPel immunetselfprotectl
OxfBeUaeaf3Pal immunetprotectl -
Oxf80UbO2b88B50 dxghkrnll -
Oxf8eldafa3ifcd® wvm3dmpl - N/A
0xfB8eUbO%eaba® peauthl - N/A

Figure 8. Volatility 3 windows.callback output
Two approaches can be used to identify the callback anomaly:

o Get the count of callbacks (see next section for details on how to do this) and compare
the value with the windows.callbacks output.

¢ Maintain a list of EDR or AV modules that register process creation callbacks, and
check if the driver is loaded but a callback that should be registered is missing.

Volshell: Getting the Count of Callbacks

Volatility 3 provides a shell that supports symbols to query the kernel objects. The following
code shows how to get the values for PspCreateProcessNotifyRoutineExCount and
PspCreateProcessNotifyRoutineCount (Figure 9). Note that color has been added for
emphasis.

8/12

lab@lab$ volshell.py -f 1607-Snapshot4.vmem -w
Volshell (Volatility 3 Framework) 2.4.1
Readline imported successfully PDB scanning finished

Call help() to see available functions

Volshell mode : Windows

Current Layer : layer_name
Current Symbol Table : symbol_table namel
Current Kernel Name : kernel

(layer_name) >>> kernel = self.context.modules[self.config["kernel™]]

(layer_name) kvo = context.layers[kernel.layer_name].config[“kernel_virtual offset™]
(layer_name) ntkrnlmp = context.module(kernel.symbol table name, layer name=kernel.layer_name, offset=kvo)
(layer_name) >>> hex(ntkrnlmp.get_symbol("PspCreateProcessNotifyRoutineCount”).address)
‘ox74Tefc’

(layer_name) >>> hex(ntkrnlmp.get symbol("PspCreateProcessNotifyRoutineExCount™).address)
'@x747ef8’

(layer_name) >>> ntkrnlmp.object(object type="unsigned int", offset=0x747efc)

7

(layer_name) >>> ntkrnlmp.object(object type="unsigned int", offset=Bx747ef8)

B

Figure 9. Highlighted example command-line output showing the number of callbacks that
should exist

The offsets of the variables, PspCreateProcessNotifyRoutineExCount and
PspCreateProcessNotifyRoutineCount, (denoted in purple and gold) match what is shown in
Figure 9; the sum is 13. However, there are only 11 defined callbacks shown when listing
them using windows.callbacks (Figure 10).

lab@lab$ vol.py -f 1687-Snapshot4.vmem windows.callbacks | grep PspCreateProcessNotify | wc -1
11

Figure 10. Highlighted Volatility output showing only 11 callbacks are still defined

Detecting Tampered EDR Callbacks with Volexity Volcano

Although these malicious modifications are possible to detect with Volatility, many analysts
prefer a more robust, out-of-the-box solution, especially in time-sensitive engagements.
Volexity Volcano can help assess if systems are trustworthy, even if AV and EDR products
report being healthy and fully operational. Figure 11 shows a summary of some of the |IOCs
that triggered on the AVBurner memory sample. It points out that two kernel modules,
CiscoAMPCEFWDiriver.sys and CiscoAMP.sys, are affected by the malware.

Indicator Artifact Reason
2 Disabled AV/EDR Callbacks Kernel Module CiscoAMPCEFWDriver.sys
2 Disabled AV/EDR Callbacks Kernel Module CiscoSAM.sys
Disabled Services Service wuauserv (Windows Update) - %systemroot%\system32\svchost.exe -k netsvcs
% Explicit Debug Privilege SeDebugPrivilege (windbg.exe pid 5752)
+ Explicit Debug Privilege SeDebugPrivilege (x64dbg.exe pid 1340)
+ Explicit Debug Privilege SeDebugPrivilege (livekd64.exe pid 6872)

Figure 11. Volcano IOC summary includes two Disabled AV/EDR Callbacks

9/12

In addition to the IOC summary, Volcano offers more specific details on the artifacts
themselves (including the full path on disk to the kernel module) and an explanation of
exactly what functionality has been disabled. Color-coded labels and associated notes are
automatically added to the artifacts to bring these alerts to the analyst’s attention.

(7 Nt Ye | @& &
Context | Load Order Base Size Name Path
68 Oxfffff804aeaa0000 0x1d000 filecrypt.sys \SystemRoot\system32\drivers\filecrypt.sys
69 0xfffff804aeac0000 0xe000 tbs.sys \SystemRoot\system32\drivers\tbs.sys
70 Oxfffff804aead0000 0x18000 immunetselfprotect.sys \??\C:\Windows\System32\Drivers\immunetselfprotect.sys
N L[NAae NNNN N NNN__i o \AlinAd s am Nriva immiinatnrata

0xfffff804aeb30000

0xfffff804aeb50000 0x1b000 CiscoSAM.sys

4 & 12 of1

0x1c000 CiscoAMPCEFWDriver.sys

2023-02-01 by NNy o|cXity.com -;@ ®
Indicator: Disabled AV/EDR Callbacks

This looks for kernel modules associated with AV/EDR products whose
callbacks may have been disabled by malware to neuter or disable
security and monitoring capabilities.

This module is a component of Cisco AMP, but the expected callbacks
(PsSetCreateProcessNotifyRoutine) are not enabled.

\??2\C:\Windows\System32\Drivers\CiscoAMPCEFWDriver.sys
\??2\C:\Windows\system32\Drivers\CiscoSAM.sys

\SystemRoot\System32\Drivers\Beep.SYS
\SystemRoot\system32\DRIVERS\vmrawdsk.sys
\SystemRoot\System32\drivers\BasicDisplay.sys
\SystemRoot\System32\drivers\watchdog.sys
\SystemRoot\System32\drivers\dxgkrnl.sys
\SystemRoot\System32\drivers\BasicRender.sys
\SystemRoot\System32\Drivers\Npfs.SYS
\SystemRoot\System32\Drivers\Msfs.SYS
\SystemRoot\system32\DRIVERS\tdx.sys
\SystemRoot\system32\DRIVERS\TDI.SYS
\SystemRoot\system32\drivers\ws2ifsl.sys
\SystemRoot\System32\DRIVERS\netbt.sys

Figure 12. Zooming in on specific details for CiscoSAM.sys

Another valuable feature of Volcano that defenders can leverage against the previously
described BYOVD technique is listing recently unloaded kernel modules. In most cases,
malware will not need a vulnerable driver in the long term. It will load the driver, use it, then
unload it quickly to avoid further detection. For debugging purposes, Windows stores unload
events in memory, which Volcano can query. Although the vulnerable driver was referred to
by its original name, RTCore64.sys, the malware drops it to disk as a.sys. Figure 13 shows
how Volcano preserves this activity for forensic purposes and provides an unload timestamp
for incorporation into timelines.

10/12

Modules SLiELERRY Symbolic Links Mutexes Events Drivers Devices System Calls IDT GC

L7 B

Context | Unload Time Base Size Name
2023-01-09 09:52:24+00:00 Oxfffff804ae8e0000 0xf000 hwpolicy.sys
2023-01-09 09:52:25+00:00 Oxfffff804af8a0000 0x13000 dam.sys
2023-01-09 09:52:26+00:00 O0xfffff804aea40000 O0x1d000 dump_dumpfve.sys
2023-01-09 09:52:26+00:00 0xfffff804aea00000 0x19000 dump_stornvme.sys
2023-01-09 09:52:26+00:00 Oxfffff804ae9d0000 0xfO00 dump_storport.sys

xfffff804b0b40000 0x6000 a.sys
T Add 'Suspicious' label

© Labels... >
= Notes...

@ Create Indicator...

i Search >
& Outlier Search >

CZ: Copy row(s)
[&: Copy cell
® 4

1

Figure 13. Volcano showing details of unloaded Kernel modules

Conclusion

This blog posts describes how process creation callbacks work on Windows, and how
AVBurner can bypass modern EDR and AV solutions by patching kernel memory. In this
case, the malware was only used to disable monitoring process creation, but the same
approach can be used to disable other callbacks used for events like thread creation and
image loading.

Having detection capabilities related to AVBurner is useful. However, it is even better to have
robust techniques for broadly detecting whether or not security products have been
tampered with in this manner. Callback manipulation can be identified by analyzing the
memory of the system, either through automated detections in Volexity Volcano, or through
use of Volatility 3 and Volshell.

To generically identify BYOVD related attacks, Volexity recommends the following:

» Monitor for creation of the file RTCore64.sys and the other vulnerable drivers listed in
the KDU project, as they are commonly used by threat actors.
« If possible, consider enforcing the mitigations recommended by Microsoft here.

To detect the specific malware referenced in this blog post, Volexity recommends the
following:

Use the YARA rule available on GitHub to identify instances of AVBurner.

11/12

https://github.com/hfiref0x/KDU
https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/microsoft-recommended-driver-block-rules
https://github.com/volexity/threat-intel/blob/main/2023/2023-03-07%20AVBurner/yara.yar

Volexity's Threat Intelligence research, such as the content from this blog, is published to
customers via its Threat Intelligence service and was covered by in MAR-20230112 and
original activity related to this threat actor was discussed in TIB-20211124.

Volexity's leading memory analysis product, Volexity Volcano, detects the EDR and AV
evasion technique discussed in this post through the “Disabled AV/EDR Callbacks” indicator.

If you are interested in learning more about these products and services, please do not
hesitate to contact us.

12/12

https://www.volexity.com/services-overview/threat-intelligence/
https://www.volexity.com/products-overview/volcano/
https://www.volexity.com/company/contact/

