Direct Kernel Object Manipulation (DKOM) Attacks on
ETW Providers

@ securityintelligence.com/posts/direct-kernel-object-manipulation-attacks-etw-providers/

Home / Software Vulnerabilities

I-"'"

Software Vulnerabilities February 21, 2023
By Ruben Boonen 17 min read

Overview

In this post, IBM Security X-Force Red offensive hackers analyze how attackers, with
elevated privileges, can use their access to stage Windows Kernel post-exploitation
capabilities. Over the last few years, public accounts have increasingly shown that less
sophisticated attackers are using this technique to achieve their objectives. It is therefore
important that we put a spotlight on this capability and learn more about its potential impact.
Specifically, in this post, we will evaluate how Kernel post-exploitation can be used to blind
ETW sensors and tie that back to malware samples identified in-the-wild last year.

Intro

1/34

https://securityintelligence.com/posts/direct-kernel-object-manipulation-attacks-etw-providers/
https://securityintelligence.com/
https://securityintelligence.com/
https://securityintelligence.com/category/x-force/software-vulnerabilities/
https://securityintelligence.com/category/x-force/software-vulnerabilities/
https://securityintelligence.com/author/ruben-boonen/

Over time, security mitigations and detection telemetry on Windows have improved
substantially. When these capabilities are combined with well-configured Endpoint Detection
& Response (EDR) solutions, they can represent a non-trivial barrier to post-exploitation.
Attackers face a constant cost to develop and iterate on tactics, techniques, and procedures
(TTPs) to avoid detection heuristics. On the Adversary Simulation team at IBM Security X-
Force, we face this same issue. Our team is tasked with simulating advanced threat
capabilities in some of the largest and most hardened environments. The combination of
complex fine-tuned security solutions and well-trained Security Operations Center (SOC)
teams can be very taxing on tradecraft. In some cases, the use of a specific TTP is made
completely obsolete in the span of three to four months (usually tied to specific technology
stacks).

Attackers may choose to leverage code execution in the Windows Kernel to tamper with
some of these protections or to avoid a number of user-land sensors entirely. The first
published demonstration of such a capability was in 1999 in Phrack Magazine. In the
intervening years there have been a number of reported cases where Threat Actors (TAs)
have used Kernel rootkits for post-exploitation. Some older examples include the Derusbi
Eamily and the Lamberts Toolkit.

Traditionally these types of capabilities have mostly been limited to advanced TAs. In recent
years, however, we have seen more commodity attackers use Bring_Your Own Vulnerable
Driver (BYOVD) exploitation primitives to facilitate actions on endpoint. In some instances,
these techniques have been quite primitive, limited to simple tasks, but there have also been
more capable demonstrations.

At the end of September 2022, researches from ESET released a white-paper about such a
Kernel capability used by the Lazarus TA in a number of attacks against entities in Belgium
and the Netherlands for the purpose of data exfiltration. This paper lays out a number of
Direct Kernel Object Manipulation (DKOM) primitives that the payload uses to blind OS / AV /
EDR telemetry. The available public research on these techniques is sparse. Gaining a more
thorough understanding of Kernel post-exploitation tradecraft is critical for defense. A classic,
naive, argument often heard is that an attacker with elevated privileges can do anything so
why should we model capabilities in that scenario? This is a weak stance. Defenders need to
understand what capabilities an attacker has when they are elevated, which data sources
remain reliable (and which don’t), what containment options exist and how advanced
techniques could be detected (even if capabilities to perform those detections don’t exist). In
this post | will focus specifically on patching Kernel Event Tracing_for Windows (ETW)
structures to render providers either ineffective or inoperable. | will provide some background
on this technique, analyze how an attacker may manipulate Kernel ETW structures, and get
into some of the mechanics of finding these structures. Finally, | will review how this
technique was implemented by Lazarus in their payload.

2/34

http://phrack.org/issues/55/5.html
https://www.cyber.airbus.com/newcomers-derusbi-family/
https://securelist.com/unraveling-the-lamberts-toolkit/77990/
https://www.welivesecurity.com/2022/01/11/signed-kernel-drivers-unguarded-gateway-windows-core/
https://www.trendmicro.com/en_us/research/22/h/ransomware-actor-abuses-genshin-impact-anti-cheat-driver-to-kill-antivirus.html
https://news.sophos.com/en-us/2022/10/04/blackbyte-ransomware-returns/
https://www.virusbulletin.com/conference/vb2022/abstracts/lazarus-byovd-evil-windows-core/
https://www.virusbulletin.com/uploads/pdf/conference/vb2022/papers/VB2022-Lazarus-and-BYOVD-evil-to-the-Windows-core.pdf
https://attack.mitre.org/groups/G0032/
https://www.welivesecurity.com/2022/09/30/amazon-themed-campaigns-lazarus-netherlands-belgium/
https://learn.microsoft.com/en-us/windows/win32/etw/about-event-tracing

ETW DKOM

ETW is a high-speed tracing facility built into the Windows operating system. It enables
logging of events and system activities by applications, drivers, and the operating system,
providing detailed visibility into system behavior for debugging, performance analysis, and

security diagnostics.

In this section, | will give a high-level overview of Kernel ETW and its associated attack
surface. This will be helpful to have a better understanding of the mechanics involved in
manipulating ETW providers and the associated effects of those manipulations.

Kernel ETW Attack Surface

Researchers from Binarly gave a talk at BHEU 2021, which discussed the general attack
surface of ETW on Windows. An overview of the threat model is pictured below.

IU ETW Logger Session Data Structures

I.U ETW Provider Data Structures

2

ETW Data structures

Attacker’s
Driver

an Evil Process
~if==0 Attackson ETW by modifying
enwvars, registry and log files
Attacks on user-mode ETW
Providers

~f==@ Attackson kernel-mode ETW
Providers

inreat vioaeiling 1wy
User mode
===y e e e e e——_———..———— - |
| ETW Environment
acker's variabl
| -- -- Attacker’ ariables
A r!rﬁ id i I | eTw-based Ao
|| App with ETW providers Win Apps to control R Oy ETW Registry Settings
[(instrumentation) Sessions and Providers |
| m | l ETW APIs | ETWAPIS | Event Trace Logs (ETL)
i | - - with collected events
| L / v Kernel mode
NT
|)) « 05 instrumentation Call custom
[f:;z”"m_:“" »| * ETW API 1o control syscalls without Color Map of Attacks
|) providers sessions and providers telemetry
| (instrumentation) ~afff==g@ Attacks on ETW from inside
|
|
|
|
|
|

-l==@ Attackson ETW Sessions

Figure 1 — Veni, No Vidi, No Vici: Attacks on ETW Blind EDR Sensors (Binarly)

In this post, we focus on the Kernel space attack surface.

3/34

https://www.binarly.io/
https://www.blackhat.com/eu-21/briefings/schedule/index.html#veni-no-vidi-no-vici-attacks-on-etw-blind-edr-sensors-24842

Attacks on kernel-mode ETW providers

Y

‘ Attacker's Driver
R [Etw*RegHandle->ETW_REG_ENTRY->ETW_GUID_ENTRY->TRACE_ENABLE_INFO]

Attacker's @ @ kernel-mode “proxy” APC injectionJ

A
i (@ MCcIMCGEN_TRACE_CONTEXT |

NtTraceEvent via InfinityHook |

fltmgr 'WMI_FLTIO_NOTIFY_ROUTINES
@ g = = =) @:ﬂ Custom System Call Service Routines (syscalls) |
User-mode | Kernel-mode

No Attacks Technique Links

» Zeroing TRACE_ENABLE_INFO ProviderEnablelnfo fields IsEnabled and Level
» Zeroing ETW_GUID_ENTRY.ProviderEnablelnfo (e.g. EtwpPsProvRegHandle)

Hijack gen. events | = Patching ETW_REG_ENTRY-> PETW_GUID_ENTRY GuidEntry

» Zeroing LevelPlus1,

» Patching EnableCallback
= Patching RegHandle->ETW_REG_ENTRY.ProviderEnablelnfo 2a, 2b, 2¢
* Patching ETW_REG_ENTRY ->ETW_GUID_ENTRY -
Hijack gen. events | Patching RegHandle->ETW_REG_ENTRY

Patching IsEnabled and Level

Disable tracing

®

m
I

Disable tracing

&

@ [l 1= &
&

Patching data structures designed for filter operations

Disable tracin
J Kernel APC injection can blind Microsoft-Windows- Threat-Intelligence sensor \ fake process name

InfinityHook helps to redirect the control flow. @— Use custom syscalls to avoid being logged.

CEEEER

o
L
I~

Figure 2 — Veeni, No Vidi, No Vici: Attacks on ETW Blind EDR Sensors (Binarly)

This post considers only attacks within the first attack category shown in “Figure 2”, where
tracing is either disabled or altered in some way.

As a cautionary note, when considering opaque structures on Windows it is always important
to remember that these are subject to change, and in fact frequently do change across
Windows versions. This is especially important when clobbering Kernel data, as mistakes will
likely result in a Blue Screen of Death (BSoD), roll safe!

Initialization

Kernel providers are registered using nt!/EtwRegister, a function exported by ntoskrnl. A
decompiled version of the function can be seen below.

4/34

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-etwregister

Decompile: EtwRegister - (10.0.22621.382-Analysed.blob)
1l
2 void EtwRegister (LPCGUID ProviderId, PVOID *EnableCallback, PVOID CallbackContext,
3 _ETW_REG_ENTRY *RegHandle)
4
5|
G _ESERVERSILO GLOBALS *ServerSiloGlobals;
7 longlong unaff retaddr;
8
9 /* 0x7blde0 177 EtwRegister */
10| ServerSiloGlobals = (_ESERVERSILO GLOBALS *)PsGetCurrentServerSiloGlobals();
11| EtwpRegisterKMProvider
12 ((longlong)ServerSiloGlobals->EtwSiloState, (longlong *)ProviderId, 3,
3 (ulongleong *)EnableCallback, (ulonglong)CallbackContext,unaff retaddr,
14 (longlong **)RegHandle):
15| return;
1é(}
17

Figure 3 — nt!lEtwRegister decompilation

Full initialization happens within the inner EtwpRegisterKMProvider function but there are
two main takeaways here:

o The Providerld is a pointer to a 16-byte GUID. This GUID is static across operating
systems so it can be used to identify the provider that is being initialized.
e The RegHandle is a memory address that receives a pointer to an

_ETW _REG_ENTRY structure on a successful call. This data structure and some of its
nested properties provide avenues to manipulate the ETW provider as per the research

from Binarly.
Let’s briefly list out the structures that Binarly highlighted on their slide in Figure 2.

ETW_REG_ENTRY

A full 64-bit listing of the _ ETW_REG_ENTRY structure is shown below. Added details are

available on Geoff Chappell’s blog here. This structure can also be further explored on the
Vergilius Project.

// 0x70 bytes (sizeof)
// Win11 22H2 10.0.22621.382
struct ETW_REG_ENTRY

{
struct LIST_ENTRY RegList; //0x0
struct _LIST_ENTRY GroupRegList; //0x10
struct ETW_GUID_ENTRY* GuidEntry; //0x20

5/34

https://www.geoffchappell.com/studies/windows/km/ntoskrnl/inc/ntos/etwp/etw_reg_entry/index.htm
https://www.vergiliusproject.com/kernels/x64/Windows%2011/22H2%20(2022%20Update)/_ETW_REG_ENTRY

struct _ETW_GUID_ENTRY* GroupEntry; //0x28
union
{
struct ETW_REPLY_QUEUE* ReplyQueue; //0x30
struct ETW_QUEUE_ENTRY™ ReplySlot[4]; //0x30
struct
{
VOID* Caller; //0x30
ULONG Sessionld; //0x38
2
2
union
{
struct EPROCESS* Process; //0x50
VOID* CallbackContext; //0x50
2
VOID* Callback; //0x58
USHORT Index; //0x60
union
{
USHORT Flags; //0x62
struct
{
USHORT DbgKernelRegistration:1; //0x62
USHORT DbgUserRegistration:1; //0x62
USHORT DbgReplyRegistration:1; //0x62
USHORT DbgClassicRegistration:1; //0x62
USHORT DbgSessionSpaceRegistration:1; //0x62
USHORT DbgModernRegistration:1; //0x62
USHORT DbgClosed:1; //0x62
USHORT Dbglnserted:1; //0x62
USHORT DbgWow64:1; //0x62
USHORT DbgUseDescriptorType:1; //0x62
USHORT DbgDropProviderTraits:1; //0x62
2
2
UCHAR EnableMask; //0x64
UCHAR GroupEnableMask; //0x65
UCHAR HostEnableMask; //0x66
UCHAR HostGroupEnableMask; //0x67

struct _ETW_PROVIDER_TRAITS* Traits;

//0x68

6/34

ETW_GUID_ENTRY

One of the nested entries within _ ETW REG_ENTRY is GuidEntry, which is an
_ETW _GUID_ENTRY structure. More information about this undocumented structure can be
found on Geoff Chappell’s blog here and on the Vergilius Project.

// 0x1a8 bytes (sizeof)
/ Win11 22H2 10.0.22621.382
struct ETW_GUID_ENTRY

{
struct LIST_ENTRY GuidList; //0x0
struct _LIST_ENTRY SiloGuidList; //0x10
volatile LONGLONG RefCount; //0x20
struct _GUID Guid; //0x28
struct LIST_ENTRY RegListHead; //0x38
VOID* SecurityDescriptor; //0x48
union
{
struct _ETW_LAST_ENABLE_INFO LastEnable; //0x50
ULONGLONG Matchld; //0x50
2
struct _TRACE_ENABLE_INFO ProviderEnablelnfo; //0x60
struct _TRACE_ENABLE_INFO Enablelnfo[8]; //0x80
struct ETW_FILTER_HEADER* FilterData; //0x180
struct _ETW_SILODRIVERSTATE* SiloState; //0x188
struct ETW_GUID_ENTRY* HostEntry; //0x190
struct EX PUSH_LOCK Lock; //0x198
struct ETHREAD* LockOwner; //0x1a0
2

TRACE_ENABLE_INFO

Finally, one of the nested entries within ETW GUID_ENTRY is ProviderEnablelnfo which is
a_TRACE _ENABLE INFO structure. For more information about the elements of this data
structure, you can refer to Microsoft’s official documentation and the Vergilius Project. The
settings in this structure directly affect the operation and capabilities of the provider.

// 0x20 bytes (sizeof)

// Win11 22H2 10.0.22621.382

struct TRACE_ENABLE_INFO

{
ULONG IsEnabled; //0x0
UCHAR Level; //0x4

7/34

https://www.geoffchappell.com/studies/windows/km/ntoskrnl/inc/ntos/etwp/etw_guid_entry.htm
https://www.vergiliusproject.com/kernels/x64/Windows%2011/22H2%20(2022%20Update)/_ETW_GUID_ENTRY
https://learn.microsoft.com/en-us/windows/win32/api/evntrace/ns-evntrace-trace_enable_info
https://www.vergiliusproject.com/kernels/x64/Windows%2011/22H2%20(2022%20Update)/_TRACE_ENABLE_INFO

UCHAR Reserved1; //0x5

USHORT Loggerld; //0x6

ULONG EnableProperty; //0x8
ULONG Reserved?; //0xc
ULONGLONG MatchAnyKeyword; //0x10
ULONGLONG MatchAllKeyword; //0x18

2
Understanding Registration Handle Usage

While some theoretical background is good, it is always best to look at concrete example
usage to gain a deeper understanding of a topic. Let us briefly consider an example. Most
critical Kernel ETW providers are initialized within, nt!Etwplnitialize, which is not exported.
Looking within this function reveals about fifteen providers.

sEtwAppCompatProvRegHandle);
EtwRegister ((LPCGUID) gKernellAuditApiCallsGuid, (ulonglong *)0x0, (PVOID)0Ox0,
&EtwhApiCallsProvRegHandle);

EtwRegister ((LPCGUID) eCVERuditProviderGuid, (ulonglong *)0x0, (PVOID)O0x0,

o

&EtwCVERuditProvRegHandle);

EtwRegister ((LPCGUID) sThreatIntProviderGuid, (ulonglong ¥*)0x0, (PVOID)0x0,
gEtwThreatIntProvRegHandle);

EtwRegister ((LPCGUID) &MS Windows_ Security LPAC Provider, (ulonglong *)0x0, (PVOID)0x0,
sEtwLpacProvRegHandle);

EtwRegister ((LPCGUID) &SecurityMitigationsProviderGuid, (ulenglong *)0x0, (PVOID)0x0,

&EtwSecurityMitigationsRegHandle);

EtwRegister ((LPCGUID) eCpuStarvationProv

s | -1 T . = T P ‘e = L L . E 1 LDITAT DN Sl

LWL oL L T LTI s _ T IiIo o _ ==L AL - o e T ooV = oy T IO TR,y (T VOIDTORD

Figure 4 — nt!Etwplnitialize partial decompilation

Taking the Microsoft-Windows-Threat-Intelligence (EtwTi) entry as an example, we can
check the global ThreatIntProviderGuid parameter to recover the GUID for this provider.

4 54 bb

£
-
68 56 fl ...

L1A2UUULTIsC UU i ULl
14000£74£ 00 2?2 00h

ThreatIntProviderGuid XREF[1]
14000£750 7c 89 el GUID f4el1897c-bb5d-5668-£f1d8-040f4dsdd344

SecurityMitigationsProviderGuid XREF[1]
14000£7e0 42 2?2 S52h
l4000F7£1 03 22 03k

Figure 5 — EtwTi Provider GUID

8/34

Searching this GUID online will immediately reveal that we were able to recover the correct
value (f4e1897¢c-bb5d-5668-f1d8-040f4d8dd344).

Let’s look at an instance where the registration handle parameter,
EtwThreatIntProvRegHandle, is used and analyze how it is used. One place where the
handle is referenced is nt!EtwTiLogDriverObjectUnLoad. From the name of this function, we
can intuit that it is meant to generate events when a driver object is unloaded by the Kernel.

Decompile: EtwTiLogDriverObjectUnLoad - (10.0.22621.382-Analysed.blob)
1
2 [void EtwIlileogDriverObjectUnLoad(ushort *param_1l)
3
4 {
5 longlong lVarl;
(3 undefineds
7 undefined kY _ [32]:
8 ushort local_32 [4]:
g ushort *local 30;
10| undefinedd local_28;
1l wchar_t *1 _20
12| uint local_18&;
13 undefined4 local_l4;
14 ulonglong local 107
15
le 1 = EtwThreatIntProvRegHandle;
17 local_l0 = _ security_cookie * (ulonglong)auStack¥ &8;
18 uVar2 = EtwEventEnabled(EtwIhreatIntProvRegHandle, (longlong) &THREATINT DRIVER OBJECT_UNLCAD);
19 4if ((char)uvarz !'= "\0") {
20 1Var2 = EtwProviderEnabled(1Varl,0,0x40000000);
21 if ((char)uVar2 != '"\0") {
22 if ((param 1 == (ushort *)0x0) || (local_385[0] = *param 1, local 33[0] == 0}) {
23 local 18 = Oxc;
24 1o L"{null)":
25 local_38[0] = &;
26§ }
27 else |
28 local 20 = ¥(wchar_t **)(param 1l + 4);
29 1o _18 = (uint)local_32[0];
30 local_38[0] = local_38[0] >> 1;
31 }
32 local_30 = local_
33 1o = 2;
34 local_l4 = 0;
B Etwirite (1Varl, (uint *)&THREATINT_DRIVER_OBJECT_UNLOAD, (undefined4 *)0x0,2, (uint *)slocal_30);
3§ }
37 1
38 _ security check cookie(local_ l0 * (ulonglong)auStackY_68);
39 return;
40]}

Figure 6 — nt!EtwTiLogDriverUnload decompilation

The nt!EtwEventEnabled and nt!EtwProviderEnabled functions are both called here passing
in the registration handle as one of the arguments. Let’s look at one of these sub-functions to
understand more about what is going on.

9/34

Decompile: EtwProviderEnabled - (10.0.22621.382-Analysed.blob)
1
2 [BOOLEAN EtwProviderEnabled(_ETW_REG_ENTRY *RegHandle,UCHAR Level,ulonglong Keyword)
=
4 [{
5 BOOLEAN bRet;
€ _ETW_GUID_ENTRY *GUIDEntry;
7 byte ProviderLlevel;
8 ulonglong ProviderMatchlllKeywords;
]
10 /* 0x20££10 176 EtwProviderEnabled */
11 if ((RegHandle == (_ETIW _REG_ENTRY *)0x0) ||
12 ((((GUIDEntry = RegHandle->GuidEntry, (GUIDEntry->ProviderEnableInfo).IsEnabled == 0 ||
13 ((Br =vel = (GUIDEntry->ProviderEnablelnfo).Level, Providerlevel < Level &s&
14 (Pr evel !=0)))) II
15 ({5 ry->ProviderEnableInfo) .EnableProperty & 0xd0) == 0 || (Keyword != 0)) =&
16 ((((C “y-)P:OVlderEnableInfo} .MatchAnyKeyword & Keyword) == 0 ||
17 (Pr ! Keywords = (3?:::‘::'—>Prov1derEnableInfo) HatchAllKeyword
18 (ProviderMatchlllKeywords & Keyword) != ProviderMatchRAllKe rds)))))) s&s
19 {{RegHandle-)GroupEnableMasL = "\0"' |
20 (ProviderMatchAllKeywords =
21 EtprevelKeywordEnabled
22 ({int *)sRegHandle->GroupEntry->ProviderEnablelInfo,lLevel,Keyword),
23 (char) ProviderMatchAllKeywords == "\0")))))) {
24 bRet = 0;
25 }
26| else |
27 bRet = 1;
28 }
29 return bRet;
30}
21

Figure 7 — nt!EtwProviderEnable decompilation

Admittedly this is a bit difficult to follow. However, the pointer arithmetic is not especially
important. Instead, let’s focus on how this function processes the registration handle. It

appears that the function validates a number of properties of the ETW _REG_ENTRY

structure and its sub-structures such as the GuidEntry property.

struct _ETW_REG_ENTRY
{

struct _ ETW_GUID_ENTRY* GuidEntry; //0x20

And the GuidEntry->ProviderEnablelnfo property.

10/34

struct_ETW_GUID_ENTRY
{

struct TRACE_ENABLE_INFO ProviderEnablelnfo; //0x60

}

The function then goes into similar level-based checks. Finally, the function returns true or
false to indicate if a provider is enabled for event logging at a specified level and keyword.
More details are available using Microsoft’s official documentation.

We can see that when a provider is accessed through its registration handle the integrity of
those structures become very important to the operation of the provider. Conversely, if an
attacker was able to manipulate those structures, they could influence the control flow of the
caller to drop or eliminate events from being recorded.

Attacking Registration Handles

Looking back at Binarly’s stated attack surface and leaning on our light analysis, we can
posit some strategies to disrupt event collection.

e An attacker can NULL the ETW _REG_ENTRY pointer. Any functions referencing the
registration handle would then assume that the provider had not been initialized.

e An attacker can NULL the ETW_REG_ENTRY->GuidEntry->ProviderEnablelnfo
pointer. This should effectively disable the provider’s collection capabilities as
ProviderEnablelnfo is a pointer to a _ TRACE_ENABLE_INFO structure which outlines
how the provider is supposed to operate.

11/34

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-etwproviderenabled

e An attacker can overwrite properties of the _ ETW _REG_ENTRY->GuidEntry-
>ProviderEnablelnfo data structure to tamper with the configuration of the provider.

o IsEnabled: Set to 1 to enable receiving events from the provider or to adjust the
settings used when receiving events from the provider. Set to 0 to disable
receiving events from the provider.

o Level: A value that indicates the maximum level of events that you want the
provider to write. The provider typically writes an event if the event’s level is less
than or equal to this value, in addition to meeting the MatchAnyKeyword and
MatchAllKeyword criteria.

o MatchAnyKeyword: 64-bit bitmask of keywords that determine the categories of
events that you want the provider to write. The provider typically writes an event if
the event’s keyword bits match any of the bits set in this value or if the event has
no keyword bits set, in addition to meeting the Level and MatchAllIKeyword
criteria.

o MatchAllIKeyword: 64-bit bitmask of keywords that restricts the events that you
want the provider to write. The provider typically writes an event if the event’'s
keyword bits match all of the bits set in this value or if the event has no keyword
bits set, in addition to meeting the Level and MatchAnyKeyword criteria.

Kernel Search Tradecraft

We have a good idea now of what a DKOM attack on ETW looks like. Let's assume that the
attacker has a vulnerability that grants a Kernel Read / Write primitive, as the Lazarus
malware does in this case by loading a vulnerable driver. What is missing is a way to find
these registration handles.

| will outline two main techniques to find these handles and show the variant of one that is
used by Lazarus in their Kernel payload.

Medium Integrity Level (MedIL) KASLR Bypass

First, it may be prudent to explain that while there is Kernel ASLR, this is not a security
boundary for local attackers if they can execute code at MedIL or higher. There are many
ways to leak Kernel pointers that are only restricted in sandbox or LowlIL scenarios. For
some background you can have a look at | Got 99 Problems But a Kernel Pointer Ain’t One
by Alex lonescu, many of these techniques are still applicable today.

The tool of choice here is ntdll!NtQuerySysteminformation with the
SystemModulelnformation class:

internal static UInt32 SystemModulelnformation = OxB;

12/34

https://learn.microsoft.com/en-us/windows/win32/api/evntrace/ns-evntrace-trace_enable_info
https://recon.cx/2013/slides/Recon2013-Alex%20Ionescu-I%20got%2099%20problems%20but%20a%20kernel%20pointer%20ain't%20one.pdf

[Dlllmport(“ntdIl.dIl")]
internal static extern UInt32 NtQuerySystemInformation(
UInt32 SystemInformationClass,
IntPtr SystemInformation,
UInt32 SystemlInformationLength,
ref UInt32 ReturnLength);

This function returns the live base address of all modules loaded in Kernel space. At that
point, it is possible to parse those modules on disk and convert raw file offsets to relative
virtual addresses and vice versa.

public static UInt64 RvaToFileOffset(UInt64 rva,
List<SearchTypeData.IMAGE_SECTION_HEADER> sections)
{
foreach (SearchTypeData.IMAGE_SECTION_HEADER section in sections)
{

if (rva >= section.VirtualAddress && rva < section.VirtualAddress + section.VirtualSize)

{
return (rva — section.VirtualAddress + section.PtrToRawData);
}
}

return O;

}

public static UInt64 FileOffsetToRVA(UInt64 fileOffset,
List<SearchTypeData.IMAGE_SECTION_HEADER> sections)
{
foreach (SearchTypeData.IMAGE_SECTION_HEADER section in sections)
{
if (fileOffset >= section.PtrToRawData && fileOffset < (section.PtrToRawData +
section.SizeOfRawData))
{
return (fileOffset — section.PtrToRawData) + section.VirtualAddress;
}
}

return O;

}

An attacker can also load these modules into their user-land process using standard load
library API calls (e.g., ntdll!LdrLoadDIl). Doing so would avoid complications of converting file
offsets to RVA’'s and back. However, from an operational security (OpSec) point of view this
is not ideal as it can generate more detection telemetry.

13/34

Method 1: Gadget Chains

Where possible, this is the technique that | prefer because it makes leaks more portable
across module versions because they are less affected by patch changes. The downside is
that you are reliant on a gadget chains existing for the object you want to leak.

Considering ETW registration handles, let’s take Microsoft-Windows-Threat-Intelligence as
an example. Below you can see the full call to nt/EtwRegister.

140b3cd7b 4c 34 0d LEA param 4, [EtwThreatIntProvRegHandle]
76 4a 0£ 00

140b3cdB2 45 33 c0 X0R D,RSL

140b3cd85 33 d2 X0OR param 2,param 2

140b3cd87 48 8d 0d LEL param_l, [ThreatIntProviderGuid]
c2 29 44 f£ff

140b3cdge =8 4d 50 CALL twRegister
c7 ££f

Figure 8 — nt!lEtwRegister full CALL disassembly

Here we want to leak the pointer to the registration handle, EtwThreatintProvRegHandle. As
seen loaded into param_4 on the first line of Figure 8. This pointer resolves to a global within
the .data section of the Kernel module. Since this call occurs in an un-exported function, we
are not able to leak its address directly. Instead, we have to look where this global is
referenced and see if it is used in a function whose address are able to leak.

14/34

@ References to EtwThreatintProvRegHandle - 31 locations [CodeBrowser: Generic:/... - O X

Edit Help

References to EtwThreatIntProvRegHandle - 31 locations S =08 | b4

‘loation [Label Code Unit | Context
14029e81c MOV R1l0,qword ptr [EtwThreatIntProvRegHandle] READ
140340110 MOV param l,qword ptr [EtwThreatIntProvReg... READ
140367337 MOV param l,qword ptr [EtwThreatIntProvReg... READ
14036738b MOV param l,qword ptr [EtwThreatIntProvReg... READ
140367542 MOV param l1,qword ptr [EtwThreatIntProvReg... READ
1406af121 MOV RSI, qword ptr ["tu‘I‘hreatIntP:ovRegHandle] READ
1406af282 MOV param 1,quord ptr [EtwThreatIntProvReg... READ
1406af2e2 MOV param 1,gword ptr [EtwThreatIntProvReg... READ
1406af3e9 MOV param 1,qgword ptr [EtwThreatIntProvReg... READ
1407aeff3 MOV param 1, qword ptr [EtwThreatIntProvReg... READ
1407af591 MOV RSI,qword ptr [EtwThreatIntProvRegHandle] READ
1407afedb LAB_1407afédb MOV param 1, qword ptr [EtwThreatIntProvReg... READ
1407c6b58 MOV param l1,qword ptr [EtwThreatIntProvReg... READ
1407d%4de MOV RDI,qword ptr [EtwThreatIntProvRegHandle] READ
1407e9069 MOV RDI,qword ptr [EtwThreatIntProvRegHandle] READ
1407e911d MOV param l,qweord ptr [EtwlhreatIntProvReg... READ
14088fd46 MOV param l,qword ptr [EtwThreatIntProvReg... READ
14088fdc2 MOV RBX, gword ptr [EtwThreatIntProvRegHandle] READ
14088fdf2 MOV RBX, qword ptr [EtwThreatIntProvRegHandle] READ
14088ff6c LAB_14088ff6c MOV param 1,qword ptr [EtwThreatIntProvReg... READ
140890023 MOV RDI,qword ptr [EtwThreatIntProvRegHandle] READ
1408900f4 MOV param l,qword ptr [EtwThreatIntProvReg... READ
14090027e LAB_14090027¢ MOV param l,qword ptr [EtwThreatIntProvReg... READ
140900325 MOV param l,qword ptr [EtwThreatIntProvReg... READ
1409003f2 MOV param l1,qword ptr [EtwThreatIntProvReg... READ
1409dbd 2f MOV param 1,qword ptr [EtwThreatIntProvReg... READ
1408dbd81 MOV param 1,quord ptr [EtwThreatIntProvReg... READ
1409dbe68 MOV param 1,qword ptr [EtwThreatIntProvReg... READ
1409dbef2 MOV RDI,qword ptr [EtwThreatIntProvRegHandle] READ
1409dbfca MOV param_l,qword ptr [EtwThreatIntProvReg... READ
140b3cd7b LEA param 4, [EtwThreatIntProvRegHandle] DATA
Filter:) = -~

Figure 9 — nt!lEtwThreatintProvRegHandle references

Exploring some of these entries quickly reveals a candidate in nt/KelnsertQueueApc.

Decompile: KeInsertQueueApc - (10.0.22621,382-Analysed.blob) g | | Q] ﬁ|
1
2 |char KelnsertQueuelApc(longlong param l,undefined® param 2,undefined8 param 3,uint param 4)
3
4 |
5 ulonglong *puVarl;
€
7
-]
9 V H
10 ulonglong uVaré;
13 char cVar7;
12 longlong 1Vars;
13 uint uVars
14 bool bVarl(;
15 byte in_CRE;
16 uint local_48 [2]:
17 longlong local 40;
18 ulonglong local_38;
19
20 /% 0x29%92800 1281 KelInsertQueuehApc */
21 if ((EtwThreatIntProvRegHandle = 0) ||
22 ({{{1Vare = *(longlong *) (EtwThreatIntProvRegHandle + 0x20), *(int *) (1Vard + 0xé0) == 0 |
23 ({(*(uint *) (1Var® + 0x70) & 0x3000) == 0)) 11
24 {(ulonglong) ({uint) * (ulonglong *) (1Vart + 0x78) & 0x3000) !'= *({ulonglong *) (1Var: + 0x78)))
25 && ((*(char *) (EcwThreatIntProvRegHandle + 0x€5) == "\0" ||
26 (uVare = EtwplevelKeywordEnabled
27 ((int *) (*(longlong *) (EtwThreatIntProvRegHandle + 0x28) + 0xé&0),0,
28 0x3000), (char)uVare == "\0")))))) {
29 bVar3 = false;
30| 3
31 else {
32 BUAT3 = truss.

Figure 10 — nt!KelnsertQueueApc partial decompilation

This is a great candidate for a few reasons:

o nt!KelnsertQueueApc is an exported function. This means we can leak its live address
using a KASLR bypass. Then we can use our Kernel vulnerability to read data at that
address.

e The global is used at the start of the function. This is very helpful because it means we
most likely won’t need to construct complex instruction parsing logic to find it.

Looking at the assembly shows the following layout.

16/34

1402%9e3800 48 389 S5c MOV gword ptr [RSP + local_ reslo] ,RBX
24 10

1402%e305 48 39 ec MOV gword ptr [RSF + local_resls],REBE
24 18

1402%=80a 43 29 74 MOV gword ptr [RSP + local_res20],RSI
24 20

14029%=80£f 57 PUSH RDI

140292810 41 54 PUSH R12

14029e812 41 55 PUSH R13

14029%=814 41 56 PUSH R14

14029%=816 41 57 PUSH R1S

140292818 48 83 ec &0 SUB RSP, 0x60

1402%e81c 4c 8b 15 MOV Bl0,qword ptr [EtwThreatIntProvRegHandle]
d5 2£ 99 00

140292823 45 &b £9 MOV R15D,param 4

140292826 44d Sb =0 MOV R12,param_3

140292829 4c Sb ea MOV R13,param 2

1402%e82c 48 8b 49 MOV RBY,param 1

14029e82f 44 85 d2 TEST m,

1402%e832 0f 84 3¢ JZ LRB 14048¢3¢e
7b le 00

140292838 49 Sb 42 20 MOV RLY,qword ptr [m + 0x20]

1402%9=83c A3 78 £0 00 fMP dword ptyr [BAY 4+ Owe0]l 0Ox0

Figure 11 — nt!KelnsertQueueApc partial disassembly

Leaking this registration handle then becomes straightforward. We read out an array of bytes
using our vulnerability, and search for the first mov R10 instruction to calculate the relative
virtual offset of the global variable. The calculation would be something like this:

Int32 pOffset = Marshal.ReadInt32((IntPtr)(pBuff.Tolnt64() + i + 3));
hEtwTi = (IntPtr)(pOffset + i + 7 + oKelnsertQueueApc.pAddress.Tolnt64());

With the registration handle, it is then possible to access the ETW REG_ENTRY data
structure.

In general, such gadget chains can be used to leak a variety of Kernel data structures.
However, it is worth pointing out that it is not always possible to find such gadget chains and
sometimes gadget chains may have multiple complex stages. For example, a possible
gadget chain to leak page directory entry (PDE) constants could look like this.

MmUnloadSystemlmage -> MiUnloadSystemimage -> MiGetPdeAddress

In fact, a cursory analysis of ETW registration handles revealed that most do not have
suitable gadget chains which can be used as described above.

17/34

Method 2: Memory Scanning

The other main option to leak these ETW registration handles is to use memory scanning,
either from live Kernel memory or from a module on disk. Remember that when scanning
modules on disk it is possible to convert file offsets to RVAs.

This approach consists of identifying unique byte patterns, scanning for those patterns, and
finally performing some operations at offsets of the pattern match. Let’s take another look at
nt!Etwplnitialize to understand this better:

Decompile: Etwplnitialize - (10 21, 382-Analysed.blob) f;. |
178 (longlong) sEtwpComponentName) ;
179 ouVarlé Vv ntTracingPro Handle;
180 = " - back;
181
182 EtwRegister ((LPCGUID) eEventIracin ovGuid, (ulonglong *)EtwpIracingProvEnableCallback,
183 (PVOID) 0x0, sEtwpEve cingProvRegHandle) ;
184 uVard = WdipSemInitialize Varl(,param 3, (undefined *)puVa
185 PerfDiagInitialize{uVard _W, param 3);
186 uVard = EthpInltlalizecoverage():
187 EtwpIm.\::Lal:.;.eCoverageSampler(,in XMM1 Qa,param 3,in XMM3 Qa);
188 = gEtwK
189 0 = Etwp nelProv ack;
160 Et.wReglster((LECGUID) & i, {ulonglong *)EtwpKernelProvEnableCallback, (PVOID)0x0,
141 sEtwKernelProvRegHand) ;
162 TlgRegisterRAggregateProvider((lon ng *)&DAT_140c0&750,pcVarll,param 3, (ulonglong)puVar9)
193 H
194 P r9 = gEtwpPsProvRegHandle;
195 EtwRegur.er((LPCGUID) sPsProvGuid, [lllonglong *)EtwpCrimsonProvEnableCallback, (PVOID)0Oxl,
19¢ sEtwpPsProvRegHandle)
197 TlgRegisterAggregateProviderEx
198 (&DAT_140c04458, (longlol *)EcwplraceloggingProvEnableCallback, param 3,
1499 (ulonglong)puVard) ;
200 TraceloggingRegisterEx EtwRegistef@FtwSetInformation((ulonglong)&DAT_140c038b0
201 EtwRegister((LPCGUID) sNetProvGuid longlong *)EtwpCrimsonProvEnableCallback,
202 (PVOID) 0x10000, sEtwplig@FProvRegHandle) ;
203 EtwRegister((LPCGUID) eDiskProvGuidll(ulonglong *)EtwpCrimsonProvEnableCallback,
204 &DAT_00000100, sEtwpDij@ProvRegHandle):
205 EtwRegister((LPCGUID) sFileProvGuide (ulonglong *)Ety imsonProvEnableCallback,
20€ (PVOID) 0x2000000, sEcwillileProvRegHandle) ;
207 EtwRegister((LPCGUID) sRegistryProjuid, (ulonglong *)EtwpReglraceEnableCallback, (PVOID) 0x0,
208 &EtwpRegTraceHandle);
209 EtwRegister((LPCGUID) eMemoryProvGyd, (ulonglong *)EtwpCrimsonProvEnableCallback,
210 (PVOID) 0x20000001, sEtg@MemoryProvRegHandle) ;
211 EtwRegister((LPCGUID) &MS_Windows_|Mrnel RppCompat Provider, (ulonglong *)0x0, (PVOID)0x0,
212 sEtwhppCompatProvRegH@dle) ;
213 EtwRegister((LPCGUID) ¢HernelRuditiCallsGuid, (ulonglong *)0xd, (PVOID)O0x0,
214 &EtwhpiCallsProvRegHajlle) ;
215 EtwRegister ((LPCGUID) sCVEAuditProjderGuid, (ulonglong *)0x0, (PVOID)0x0,
216 &EtwCVERuditProvRegHajle)
217 EtwRegister((LPCGUID) &ThreatIntPriiderGuid, (ulonglong *)0x0, (PVOID)0x0,
218 sEtwThreatIntProvRegHdle) ;
219 EtwRegister ((LPCGUID) M5 Windows JRcurity LPAC Provider, (ulonglong *)0x0, (PVOID)0x0,
220 sEtwlpacProvRegHandle
221 EtwRegister ((LPCGUID) sSecurityMitiationsProviderGuid, (ulonglong *)0x0, (PVOID)0x0,
222 sEtwSecurityMitigatiofgRegHandle);
223 EtwRegister ((LPCGUID) «CpuStarvati@FrovGuid,
224 {ulonglong *)EtwpCpuSgrvationProvEnableCallback, (FVOID)0x0,
225 gHandle);
226 EtwpBootPhase = EtwpBootPhase + "\x01':
227 uWarls = (=

Figure 12 — nt!Etwplnitialize partial decompilation

18/34

All fifteen of the calls to nt/EtwRegister are mostly bunched together in this function. The
main strategy here is to find a unique pattern that appears before the first call to
nt!/EtwRegister and a second pattern that appears after the last call to nt/EtwRegister. This is
not too complex. One trick that can be used to improve portability is to create a pattern
scanner that is able to handle wild card byte strings. This is a task left to the reader.

Once a start and stop index have been identified, it is possible to look at all the instructions
in-between.

o Potential CALL instructions can be identified based on the opcode for CALL which is
Oxe8.

o Subsequently, a DWORD sized read is used to calculate the relative offset of the
potential CALL instruction.

o This offset is then added to the relative address of the CALL and incremented by five
(the size of the assembly instruction).

 Finally, this new value can be compared to nt!/EtwRegister to find all valid CALL
locations.

140b3ccdd e3 02 51 CALL EtwRegister
c? £f

e 4c 8d 0d LER

4c 0f 00

0x140b3ccd9 + Oxffc75102 +5
0x1407blde0

140b3cced
00 00 02
140b3ccek 48 3b d7 MOV param 2=>EtwpCrimsonProvEnableCallback,RDI
140b3ccee 438 384 0d LER param 1, [FileProvGuid]
3b 2b 4d f£f£
140b3ccts e8 eg 50 CALL EtwRegister
140b3cd¢a 0x140b3ccf5 + Oxffc750e6+5 ‘
0x1407blde0
140b3cdOl
140b3cd04 48 34 15 LEA param 2, [EtwpRegTraceEnableCallback]
05 ad ea ff
140b3cdOb 48 8d 0d LEA param_l, [RegistryProvGuid]
Se 2a 4d f£f
140b3cdl2 28 c9 50 CALL EtwRegister
c7 ff : :
140b3ch7 \\‘ah1__EEEﬁﬁ#”;y 0x140b3cdl2 + Oxffc750c9+5 el
0x1407blde0
140b3cdle
00 00 20
140b3cd24 43 3b 47 MOV param 2=>EtwpCrimsonProvEnableCallback,RDI
140b3cd27 48 84 0d LER param_ 1, [MemoryProvGuid]
72 2a 44 f£f£
140b3cd2e 3 ad 50 CALL EtwRegister
c?7 £f |\

0x140b3cd2e + Oxffc750ad + 5

4c &d Ow’ﬂ dle]
e 4c 0f 00

140b3cd3a 45

0x1407blde0

19/34

Once all CALL instructions have been found it is possible to search backward and extract the
function arguments, first the GUID that identifies the ETW provider and second, the address
of the registration handle. With this information in hand we are able to perform informed
DKOM attacks on the registration handles to affect the operation of the identified providers.

Lazarus ETW Patching

| obtained a sample of the FudModle DLL mentioned in the ESET whitepaper and analyzed
it. This DLL loads a signed vulnerable Dell driver (from an inline XOR encoded resource) and
then pilots the driver to patch many Kernel structures in order to limit telemetry on the host.

PS C:\Users\b33f> Get—FileHash SHA1|Select Algorithm, Hash;Get-FileHash
SHA256 | Select Algorithm Hash

Algorithm Hash

296D882CB9260T70F6E43C99B9E1683497B6F17CH
SHA256 97C78020EEDFCD5611872ADTC57F812B069529E96107EB9A33BUDATBCI6T7BF38F

PS C:\Users\b33f>

Figure 13 — Lazarus FudModule hash

As the final part of this post, | want to review the strategy that Lazarus uses to find Kernel
ETW registration handles. It is a variation on the scanning method we discussed above.

At the start of the search function, Lazarus resolves nt/EtwRegister and uses this address to
start the scan.

32 local 30 = DAT 180011000 ~ (ulonglong)auStack 7E&;
-k LER = 0x8ddc;

34 RS9 REG = 0xd;

35 /* RWtE %/

36 EtwRegister = 0x52777445;

37 /* sige */

38 local 3c = 0x7369676€5;

39 /¥ ret %/

40 local 38 = 0x726574;

41 hModule = LoadLibrarvA("ntoskrnl.exe"):;

42 pEtwRegister = GetProclAddress(hModule, (LPCSTR) &EtwRegister):
43 pOffset = pEtwRegister;

Figure 14 — Lazarus FudModule partial ETW search decompilation

20/34

https://securityintelligence.com/cloud/virusbulletin.com/uploads/pdf/conference/vb2022/papers/VB2022-Lazarus-and-BYOVD-evil-to-the-Windows-core.pdf

This decision is a bit strange because it relies on where that function exists in relation to
where the function gets called. The relative position of a function in a module may vary from
version to version since new code may be introduced, removed, or altered. However,
because of the way modules are compiled, it is expected that functions maintain a relatively
stable order. One assumes this is a search speed optimization.

When looking for references to nt/EtwRegister in ntoskrnl it appears that not many entries
are missed using this technique. Lazarus may also have performed additional analysis to
determine that the missed entries are not important or otherwise don’t need to be patched.
The missed entries are highlighted below. Employing this strategy allows Lazarus to skip
0x7b1de0 bytes while performing the scan which may be a non-trivial amount if the scanner
is slow.

21/34

Edit Help

@ References to EtwRegister - 52 locations [CodeBrowser(2): Generic:/W... —

References to EtwRegister - 52 locations

EXTER...
140113¢80 { IMAGE RUNTIME F... DATA
1401442e8 DATA
1401666b2 {GuardCfgTableEnt... DATA
1403016bf UNCQ...
1403a1bac UNCQO...
1403b9696 UNCO...
1403da121 UNCQ...
14053498b UNCO...
14058f1e2 UNCQO...
1405c1067 UNCQO...
1407b1d4b UNCO...
14082539 CALL EtwRegister UNCO...
140825433 CALL EtwRegister UNCO...
14082c1ab CALL EtwRegister UNCQ...
14083c781 CALL EtwRegister UNCQ...
1409357b8 CALL EtwRegister UNCO...
1409358dd CALL EtwRegister UNCQ...
140939972 CALL EtwRegister UNCO...
14093ab8g2 CALL EtwRegister UNCQ...
140a7c6d0 CALL EtwRegister UNCOQ...
140b22340 CALL EtwRegister UNCQ...
140b228d9 CALL EtwRegister UNCO...
140b268cc CALL EtwRegister UNCO...
140b293%h CALL EtwRegister UNCO...
140b293ee CALL EtwRegister UNCQ...
140b2958d CALL EtwRegister UNCO...
140b2b065 CALL EtwRegister UNCO...
140b2bcod CALL EtwRegister UNCOQO...
140b2d587 CALL EtwRegister UNCO...
140b3cc19 CALL EtwRegister UNCO...
140b3ccda CALL EtwRegister UNCO...
Filter: | =

Address not found in program memory: Entry Point

|
]

Figure 15 — Instances of calls to nt!EtwRegister

Additionally, when starting the scan, the first five matches are skipped before starting to

record registration handles. Part of the search function is shown below.

22/34

Decompile: getETWRegHandles - (FudModule. bin)

¢

72 if (iCount == 5) {

73 /% Did we already identify 5 CALL's?

74 If 30 we want to record this registration handle! */
75 pcVar7 = pFvVaré + -1535;

7 !'= (code *)0x0) {

82 /* Is this an Oxe8 CALL?

a3 Is the destination of the CALL nt!'EtwRegister? */

84 if ((pcVar7[1Varl2] == (code)0xed) ss&

+ ¥{int *) (pFVarc + 1Varl2 + -0x5fe) + 1Var3 + 5 == pEtwRegister)) {

92 /% LER R9? */
93 bVarld = % (ushort *)
94 if ((*(ushort *) (p

100 iCount = (1 - (uint)bVarl4) - (uint) (bVarld '= 0);

We calculate the actual address using a KASLR bypass */

107| *ppvVard = pEvVaré + (longlong)rkConfig->KernelBase +

108 IVarl + 1Var9 + ((longlong)*(int *) (pFVaré + 1Varl0 + 3 + 1lVarl)
109 - {longlong)hModule) + 7;

110 1

111 1Var9 = 1VarS + 1;

112 1Varl0d = 1Varl0 + 1;

Figure 16 — Lazarus FudModule partial ETW search decompilation

The code is a bit obtuse, but we get the plot highlights. The code looks for calls to
nt!EtwRegister, extracts the registration handle, converts this handle to the live address
using a KASLR bypass, and stores the pointer in an array set aside for this purpose within a
malware configuration structure (allocated on initialization).

Finally, let's have a look at what Lazarus does to disable these providers.

23/34

Decompile: dearETWHandles - (FudModule.bin)
1
2 undefined?® clearETWHandles (MALWARE CONFIG *rkConfig)
3
4 |
K HANDLE hProc;
() undefined8 bSuccess;
i longlong lVarl;
8 ETW_HANDLE ARRAY *hRegRrray:
9 undefinedg null var;
10| undefined Ba
11 undefined by
12| undefined by
13] PVOID handleInstance;
14
15 Array = &rkConfig->RegistrationHandles:
1§ =0
17| null_var
8| memset(hReghArray,0,0xal);
19 getETWRegHandles(rkConfig):
20| 1varl = 0xl4;
21l do {
22 hand hRegArray->HandleArray([0]:
23 if | cance !'= (PVOID)Ox0) |{
24 hProc = GetCurrentProcess();:
25 (* (code *)rkConfig->NtWriteVirtualMemory) (hProc,BaseAddress,handleInstance,8,bytesiWritten);
26 h leInstance = hRegArray->HandleArray[0]:
27 hProc GetCurrentProcess();
8 (* (code *)rkConfig->NtWriteVirtualMemory) (hProc,handlelnstance,&null_var, 8,bytesWritten
29 null_sub():
30 bSuccess = 1;
31 1
32 hRegArray = (ETW HANDLE ARRAY *) (hReghArray->HandleBArray + 1);
33 lvVarl = 1Varl + -1;
34 } while (1Varl != 0);
35 return bSuccess;
36|}

Figure 17 — Lazarus FudModule NULL ETW registration handles

This mostly makes sense, what Lazarus does here is leak the global variable we saw earlier
and then overwrite the pointer at that address with NULL. This effectively erases the

reference to the ETW REG_ENTRY data structure if it exists.

| am not completely happy with the tradecraft shown for a few reasons:

» The payload does not capture provider GUID’s so it can’t make any intelligent decisions

as to whether it should or should not overwrite the provider registration handle.

o The decision to start scanning at an offset inside ntoskrnl seems questionable because
the offset of the scan may vary depending on the version of ntoskrnl.

 Arbitrarily skipping the first 5 matches seems equally questionable. There may be
strategic reasons for this decision but a better approach is to first collect all providers

and then use some programmatic logic to filter the results.

24/34

e Overwriting the pointerto _ ETW _REG_ENTRY should work but this technique is a bit
obvious. It would be better to overwrite properties of ETW REG_ENTRY or
_ETW _GUID_ENTRY or _TRACE_ENABLE_INFO.

| re-implemented this technique for science; however, | made some adjustments to the
tradecraft.

¢ A speed optimized search algorithm is used to find all Oxe8 bytes in ntoskrnl.

o Afterward, some post-processing is done to determine which of those are valid CALL
instructions and their respective destinations.

» Not all calls to nt/EtwRegister are useful because sometimes the function is called with
a dynamic argument for the registration handle. Because of this, some extra logic is
needed to filter the remaining calls.

o Finally, all GUID’s are resolved to their human readable form and the registration
handles are enumerated.

Overall, after adjustments, the above technique is clearly the best way to perform this type of
enumeration. Since search time is negligible with optimized algorithms, it makes sense to
scan the entire module on disk and then use some additional post-scan logic to filter out
results.

ETW DKOM Impact

It is prudent to briefly evaluate how impactful such an attack could be. When provider data is
reduced or eliminated entirely there is a loss of information, but at the same time not all
providers signal security-sensitive events.

Some subset of these providers, however, are security-sensitive. The most obvious example
of this is Microsoft-Windows-Threat-Intelligence (EtwTi) which is a core data source for
Microsoft Defender Advanced Threat Protection (MDATP) which is now called Defender for
Endpoint (it's all very confusing). It should be noted that access to this provider is heavily
restricted, only Early Launch Anti Malware (ELAM) drivers are able to register to this
provider. Equally, user-land processes receiving these events must have a protected status
(ProtectedLight | Antimalware) and be signed with the same certificate as the ELAM driver.

Using EtwExplorer it is possible to get a better idea of what types of information this provider
can signal.

25/34

https://learn.microsoft.com/en-us/windows-hardware/drivers/install/early-launch-antimalware
https://github.com/zodiacon/EtwExplorer

& ETW Explorer v0.3 (©)2019 Pavel Yosifovch

Eile

=5
== Open Provider...

Provider Name:
Provider GUID:
Provider Symbol:
Keywords:
Events:

Tasks:

Templates:

& Summary # Events| Strings | @ XML

Microsoft-Windows-Threat-Intelligence
f4e1897c-bb5d-5668-f1d8-040f4d8dd344
MicrosoftWindowsThreatintelligence

38

38

(No file) Microsoft-Windows-Threat-Intelligence

Figure 18 — ETW Explorer

The XML manifest is too large to include here in its entirety, but one event is shown below to
give an idea of the types of data which can be suppressed using DKOM.

26/34

inType
" inType

inType="w

inType="
inType="w

Figure 19 — EtwTi partial XML manifest

Conclusion

The Kernel has been and continues to be an important, contested, area where Microsoft and
third-party providers need to make efforts to safeguard the integrity of the operating system.
Data corruption in the Kernel is not only a feature of post-exploitation but also a central
component in Kernel exploit development. Microsoft has made a lot of progress in this area
already with the introduction of Virtualization Based Security (VBS) and one of its
components like Kernel Data Protection (KDP).

27/34

https://learn.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-vbs
https://www.microsoft.com/en-us/security/blog/2020/07/08/introducing-kernel-data-protection-a-new-platform-security-technology-for-preventing-data-corruption/#:~:text=Kernel%20Data%20Protection%20(KDP)%20is,%2Dbased%20security%20(VBS).

Consumers of the Windows operating system, in turn, need to ensure that they take
advantage of these advances to impose as much cost as possible on would-be attackers.
Windows Defender Application Control (WDAC) can be used to ensure VBS safeguards are
in place and that policies exist which prohibit loading potentially dangerous drivers.

These efforts are all the more important as we increasingly see commodity TAs leverage
BYOVD attacks to perform DKOM in Kernel space.

Additional References

e Veni, No Vidi, No Vici: Attacks on ETW Blind EDR Sensors (BHEU 2021 Slides) — here
¢ Veni, No Vidi, No Vici: Attacks on ETW Blind EDR Sensors (BHEU 2021 Video) — here
e Advancing Windows Security (BlueHat Shanghai 2019) — here

o Exploiting a “Simple” Vulnerability — In 35 Easy Steps or Less! — here

o Exploiting a “Simple” Vulnerability — Part 1.5 — The Info Leak — here

« Introduction to Threat Intelligence ETW — here

o TelemetrySourcerer — here

o Data Only Attack: Neutralizing EtwTi Provider — here

o WDAC Policy Wizard — here

Learn more about X-Force Red here. Schedule a no-cost consult with X-Force here.

Ruben Boonen
Senior Managing Security Consultant, Adversary Services, IBM X-Force

Ruben Boonen is a contributor for Securitylntelligence.

POPULAR

28/34

https://learn.microsoft.com/en-gb/windows/security/threat-protection/windows-defender-application-control/wdac-wizard-create-base-policy
https://i.blackhat.com/EU-21/Wednesday/EU-21-Teodorescu-Veni-No-Vidi-No-Vici-Attacks-On-ETW-Blind-EDRs.pdf
https://www.youtube.com/watch?v=wZG0h1q7fMg
https://github.com/dwizzzle/Presentations/blob/master/Bluehat%20Shanghai%20-%20Advancing%20Windows%20Security.pdf
https://windows-internals.com/exploiting-a-simple-vulnerability-in-35-easy-steps-or-less/
https://windows-internals.com/exploiting-a-simple-vulnerability-part-1-5-the-info-leak/
https://undev.ninja/introduction-to-threat-intelligence-etw/
https://github.com/jthuraisamy/TelemetrySourcerer
https://public.cnotools.studio/bring-your-own-vulnerable-kernel-driver-byovkd/exploits/data-only-attack-neutralizing-etwti-provider
https://webapp-wdac-wizard.azurewebsites.net/
https://www.ibm.com/services/offensive-security
https://www.ibm.com/x-force?schedulerform
https://securityintelligence.com/author/ruben-boonen/

Intelligence & Analytics February 21, 2023

Backdoor Deployment and Ransomware: Top Threats Identified in X-
Force Threat Intelligence Index 2023

4 min read - Discover how threat actors are waging_attacks and how to proactively protect

your organization with top findings from the 2023 X-Force Threat Intelligence Index.

-—
f'_'ﬂ

29/34

https://securityintelligence.com/posts/2023-x-force-threat-intelligence-index-report/
https://securityintelligence.com/category/topics/security-intelligence-analytics/
https://securityintelligence.com/posts/2023-x-force-threat-intelligence-index-report/
https://securityintelligence.com/posts/patch-tuesday-exploit-wednesday-pwning-windows-ancillary-function-driver-winsock/

i|lI

IBM Security X-Force
Threat Intelligence

Index: Explore the
top threats of 2022.

Read the report >

https://securityintelligence.com/posts/defensive-considerations-lazarus-fudmodule/
https://www.ibm.com/reports/threat-intelligence?utm_medium=OSocial&utm_source=Blog&utm_content=RSRWW&utm_id=SI-Blog-Uni-Banner-XFTII-2023%20

i|lI

IBM Security X-Force

Threat Intelligence
Tndex: Fxnlare the

https://www.ibm.com/reports/threat-intelligence?utm_medium=OSocial&utm_source=Blog&utm_content=RSRWW&utm_id=SI-Blog-Uni-Banner-XFTII-2023%20
https://www.ibm.com/reports/threat-intelligence?utm_medium=OSocial&utm_source=Blog&utm_content=RSRWW&utm_id=SI-Blog-Uni-Banner-XFTII-2023%20

top threats of 2022

Read the report >

More from Software Vulnerabilities

32/34

https://www.ibm.com/reports/threat-intelligence?utm_medium=OSocial&utm_source=Blog&utm_content=RSRWW&utm_id=SI-Blog-Uni-Banner-XFTII-2023%20

33/34

https://securityintelligence.com/posts/x-force-prevents-zero-day-from-going-anywhere/
https://securityintelligence.com/posts/patch-tuesday-exploit-wednesday-pwning-windows-ancillary-function-driver-winsock/

Analysis and insights from hundreds of the brightest minds in the cybersecurity industry to
help you prove compliance, grow business and stop threats.

34/34

https://securityintelligence.com/posts/dissecting-exploiting-tcp-ip-rce-vulnerability-evilesp/
https://securityintelligence.com/posts/self-checkout-discord-c2/

